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Abstract—Recently Güntürk et al. showed that Σ∆ quantiza-
tion is more effective than memoryless scalar quantization (MSQ)
when applied to compressed sensing measurements of sparse
signals. MSQ with the l1 decoder recovers an approximation
to the original sparse signal with an error proportional to
the quantization step size δQ. For an r-th order Σ∆ scheme
the reconstruction accuracy can be improved by a factor of

(m/k)α(r−1/2) for any 0 < α < 1 if m & k(logN)1/(1−α),
with high probability on the measurement matrix. The method
requires a preliminary support recovery stage for which r cannot
be too large and δQ must be sufficiently small. In this paper, we
remove this requirement, showing that the constrained l0 and
lτ (for sufficiently small τ ) minimization problems subject to a
Σ∆-type quantization constraint would approximate the original
signal from the Σ∆ quantized measurements with a comparable
reconstruction accuracy. We note that these results allow us to
achieve root-exponential reconstruction accuracy while using a
fixed quantization alphabet.

I. INTRODUCTION

The robust recovery results in compressed sensing, e.g.

[3], [6], [11] showed that sparse vectors could be recovered

from compressed sensing measurements even when the mea-

surements are perturbed. Quantization of these measurements

introduces such a perturbation from which the robust recovery

result allows us to recover.

To fix notation, let N be the ambient dimension of the sparse

signal x that we wish to recover. Define the sparsity measure

‖x‖0 := |{i : x(i) 6= 0}| and let ΣN
k be the set of all k-sparse

vectors in N dimensions ΣN
k := {x ∈ R

N : ‖x‖0 ≤ k}. We

will use Φ to denote the m×N measurement matrix, where we

wish to recover x from the quantization of the measurements

y = Φx.

Mathematically, a quantizer maps the measurement space

R
m to a finite set, which we will assume to be of the

form Am, where the quantization alphabet A is a finite

arithmetic progression of step size δQ. For memoryless scalar

quantization (MSQ), each measurement is simply rounded to

the nearest element of A. For an r-th order Σ∆ scheme, the

quantization is found by solving a difference equation

y − q = Dru (1)

for q ∈ Am and u ∈ R
m, where ‖u‖∞ should be bounded

independently of m. Dr is the r-th difference operator: in ma-

trix form, D is 1 on the diagonal and −1 on the subdiagonal,

with zeros elsewhere. Note that MSQ corresponds to the case

r = 0.

The authors in [8] investigated the use of Σ∆ quantization

for a specific class of compressed sensing matrices: the random

m×N matrices with each entry drawn independently from the

standard Gaussian distribution, N (0, 1). For MSQ, the quan-

tization introduces an error of at most δQ/2 per measurement,

and the corresponding recovery error is a constant multiple of

δQ. For r-th order Σ∆, the quantization introduces an error of

at most 2r−1δQ per measurement, but the error vector is highly

structured. Once the support is recovered, for instance via l1

minimization, the Sobolev-dual approximation (Equation 6)

yields an error of at most δQ(m/k)−α(r−1/2) for some 0 <
α < 1, when m & k(logN)1/(1−α). However, the method to

recover the support requires that 5
√
2 · 2rδQ < mini:xi 6=0 |xi|

[8]. Thus δQ needs to be small, and r cannot be too large.

Suppose we use r-th order Σ∆ with step size δQ to produce

q ∈ Am with ‖u‖∞ ≤ µ. Rearranging Equation 1 shows that

‖D−r(y−q)‖2 ≤ √
mµ. We will show in Proposition II.2 that

the sparsest solution satisfying this quantization constraint

x0,µ := Argmin
‖D−r(Φz−q)‖2≤

√
mµ

‖z‖0 , (2)

approximates the original sparse vector with the same accuracy

up to a constant as the Sobolev-dual approximation. Then we

will show in Theorem IV.3 that if we solve the non-convex

minimization

xτ,µ := Argmin
‖D−r(Φz−q)‖2≤

√
mµ

‖z‖τ , (3)

where ‖z‖τ =
(

∑N
i=1 |z(i)|τ

)1/τ

, then there is a value of

τ > 0 sufficiently small so that the minimizer approximates the

original sparse vector with the same accuracy up to a constant

as the Sobolev-dual approximation. In Section V we note

that given a bit budget R for quantizing the measurements,

we can now achieve a reconstruction accuracy of the form

exp(−c(R/k)α) where c is an absolute constant. Previously,

Krahmer et al. showed a similar result for Σ∆ quantization of

frame coefficients for specially designed frames [9]. Finally

in section VI we briefly discuss approaches for tackling the

minimization problems.

II. Σ∆-QUANTIZATION AND SOBOLEV DUAL RECOVERY

Suppose we quantize the measurements y = Φx with r-

th order Σ∆, i.e. we solve Equation (1) for q ∈ Am and

u ∈ R
m. We highlight two approaches for accomplishing this,

where details can be found in [5], [7]:
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A. The simplest greedy method chooses qi+1 which would

minimize the corresponding value of |ui+1| in the equa-

tion. The result is a solution that requires an alphabet of

size 2r + 2‖y‖∞/δQ and has the bound ‖u‖∞ ≤ δQ/2.

B. An alternative method which can be viewed as a greedy

method on a different but related difference equation

decreases the required alphabet size to

C1 + 2‖y‖∞/δQ (4)

for some absolute constant C1 but increases the bound to

‖u‖∞ . (C2r)
rδQ (5)

This method allows us to use a fixed quantization alpha-

bet for all r.

Consider any solution with ‖u‖∞ ≤ µ. The difference equa-

tion can be rewritten as

D−rΦx−D−rq = u .

We review the results from [2] concerning the Sobolev dual.

Suppose that an oracle tell us the support T of x. We can

then focus on just ΦT , the m × k submatrix with columns

corresponding to the index set T . Taking the pseudoinverse,

x− (D−rΦT )
†D−rq = (D−rΦT )

†u .

Note that if r = 0, the quantizer is MSQ, and u is the

quantization error vector with norm
√
mδQ/2. Taking the

pseudoinverse of ΦT recovers an approximation x̂(0) = Φ†
T q

with error

‖x− x̂(0)‖2 ≤ ‖Φ†
T ‖2

√
mδQ/2 .

From the restricted isometry property, the singular values of

every submatrix of Φ with |T | = k columns is concentrated

around
√
m with high probability if the entries of Φ are drawn

independently from N (0, 1); so ‖Φ†
T ‖2 ∼ 1/

√
m and the error

bound is proportional to δQ and does not decrease with m, as

stressed in [8].

For r > 0, we see that x̂(r) = (D−rΦT )
†D−rq recovers an

approximation with error

‖x− x̂(r)‖2 ≤
√
mµ

σmin(D−rΦT )
. (6)

Note (D−rΦT )
†D−r is precisely the r-th order Sobolev dual

of ΦT . Here we will restate the relevant result from [8,

Theorem 3.8] about the smallest singular value:

Theorem II.1. Let Φ be an m × N random matrix whose

entries are i.i.d. N (0, 1). Let 0 < α < 1 and suppose for

some C3 = C3(r)

m

s
≥ C3(logN)1/(1−α) .

Then there exist constants C4, C5 depending only on r such

that with probability at least 1 − exp(−C4m
1−αsα) on the

draw of Φ, every m× s submatrix E of Φ satisfies

σmin(D
−rE) ≥ C5

√
m(m/s)α(r−1/2)

This theorem implies that given the support, the error for

the Sobolev dual recovery (6) becomes C5(m/k)−α(r−1/2)µ.

We now use Theorem II.1 to show that solving (2) will

recover the support and have an accuracy matching that of the

Sobolev dual.

Proposition II.2. Let Φ be an m×N random matrix whose

entries are i.i.d N (0, 1). Let α, m, r, and s = 2k satisfy the

conditions of Theorem II.1. Suppose x ∈ ΣN
k and let q be the

quantization of Φx using r-th order Σ∆. Let ‖u‖∞ ≤ µ. Then

the minimizer x0,µ of (2) recovers an approximation of x with

error

‖x0,µ − x‖2 ≤ 2

C5

(m

2k

)−α(r−1/2)

µ .

Proof: Suppose T is the support of x, and let x′ = x0,µ

with support T ′. Since x, x′ are both feasible and x′ is the

sparsest feasible point, |T ′| = |x′|0 ≤ |x|0 ≤ k. Then by

Theorem II.1,

‖x− x′‖2 ≤ ‖D−rΦT∪T ′(x− x′)‖2
C5

√
m
(

m
2k

)α(r−1/2)
.

Note that D−rΦT∪T ′(x − x′) = D−rΦ(x − x′). Using the

triangle inequality and feasibility conditions,

‖D−rΦ(x− x′)‖2 ≤ ‖D−r(Φx′ − q)‖2 + ‖D−r(Φx− q)‖2
≤ 2

√
mµ .

The result follows from substitution.

III. ROBUSTNESS OF lτ MINIMIZATION

We will follow the approaches of [6], [12] to study ‖x‖τ
minimization as stated in (3). As in [6], we will state our

results in terms of the condition numbers of submatrices of

the measurement matrix:

Definition III.1. Define as(A) to be the largest a and bs(B)
to be smallest b such that the following holds:

a‖z‖2 ≤ ‖Az‖2 ≤ b‖z‖2 for all z ∈ ΣN
s .

The next result combines ideas from the analysis in [6], [12]

which will show that constrained lτ minimization recovers an

approximation with error proportional to 1/a:

Theorem III.2. Let A be an m×N matrix, 0 < τ ≤ 1, and

let x ∈ ΣN
k , w ∈ R

m satisfy ‖Ax−w‖2 ≤ ǫ. Define ρ := k/J

and γ := bJ (A)
ak+J (A) . If γρ1/τ−1/2 < 1 holds, then the minimizer

x♯ := Argmin
‖Az−w‖2≤ǫ

‖z‖τ

satisfies the bound

‖x♯ − x‖2 ≤

√

1 + 1
2/τ−1

(

k
k+J

)2/τ−1

1− γρ1/τ−1/2
· 2ǫ

ak+J(A)
.

Proof: Define η := x♯ − x, and T to be the support of

x. Using Hölder’s inequality and the fact that xτ,µ is the lτ

minimizer (see (25) of [12]),

‖ηT c‖τ ≤ ‖ηT ‖τ ≤ k1/τ−1/2‖ηT ‖2 . (7)
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Block ηT c into disjoint blocks of size J of decreasing magni-

tudes, i.e. ηT c =
∑L

i=1 ηTi
with |Ti| = J and |ηTi

(j)| ≤
|ηTi−1

(j′)| for j ∈ Ti, j′ ∈ Ti−1 and i > 1. Using the

constraint and singular value conditions,

‖ηT∪T1
‖2 ≤ 1

ak+J(A)
‖AηT∪T1

‖2

≤ 1

ak+J(A)

(

‖Aη‖2 +
L
∑

i=2

‖AηTi
‖2
)

≤ 2ǫ

ak+J(A)
+ γ

L
∑

i=2

‖ηTi
‖2 . (8)

Using 4.2.II of [12], bound ‖ηTi
‖2 ≤ J

1
2
− 1

τ ‖ηTi−1
‖τ . Com-

bined with the reversed triangle inequality (for τ < 1 and

non-negative vectors), we have
∑L

i=2 ‖ηTi
‖2 ≤ J

1
2
− 1

τ ‖ηT c‖τ .

Finally using (7),

L
∑

i=2

‖ηTi
‖2 ≤ ρ1/τ−1/2‖ηT∪T1

‖2 . (9)

Combining equation (30) of [12] with (7) gives

‖η‖2 ≤
√

1 +
1

2/τ − 1
ρ2/τ−1‖ηT∪T1

‖2 .

The result follows from substituting (9) into (8), solving for

‖ηT∪T1
‖2 and substituting into the last equation.

IV. lτ MINIMIZATION WITH Σ∆ AND COMPRESSED

SENSING

Finally we put together our two main observations and

state the known bounds and conditions for recovery. We state

precisely the results concerning the singular value of subma-

trices of D−rΦ to use with Theorem III.2. We already know

that Theorem II.1 covers the smallest singular values of the

submatrices. For the largest singular values, we can first use

Gershgorin’s circle theorem for eigenvalues on (D−1)TD−1,

to show that σmax(D
−1) ≤

√

m+ (m−1)m
2 ≤ m. Then using

the bound σmax(AB) ≤ σmax(A)σmax(B),

σmax(D
−rE) ≤ mrσmax(E) . (10)

The standard restricted isometry property allows us to bound

the largest singular value of submatrices of Φ, which has a

simple proof in [1]:

Theorem IV.1 (e.g. Theorem 5.2 of [1]). Let Φ be an m×N
matrix whose entries are i.i.d. N (0, 1), and suppose

m

s
≥ C6 log(N/s)

for some absolute constant C6. Then there exists an absolute

constant C7 such that bs(Φ) < 2
√
m with probability ≥ 1 −

2e−C7m.

We can now combine these two results to obtain upper and

lower singular value bounds:

Corollary IV.2. Let Φ be an m × N random matrix whose

entries are i.i.d N (0, 1). Let 0 < α < 1 and suppose that

m

s
≥ C8(logN)

1
1−α (11)

for C8 = max(C3, C6) from Theorems II.1 and IV.1. Then

for some constant C9 depending on r, with probability ≥ 1−
3 exp(−C9m

1−αsα) the following holds: For all z ∈ ΣN
s ,

C5

√
m(m/s)α(r−1/2)‖z‖2 ≤ ‖D−rΦT z‖2 ≤ 2mr+1/2‖z‖2

where C5 is from Theorem II.1. In other words,

as(D
−rΦ) ≥ C5

√
m(m/s)α(r−1/2)

bs(D
−rΦ) ≤ 2mr+1/2 .

Proof: Note that the condition (11) implies that the

conditions for both Theorems II.1 and IV.1 are satisfied.

Then with the union bound, both conclusions hold with prob-

ability ≥ 1− exp(−C4m
1−αsα)− 2 exp(−C7m). Since m ≥

m1−αsα, we can bound this by ≥ 1 − 3 exp(−C9m
1−αsα)

with C9 = min(C4, C7). The conclusion of Theorem II.1 gives

the lower inequality (as), and the conclusion of Theorem IV.1

along with observation (10) gives the upper inequality (bs).

The following result is then immediate from Theorem III.2

and Corollary IV.2 using A = D−rΦ, w = D−rq, J = 2k
and ǫ =

√
mµ:

Theorem IV.3. Let Φ be an m×N matrix whose entries are

i.i.d N (0, 1), and let 0 < α < 1. Suppose for k and 0 < τ ≤ 1,

the following conditions are satisfied:

i.
m

k
≥ 3C8(logN)

1
1−α

ii.
1

τ
>

1

2
+ log2(2/C5) + r log2 m

Then with probability ≥ 1 − exp(−3αC9m
1−αkα), the fol-

lowing holds:

For every x ∈ ΣN
k , if r-th order Σ∆ is used to quantize

Φx, with q being the quantization and ‖u‖∞ < µ in the

corresponding difference equation, then the minimizer xτ,µ of

(3) satisfies the bound

‖xτ,µ − x‖2 ≤ C10µ
(m

k

)−α(r−1/2)

for some r-dependent constant C10.

Remark IV.4. Note that for any fixed δQ and order r, there

is a τ sufficiently small for which the conditions for recovery

hold, and in the recovery error µ will typically have a linear

dependence on δQ.

V. ROOT-EXPONENTIAL ACCURACY

Suppose we impose a bit budget of R bits for quantizing

measurements from unit-norm vectors in ΣN
k . Define Reff :=

R/k, the effective bit-rate per sparse dimension. We will also

work with a fixed quantization alphabet A of spacing δQ. This

requires that we use the quantization method (II.B) and that

the measurements be bounded independently from the number
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of measurements. Unfortunately, Gaussian measurements do

not satisfy this criteria [8], but there is also ongoing work

that would allow us to use alternative matrix ensembles which

are bounded, such as the Bernoulli-{±1} matrices [10]. For

what follows we will assume the bound ‖y‖∞ ≤ M for some

absolute constant M .

Also, by inspecting the proofs in [8] we can expand the

r-dependent constants in the paper so that in Theorem IV.3,

C8 does not actually depend on r and C10 ≤ (C11r)
r where

C11 is now an absolute constant. Substituting (5) for µ in the

conclusion of Theorem IV.3 gives a reconstruction accuracy

of

δQ(C12r
2)r(3k/m)α(r−1/2)

with C12 = C2C11, and the number of bits needed for

quantization is Reff = C13
m
k with C13 = log2(C1 + 2M/δQ)

from (4). Solving for m/k in the rate and substituting, the

accuracy becomes

δQ(Reff/C13)
α/2(C14r

2/Rα
eff)

r

with C14 = C12(3C13)
α. Then optimizing over r, or choosing

r =
√

Rα
eff/(eC14) gives

δQ(Reff/C13)
α/2 exp(−C15R

α/2
eff )

with C15 = 1/
√
eC14.

VI. ALGORITHMS

Solving the constrained lτ minimization problem (3) is

tricky given the non-convexity of the ‖ · ‖τ , but there are

several approaches. In [11], Saab et al. use a modification to

iterative reweighted least squares with encouraging numerical

results. If we want a weight that encourages minimization of

the sparsity measure ‖x‖0 instead, [13] mentions a weighting

scheme that is non-separable which could potentially be used

in this situation. Other approaches involve projected gradient,

and different regularizations of the lτ norm [4].

We conclude with a sample plot from the approach of [11],

which uses the iteration

w
(n)
i = (|x̂(n)

i |2 + ǫw)
τ/2−1

x̂(n+1) = W−1A′(AW−1A′ + λI)−1D−rq

where W = W (n) is diagonal with entries w
(n)
i , and w(0) ≡ 1.

Fixing ǫw = 10−10 and λ = 1, we start with τ = 1 and

decrease τ to 0.1. With N = 200 and k = 3, we generate a

k-sparse signal and a 180×200 Bernoulli random matrix. For

a range of m, we take the first m measurements, quantize and

recover, recording the resulting error. In figure 1 we plot the

result, comparing the iterative method with l1 minimization

and with the Sobolev dual (assuming a support oracle). What

we observe in many cases is that after a certain number of

measurements, the error starts tracking that of the Sobolev

dual. In fact, if w
(n)
i → ∞ for i 6∈ supp(x), x̂(n+1) converges

to a small perturbation of the Sobolev dual reconstruction.

Thus the success of the method hinges on a reweighting

scheme that can detect the support of the source signal. We

emphasize that with such a coarse quantization step size, l1

minimization generally will fail to detect the support, a crucial

requirement for the results in [8].
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Fig. 1. Log-log plot comparing accuracy vs oversampling ratio m/k for a
fixed k-sparse signal and Bernoulli measurements for r = 1 and δQ = 2. In
this example, N = 200, and k = 3.
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