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Abstract

We have previously proposed a trajectory model which is based
on a mixture density network trained with target variables aug-
mented with dynamic features together with an algorithm for
estimating maximum likelihood trajectories which respects the
constraints between those features. In this paper, we have ex-
tended that model to allow diagonal covariance matrices and
multiple mixture components. We have evaluated the model on
an inversion mapping task and found the trajectory model works
well, outperforming smoothing of equivalent trajectories using
low-pass filters. Increasing the number of mixture components
in the TMDN improves results further.

1. Introduction
Mainstream speech technology, such as automatic speech
recognition and concatenative speech synthesis, is strongly fo-
cuses on the acoustic speech signal. This is natural, consid-
ering the acoustic domain is where the speech signal exists in
transmission between humans, and we can conveniently mea-
sure and manipulate an acoustic representation of speech. How-
ever, an articulatory representation of speech has certain prop-
erties which are attractive and which may be exploited in mod-
elling. Speech articulators move relatively slowly and smoothly,
and their movements are continuous; the mouth cannot “jump”
from one position to the next. Using knowledge of the speech
production system could improve speech processing methods
by providing useful constraints. Accordingly, there is growing
interest in exploiting articulatory information and representa-
tions in speech processing, with many suggested applications;
for example, low bit-rate speech coding [1], speech analysis and
synthesis [2], automatic speech recognition [3, 4], animating
talking heads and so on.

For an articulatory approach to be practical, we need conve-
nient access to an articulatory representation. Recent work on
incorporating articulation into speech technology has used data
provided by X-ray microbeam cinematography and electromag-
netic articulography (EMA). These methods, particularly the
latter, mean we are now able to gather reasonably large quanti-
ties of articulatory data. However, they are still invasive tech-
niques and require bulky and expensive experimental setups.
Therefore, there is interest in developing a way to recover an
articulatory representation from the acoustic speech signal. In
other words, for a given acoustic speech signal we aim to es-
timate the underlying sequence of articulatory configurations
which produced it. This is termed acoustic-articulatory inver-
sion, or the inversion mapping.

The inversion mapping problem has been the subject of re-
search for several decades. One approach has been to attempt
analysis of acoustic signals based on mathematical models of
speech production [5]. Another popular approach has been to

use articulatory synthesis models, either as part of an analysis-
by-synthesis algorithm [6], or to generate acoustic-articulatory
corpora which may be used with a code-book mapping [7] or to
train other models [8]. Much of the more recent work reported
has applied machine learning models to human measured artic-
ulatory data, including artificial neural networks (ANNs) [9],
codebook methods [10] and GMMs [11].

The inversion mapping is widely regarded as difficult be-
cause it may be an ill-posed problem; multiple evidence exists
to suggest the articulatory-to-acoustic mapping is many-to-one,
which means that instantaneous inversion of this mapping re-
sults in a one-to-many mapping. If which case, an inversion
mapping method must take account of the alternative articula-
tory configurations possible in response to an acoustic vector.

In previous work [12, 9], we have successfully employed
the mixture density network (MDN) [13] to address this prob-
lem. The MDN provides a probability density function (pdf) of
arbitrary complexity over the target articulatory domain which
is conditioned on the acoustic input. In [14], we began to ex-
tend this work to provide a statistical trajectory model, termed
the Trajectory MDN, along similar lines as the HMM-based
speech production model of [15] and the GMM-based inver-
sion mapping of [11]. This was achieved by augmenting the
static articulatory target data with dynamic delta and deltadelta
features and incorporating the maximum likelihood parameter
generation (MLPG) algorithm [16]. This allows to calculate the
maximum likelihood estimate of articulatory trajectories which
respect the constraints between the static and derived dynamic
features.

This paper seeks to further the work in [14] with three spe-
cific aims: 1) to evaluate an extension to the TMDNs in [14]
which allows mixture models with diagonal covariance matri-
ces. 2) to evaluate the new implementation of TMDN on the full
set of articulator channels, and in comparison with a low-pass
filtering approach previously reported. 3) to evaluate TMDNs
with multiple mixture components.

2. The Trajectory Mixture Density Network
Model

We give here a very brief introduction to the MDN, and describe
how it may be extended with the MLPG algorithm to give a tra-
jectory model. For full details of the MDN and MLPG, the
reader is referred to [13] and [16] respectively. We have at-
tempted to retain the original notation as far as possible.

2.1. Mixture density networks

The MDN combines a mixture model with an ANN. Here,
we will consider a multilayer perceptron and Gaussian mixture
components. The ANN maps from the input vectorx to the
control parameters of the mixture model (priorsα, meansµ and
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Figure 1: The mixture density network is the combination of a
mixture model and a neural network.

variancesσ2), which in turn gives a pdf over the target domain,
conditioned on the input vectorp(t|x). The toy-example MDN
in Figure 1 takes an input vectorx (dimensionality 5) and gives
the conditional probability density of a vectort (dimensionality
1) in the target domain. This pdf takes the form of a GMM with
3 components, so it is given as:

p(t|x) =

MX
j=1

αj(x)φj(t|x) (1)

whereM is the number of mixture components (in this exam-
ple, 3),φj(t|x) is the probability density given by thejth ker-
nel, andαj(x) is the prior for thejth kernel.

In order to constrain the GMM priors to within the range
0 ≤ αj(x) ≤ 1 and to sum to unity, thesoftmaxfunction is
used

αj =
exp(zα

j )PM
l=1 exp(zα

l )
(2)

wherezα
j is the output of the ANN corresponding to the prior

for thejth mixture component. The variances are similarly re-
lated to the outputs of the ANN as

σj = exp(zσ
j ) (3)

wherezσ
j is the output of the ANN corresponding to the vari-

ance for thejth mixture component. This avoids the variance
becoming≤ 0. Finally, the means are represented directly:

µjk = zµ
jk (4)

wherezµ
jk is the value of the output unit corresponding to the

kth dimension of the mean vector for thejth mixture compo-
nent.

Training the MDN aims to minimise the negative log like-
lihood of the observed target data points

E = −
X

n

ln

(
MX

j=1

αj(x
n)φj(t

n|xn)

)
(5)

given the mixture model parameters. Since the ANN part of
the MDN provides the parameters for the mixture model, this
error function must be minimised with respect to the network
weights. The derivatives of the error at the network output units
corresponding separately to the priors, means and variances of
the mixture model are calculated (see [13]) and then propagated
back through the network to find the derivatives of the error
with respect to the network weights. Thus, standard non-linear
optimisation algorithms can be applied to MDN training.
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Figure 2: Placement of EMA receiver coils in the MOCHA
database for speakerfsew0 . See Table 1 for the key to ab-
breviations.

2.2. Maximum likelihood parameter generation

The first step to an MDN-based trajectory model is to train an
MDN with target feature vectors augmented with dynamic fea-
tures, derived from linear combinations of a window of static
features. For the sake of simplicity and economy of space1,
we will consider MDNs with a single Gaussian distribution and
a single target static featurect at each time step. Next, given
the output of this MDN in response to a sequence of input
vectors, in order to generate the maximum likelihood trajec-
tory, we aim to maximizeP (O|Q) with respect toO, where
O = [oT

1 ,oT
2 , ...,oT

T ]T , ot = [ct, ∆ct, ∆∆ct] andQ is the
sequence of Gaussians output by our MDN. The relationship
between the static features and those augmented with derived
dynamic features can be arranged in matrix form,

O = WC (6)

whereC is a sequence of static features andW is a transfor-
mation matrix composed of the coefficients of the delta and
deltadelta calculation window and0. Under the condition ex-
pressed in Eq. 6, maximisingP (O|Q) is equivalent to max-
imisingP (WC|Q) with respect toC. By setting

∂ log P (WC|Q)

∂C
= 0 (7)

a set of linear equations is obtained (see [16])

WT U−1WC = WT U−1MT (8)

where MT = [µq1 , µq2 , ..., µqT ] and U−1 =
diag[U−1

q1 ,U−1
q2 , ...,U−1

qT
] (µqT and U−1

qt
are the 3 × 1

mean vector and3 × 3 (diagonal) covariance matrix respec-
tively). Solving Eq. 8 forC computes the maximum likelihood
trajectory.

3. Inversion mapping experiment
3.1. MOCHA articulatory data

The multichannel articulatory (MOCHA) dataset [17] used for
the experiments in this paper gives the acoustic waveform
recorded concurrently with electromagnetic articulograph (2D
EMA) data. The sensors shown in Figure 2 provide x- and
y-coordinates in the midsagittal plane at 500Hz sample rate.
Speakers were recorded reading a set of 460 short, phonetically-
balanced British-TIMIT sentences. Female speakerfsew0 was
used for the experiments here. This is the same data set as used

1the full version of this paper will require a description of MLPG in
the case of multiple mixture components



label articulator label articulator
UL Upper lip TT Tongue tip
LL Lower lip TB Tongue body
LI Lower incisor TD Tongue Dorsum
V Velum

Table 1:Key for placement of coils in the MOCHA dataset for
speaker. Coil placement abbreviations are suffixed with “x”
and “ y” to designate the x- and y-coordinate for a given coil
in the midsagittal plane respectively.

previously [9, 14], and so enables comparison with those and
similar results reported in the literature (e.g. [11]).

3.1.1. Data processing

The acoustic data was converted to frames of 20 melscale fil-
terbank coefficients using a Hamming window of 20ms with a
shift of 10ms. These were z-score normalised and scaled to the
range [0.0,1.0]. The EMA trajectories were downsampled to
match the 10ms shift rate, then z-score normalised and scaled to
the range [0.1,0.9] using the normalisation method described in
[12]. Frames from silence at the beginning and end of the files
were discarded, using the labelling provided with MOCHA.

368 utterances were used for the training set, and the val-
idation and test sets contained 46 utterances each (the same as
[9, 14]). A context window of 20 consecutive acoustic frames
was used as input, which increased the order of the acoustic
vector paired with each articulatory vector to 400.

3.2. Method

We trained TMDNs with 1, 2 and 4 mixture components for
each of the 14 EMA channels, making a total of 42 models.
In [14], we trained separate MDNs for the static, delta and
deltadelta features for each articulatory channel. Here, in con-
trast, our implementation has been extended and now allows
diagonal covariance matrices, and so the three feature streams
for each articulator channel were trained in a single network.
All networks contained a hidden layer of 80 units. The scaled
conjugate gradients non-linear optimisation algorithm was run
for a maximum of 4000 epochs, and the separate validation
set was used to identify the point at which an optimum ap-
peared to have been reached. To generate output trajectories
from the TMDN, we simply ran the input data for an utterance
through the TMDNs for each articulatory channel, and then ran
the MLPG algorithm on the resulting sequences of pdfs.

To evaluate the Trajectory MDN, we compared the result-
ing trajectories with those of the output units corresponding to
the mean of the static feature. This output is approximately
equivalent to that of an MLP (with linear output activation func-
tion) trained with a standard least-squares error function2. In
this way, we can directly observe the effect of using the aug-
mented features without considering the effects of two systems
having been trained differently. Finally, we also low-pass fil-
tered the static mean trajectories as a smoothing step which has
been shown in the past to improve inversion results [12, 11], and
compared those smoothed trajectories with the TMDN output.

4. Results
Table 2 lists the results of 14 TMDNs trained on each articula-
tory channel separately, using an output pdf containing a single

2although this MLP has been trained with augmented target features,
which seems to have had a beneficial effect, possible due to “multitask”
learning

Correlation RMSE(mm) RMSE(mm)
Channel MLP TMDN MLP TMDN reduction %

ul x 0.58 0.68 0.99 0.90 9.5
ul y 0.72 0.79 1.16 1.05 9.9
ll x 0.60 0.69 1.21 1.10 9.2
ll y 0.75 0.83 2.73 2.27 16.8
li x 0.56 0.63 0.89 0.82 8.1
li y 0.80 0.85 1.19 1.03 13.3
tt x 0.79 0.85 2.43 2.12 12.9
tt y 0.84 0.90 2.56 2.08 18.7
tb x 0.81 0.85 2.19 1.96 10.4
tb y 0.83 0.89 2.14 1.76 17.6
td x 0.79 0.84 2.04 1.85 9.5
td y 0.71 0.82 2.31 1.89 18.2
v x 0.79 0.86 0.42 0.35 15.6
v y 0.77 0.83 0.41 0.37 10.2

Table 2: Comparison of results for Trajectory MDNs (TMDN)
with a single Gaussian with the MLP described in [9]. Exactly
the same training, validation and testing datasets have been
used. The Average RMSE(mm) in [9] was1.62mm, compared
with an average here of1.4mm.

Gaussian. Two error metrics have been used: correlation be-
tween the target and output trajectories, and root mean square
error (RMSE) expressed in millimetres. The table also lists the
results previously reported in [9], which used an MLP with ex-
actly the same dataset, for comparison. It can be seen that the
improvement is substantial. By way of further comparison with
other studies, [11] reported an average RMS error of1.45mm
for MOCHA speakerfsew0 .

In order to investigate the effect of using dynamic features
and the MLPG algorithm within the Trajectory MDN, we have
compared these results for TMDNs with a single Gaussian with
those obtained using low-pass filtering, as described in [12, 11].
Table 4 compares three conditions:“TMDN” , “static only” and
“static lpfilt” . For the“static only” condition, we have used the
TMDN’s output corresponding to the mean for the static target
feature as the output trajectory. For the“static lpfilt” condition,
we have further low-pass filtered the static mean above using
the cutoff frequencies listed in Table 3. These channel-specific
cutoff frequencies were determined empirically in [12], and are
very similar to those given in [11]. As expected, it can be seen
that low-pass filtering improves results for all channels. How-
ever, using the dynamic features and the MLPG algorithm in the
Trajectory MDN results in the best performance, with improve-
ments varying between0.6 and2.4% over low-pass filtering.

The improvements over using low-pass filtering in Table 4,
although consistent, are not huge. However, in contrast to low-
pass filtering, the TMDN is able to make use of multiple mix-
ture components, which can potentially increase performance
further. Table 5 performs this comparison, by the addition of
results for TMDNs with 2 and 4 mixture components. It can
be seen that increasing the number of mixture components im-
proves results by up to8.3% over those obtained using low-pass
filtering.3

5. Conclusion
The results of this paper show we have successfully extended
the Trajectory MDN first described in [14] to allow diagonal
covariance matrices. For all 14 articulator channels tested, the
TMDN with a single Gaussian output pdf performed better than

3at the time of submitting this proposal paper, results for the other
channels were still in preparation



Correlation RMSE(mm) RMSE(mm)
Channel static only static lpfilt TMDN static only static lpfilt TMDN reduction %

ul x 0.63 0.67 0.68 0.93 0.90 0.90 0.6
ul y 0.74 0.77 0.79 1.13 1.06 1.05 1.5
ll x 0.64 0.69 0.69 1.17 1.11 1.10 1.0
ll y 0.81 0.83 0.83 2.40 2.31 2.27 1.6
li x 0.57 0.62 0.63 0.88 0.84 0.82 2.4
li y 0.83 0.84 0.85 1.07 1.05 1.03 1.5
tt x 0.82 0.84 0.85 2.26 2.14 2.12 1.0
tt y 0.88 0.89 0.90 2.19 2.12 2.08 1.8
tb x 0.83 0.85 0.85 2.05 1.99 1.96 1.2
tb y 0.87 0.89 0.89 1.88 1.80 1.76 1.8
td x 0.81 0.83 0.84 1.95 1.88 1.85 2.1
td y 0.78 0.81 0.82 2.04 1.92 1.89 1.7
v x 0.84 0.85 0.86 0.37 0.36 0.35 1.2
v y 0.80 0.82 0.83 0.39 0.37 0.37 1.6

Table 4:Comparison of correlation and RMS error (in millimetres) for Trajectory MDN model (“TMDN”) with the static mean MDN
output only (“static only”) and low-pass filtered static mean (“static lpfilt”). Low-pass filtering the static feature output, using the
cutoff frequencies in Table 3, improves results for all channels. However, using the delta and deltadelta features in the Trajectory MDN
gives the best performance for all channels. The TMDN here has a single Gaussian as its output distribution. Compare these results
with those in table 5.

ul ll li tt tb td v
x 3Hz 3Hz 3Hz 6Hz 6Hz 7Hz 5Hz
y 5Hz 8Hz 7Hz 9Hz 7Hz 6Hz 5Hz

Table 3:Channel-specific cutoff frequencies used for low pass
filtering (empirically determined in [12]).

static TMDN % best
Channel lpfilt 1mix 2mix 4mix reduction

tt x 2.14 2.12 2.09 2.10 2.1
tt y 2.12 2.08 1.98 1.94 8.3
td x 1.88 1.85 1.81 1.83 4.1
td y 1.92 1.89 1.85 1.88 3.6

Table 5: Comparison of RMS error (expressed in millimetres)
between using the low-pass filtered static feature mean (“static
lpfilt”) and Trajectory MDNs with 1, 2 or 4 mixture compo-
nents. Compared with the results in Table 4, using multiple
mixture components improves the performance of the TMDN
over low-pass filtering even further.

low-pass filter smoothing. Increasing the number of mixture
components improved results further. This is a unique advan-
tage of the TMDN model over smoothing single trajectories
with, for example, low-pass filters.
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