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Abstract

Automatic speech recognition mainly relies on hidden Markov
models (HMM) which make little use of phonetic knowledge.
As an alternative, landmark based recognizers rely mainly on
precise phonetic knowledge and exploit distinctive features. We
propose a theoretical framework to combine both approaches by
introducing phonetic knowledge in a non stationary HMM de-
coder. To demonstrate the potential of the method, we investi-
gate how broad phonetic landmarks could be used to improve a
HMM decoder by focusing the best path search. We show that,
assuming error free landmark detection, every broad phonetic
class brings a small improvement. The use of all the classes
reduces the error rate from 22% to 14% on a broadcast news
transcription task. We also experimentally validate that land-
marks boundaries does not need to be detected precisely and
that the algorithm is robust to non detection errors.

1. Introduction

In hidden Markov models (HMM) based speech recognition
systems, the decoding process consists in compiling a graph
which includes all the available sources of knowledge (language
model, pronunciations, acoustic models) before finding out the
best path in the graph in order to obtain the best word sequence

W = arg max p(y|w)p(w) 1)

At the acoustic level, this approach relies on data-driven meth-
ods that learn from examples. Therefore, integrating explicit
phonetic knowledge in such systems is difficult.

Alternately, various studies aimed at explicitly relying on
phonetic knowledge to represent the speech signal for automatic
speech recognition [1, 2, 3]. These approaches are most of the
time based on the extraction of a set phonetic features, a.k.a.
landmarks, on top of which a model, either rule based or statisti-
cal based, is build for the purpose of recognition. Phonetically-
driven ASR relies on fine grain phonetic features such as onset
and offset times [2] and distinctive features [1, 3]. However, in
practice, automatically detecting such features might be diffi-
cult and error prone, in particular in the case of noisy signals or
spontaneous speech.

This work is a preliminary study which aims at bridging
these two paradigms in order to make use of explicit phonetic
knowledge in the framework of HMMs. While landmark-based
systems use phonetic landmarks as a feature describing the sig-
nal, the idea of our approach is to use landmarks in order to
guide the search for the best path during Viterbi decoding in an
HMM-based system. Hence, prior knowledge on the nature of
the signal is used as anchor points during decoding. We will

use indistinctly the two terms landmark and anchor to designate
constraints on the search.

The aim of this study is twofold. The first aim is to define
a theoretical framework to incorporate phonetic knowledge in
HMM based systems using anchor points and to experimentally
validate this approach. This framework allows for uncertainty
in the landmark detection step, though this is not validated in the
study as of now. The second aim is to study which landmarks
effectively complements the data-driven knowledge embedded
in HMM systems. We believe that detecting fine grain phonetic
features is a particularly challenging problem — in spite of recent
promising results on the detection of distinctive features, see
e.g. [4, 5, 3] — while detecting broad phonetic features can be
achieved with reasonably good performance [6, 7, 8]. Hence,
to avoid problems related to the detection of fine grain features,
we investigate if, and to what extent, broad phonetic landmarks
can help.

in this paper, we first extend the Viterbi algorithm in order
to incorporate prior knowledge carried out by landmarks. We
then study the impact of broad phonetic landmarks in an ideal
setting where landmarks are manually detected, with an em-
phasis on the temporal precision of the landmarks. Finally, we
discuss some upcoming experiments whose results are expected
to be presented at the workshop.

2. Landmark-driven Viterbi decoding

Most HMM-based systems rely on the Viterbi algorithm in or-
der to solve Eq. (1), along with pruning techniques to keep the
search tractable for large vocabularies. We briefly recall the ba-
sics of the Viterbi algorithm before extending this algorithm for
the integration of phonetic anchors.

2.1. Beam-search Viterbi decoding

The Viterbi algorithm aims at finding out the best alignment
path in a graph using dynamic programming (DP) on a trellis.
The DP algorithm proceeds incrementally by searching for the
best hypothesis reaching the state (j,¢) of the trellis according
to

S(5,t) = max S(i, t = 1) + In(aij) + (p(yel7)) » ()
where j is the state in the decoding graph and ¢ the frame in-

dex in the observation sequence. In Eq. (2), In(a,;) denotes the
weight for the transition from state  to j in the graph® while

INote that this weight actually combines the language model and
the acoustic model probabilities for cross-word transitions.



p(y:|7) denotes the likelihood of the feature vector y; condi-
tional to state j. Hence, S(z, t) represents the score of the best
partial path ending in state ¢ at time ¢.

In practice, not all paths are explored in order to keep the
algorithm tractable on large decoding graphs. Unlikely partial
hypotheses are pruned according to the score of the best path
ending at time ¢.

2.2. Introducing anchors

Anchors can be considered as hints on what the best path is.
For example, if a landmark indicates that a portion of an ut-
terance corresponds to a vowel, then we can constrain the best
path to be consistent with this piece of information since nodes
in the decoding graph are linked to phonemes. One easy way
to do this is to penalize, or even prune, all the paths of the trel-
lis which are inconsistent with the knowledge brought by the
vowel landmark. Assuming confidence measures are associated
with the landmarks, the penalty should be proportional to the
confidence.

Formally, the above principle can be expressed using non-
stationary graphs, i.e. graphs whose transition probabilities are
dependent on time. The idea is that if a transition leading to
state (¢, t) of the trellis is inconsistent with the landmark knowl-
edge, then the transition cost increases. In order to do this, we
replace in (2) the transition weights In(a;;) by

In(ai;(t)) = In(ai;) — A(£)1;(t) . ©)]

I;(¢) is an indicator function whose value is 0 if node 5 is com-
patible with the available anchor information and 1 otherwise.
The penalization term A(¢) > 0 reflects the confidence in the
anchor available at time ¢, if any. Hence, if no anchor is avail-
able or if a node is consistent with the anchor, then no penal-
ization is applied. In the opposite case, we apply a penalty
where the higher the confidence in the landmark, the higher
the penalty. In the extreme case where landmark detection is
perfect, setting A(¢t) = oo, enables to actually prune paths in-
consistent with the landmarks.

In (3), one can notice that the penalty term only depends on
the target state 5 and hence the proposed scheme is equivalent to
modifying the state-conditional probability p(y:|j) to include
a penalty. However, introducing the penalty at the transition
level might be useful in the future to introduce phonological
constraints or word-level constraints.

A by product of the proposed method is that decoding
should be much faster with landmarks as adding a penalty will
most likely result in inconsistent paths being pruned.

In this preliminary study, we use manually detected land-
marks in order to investigate whether or not broad phonetic
landmarks can help and to what extent in an ideal case. We will
therefore set A(t) = oo, V¢ in all the experiments described in
section 4.

3. Basdline system

Before describing the experiments, we briefly present the data
and baseline system used.

3.1. Corpus

Experiments are carried out on a radio broadcast news corpus
in the French language. The data used is a 4 hour subset of the
development data for the ESTER broadcast news rich transcrip-
tion evaluation campaign [9]. The corpus mostly contains high-

fidelity planned speech from professional radio speakers. In-
terviews, however, contain more spontaneous speech from non
professional speakers, sometimes in degraded acoustic condi-
tions.

The entire data set was labeled phonetically based on the
reference orthographic transcription, using our ASR system to
select pronunciation variants.

3.2. ASR system

Two reference systems were used in this study. Both systems
are two-pass systems where a first pass aims at generating a
word graph which is then rescored in a second pass with more
sophisticated acoustic models. The two systems differ in the
complexity of the acoustic models used for the word graph
generation, the first system using context-independent models
while word-internal context-dependent ones are used for the
second system. Clearly, using landmarks to guide the decod-
ing is more interesting when generating the word graph as it
should enable better and smaller word graphs which already
take into account the landmark knowledge. Therefore, the rea-
son for comparing two systems for word graph generation is to
determine to what extent phone models capture broad phonetic
information.

Both transcription passes are carried out with a trigram lan-
guage model. Monophone acoustic models have 114 states with
128 Gaussians per state while the word-internal triphone models
have 4,019 distinct states with 32 Gaussians each. Cross-word
triphones models are used for word graph rescoring, with about
6,000 distinct states and 32 Gaussians per state.

4. Broad phonetic landmarks

The experiments described in this section are performed using
manually detected broad phonetic landmarks, the goal being
to measure the best expected gain from the use of such land-
marks. The main motivation for using this type of landmarks,
as opposed to distinctive features, is that we believe that reliable
and robust automatic broad phonetic landmark detectors can be
build. For example, in [6, 7, 8] (to cite a few), good results are
reported on the detection of nasals and vowels. Fricatives also
seems relatively easy to detect using energy and zero crossing
rate information. Moreover, we observed that the heap of active
hypotheses in our ASR system most of time contains hypothe-
ses corresponding to different broad phonetic classes. Though
this is normal since hypotheses correspond to complete partial
paths rather than to local decisions, this observation indicates
that a better selection of the active hypotheses based on (locally
detected) landmarks is bound to improve the results.

4.1. Landmark generation

Five broad phonetic classes are considered in this study, namely
vowels, fricatives, plosives, nasal consonants and glides. Land-
marks are generated from the available phonetic alignments ob-
tained from the orthographic transcription. For each phone, a
landmark corresponding to the broad phonetic class to which
the phone belongs is generated, centered on the phone segment.
The landmark duration is proportional to the phone segment
length. In the first set of experiments, the landmark length is set
to 50% of the phone segment length. We study in section 4.3
the impact of the landmark duration.



4.2. Which landmarks?

The first question to answer is what is the optimal improvement
that can be obtained using each broad phonetic class separately.
Results are given in table 1 for the monophone and triphone
systems after the first and second pass, with each landmark type
taken separately. Results using all the landmarks or a combina-
tion of vowel, plosive and fricative landmarks are also reported.

Results show a small improvement for each type of land-
marks, thus clearly indicating that the transcription system is
not misled by phones from a particular broad phonetic class.
The best improvement is obtained with landmarks for glides,
that correspond to highly transitory phones which are difficult
to model, in particular because of co-articulation effects. More
surprisingly, vowel landmarks yield a small but significant im-
provement, in spite of the fact that the phone models used in
the ASR system do little confusions between vowels and other
phones. This result is due to the fact that the DP maximization
not only depends on the local state-conditional probabilities but
also on the score of the entire path resulting in an hypothesis.
In other words, even if the local probabilities p(y|:) are much
better for states corresponding to a vowel than for states corre-
sponding to some other class, some paths, incompatible with the
knowledge of a vowel landmark, might get a good cumulated
score and are therefore kept in the heap of active hypotheses.
Using the landmark-driven version of the Viterbi algorithm ac-
tually remove such paths from the search space, thus explaining
the gain obtained with vowel landmarks.

Clearly, using all the available landmarks strongly improves
the WER for both systems, the improvement being unsurpris-
ingly better for the monophone-based system. One interesting
point to note is that, when using all the landmarks, the two sys-
tems exhibit comparable levels of performance, with a slight
advantage for the monophone system. This advantage is due
to the fact that the word graph generated with the monophone
system contains more sentence hypotheses than the one gener-
ated with the triphone system, though both graphs have roughly
the same density. A last point worth noting is the rather good
performance obtained after the first pass using the monophone
system. This result suggest that combining landmark-driven
decoding with fairly simple acoustic models can provide good
transcriptions with a limited amount of computation. Indeed,
the average number of active hypotheses, and hence the decod-
ing time, is divided by a factor of four when using landmarks.

In a practical setting, the reliable detection and segmenta-
tion of a signal into broad phonetic classes is somewhat unre-
alistic, the detection of nasals and glides being a rather difficult
problem. However, detecting vowels, plosives and fricatives
seems feasible with a great accuracy. We therefore report results
using only landmarks from those three classes (VPF results in
table 1). Using such landmarks, a nice performance gain can
still be expected, in particular with a monophone-based word
graph generation.

These results show the optimal gain that can be obtained us-
ing broad phonetic landmarks as anchors in a Viterbi decoding,
thus justifying further work on landmark detection.

4.3. Landmark precision

Two questions arise regarding the precision of the landmark de-
tection step. The first question is to determine whether a precise
detection of the landmark boundaries is necessary or not. The
second question concerns the robustness to detection errors of
the proposed algorithm.
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Figure 1: WER (in %) as a function of the landmarks length,
using all landmarks. The landmark length is defined as a frac-
tion of the length of the phone which generated the landmark.
Figures reported on the graph correspond to the average size of
the active hypotheses heap during word graph generation.

4.3.1. Temporal precision

Figure 1 shows the word error rate for the two systems as a
function of the landmark extent, where the extent is defined as
the relative duration with respect to the phone used to generate
the landmark. An extent of 10 therefore means that the dura-
tion of a landmark is 0.1 times that of the corresponding phone.
All the landmarks are considered in these experiments. Unsur-
prisingly, the longer the landmarks, the better the transcription.
It was also observed that longer landmarks reduce the search
space and yield smaller, yet better, word graphs. In spite of this,
most of the improvement comes from the fact that landmarks
are introduced, no matter their extent. Indeed, with a landmark
extent of only 5%, the word error rate decreases from 22.3% to
14.3% with the monophone system. When increasing the land-
mark extent to 50%, the gain is marginal, with a word error rate
of 13.9%. Note that with an extent of 5%, the total duration
of landmarks corresponds to 4.4% of the total duration of the
signal, and therefore landmark-based pruning of the hypothe-
ses heap happens only for 4.4% of the frames. Similar conclu-
sions were obtained using only the vowel landmarks. This is a
particularly interesting result as it demonstrates that landmark
boundaries do not need to be detected precisely. Reliably de-
tecting landmarks on some very short portion of the signal (one
or two frames) is sufficient to drive a Viterbi decoder with those
landmarks.

4.3.2. Robustness to non-detection errors

In the absence of confidence measures, landmark-driven Viterbi
is highly sensitive to detection errors. Clearly, false alarms,
i.e. insertion and confusion errors, have detrimental effects
on the system. However, miss detection errors are less disas-
trous. Therefore, automatic broad phonetic landmark detection
systems should be designed to have as low as possible a false
alarm rate. However, lower false alarm rates unfortunately im-
ply higher miss detection rates. We tested the robustness of our
landmark-driven decoder by simulating miss detection errors
at various rates, assuming a uniform distribution of the errors
across the five broad phonetic classes. Results show that the
word error rate is a linear function of the miss detection rate.



Table 1: Word error rate (in %) after each pass for the monophone and word-internal triphone systems, as a function of the landmarks
used. The landmark ratio indicates the amount of signal (in %) for which a landmark is available.

landmarks none all VPF VOW. plo. fri. nas. gli.
landmark ratio 43.6 34.6 183 9.0 7.3 28 6.2
monophones passe 1 29.2 15.3 21.7 26.6 26.5 271.5 27.8 25.1
passe 2 22.3 13.9 17.6 21.2 20.7 21.0 215 20.1
triphones passe 1 27.3 19.6 23.9 27.0 26.3 26.0 26.4 24.9
passe 2 21.3 15.0 18.2 20.7 20.4 20.3 20.7 19.6

For example, with the monophone system, the word error rate
is 17.9% (resp. 15.8%) for a miss detection error rate of 50%
(resp. 25%).

5. Discussion

The preliminary experiments reported in this summary are en-
couraging and prove that integrating broad phonetic landmarks
in a HMM-based system can drastically improve the perfor-
mance, assuming landmarks can be detected reliably. These
results also validate the proposed paradigm for the integra-
tion of various sources of knowledge: phonetic knowledge via
landmarks and data-driven knowledge acquired by the HMMs.
However, results are reported in an ideal laboratory setting
where landmark detection is perfect. The first step is there-
fore to work on robust detectors of broad phonetic landmarks,
at least for vowels, plosives and fricatives, in order to validate
the proposed paradigm in practical conditions.

A naive method for broad phonetic landmark detection was
tested, based on broad phonetic class HMMs along with a tri-
gram language model. For each of the five broad phonetic
class, a context-independent left-right model with 3 states and
32 Gaussians per states was estimated on the training data of the
ESTER corpus. These models were then used for broad pho-
netic segmentation with a trigram language model, resulting in
an accuracy of 76.62. Assuming landmarks extracted from this
broad phonetic segmentation with a landmark extent of 20% of
the segment length, the amount of landmark time that is not cor-
rectly labeled is 10.8%, which did not prove sufficiently low to
help the ASR system. Indeed, we used the landmarks associated
with sufficiently long segments as anchors to prune inconsistent
hypotheses in our system, assuming long segments are more re-
liable than short ones. On a 1 hour show, the baseline word
error rate of 22.3% increased to 23.2% with vowel, plosive and
fricative landmarks and 24.3% considering all the landmarks.
However, the segmentation system is naive in the sense that it
relies on the same features and techniques than the ASR sys-
tem and therefore does not bring any new information. It seems
clear that a better broad phonetic segmentation system, based
on different features, can be devised. Moreover, segmentation
may not be the best strategy for landmark detection and tech-
niques that differs from the HMM framework (e.g. MLP, SVM)
should be used for the detection of broad phonetic landmarks.
Results with more robust landmark detectors and using confi-
dence measures will be presented at the workshop.

Finally, let us conclude this discussion with two remarks.
First, we believe that mixing the landmark paradigm with data-
driven methods offers a great potential to tackle the problem of
robustness. In this sense, broad phonetic landmarks seems a

2Most of the errors are due to the glides while vowels are well de-
tected. Surprisingly, fricatives are not very well detected.

reasonable choice to achieve robustness. In particular, we think
that human perception might actually follow a similar scheme
as the one presented here, where landmarks are used to disam-
biguate sounds and words. Second, we would like to stress
that the framework defined in this paper for the integration of
phonetic knowledge in a HMM based system is not limited to
speech recognition with landmarks. The framework offers a
way to integrate knowledge in a DP algorithm in a general way
and has many application fields such as multimodal fusion or
audiovisual speech recognition.
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