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Abstract 
In this paper, we introduce the use of bispectrum slice 
for mel-frequency cepstrum coefficients as robust text-
independent speaker identification. The main advantage 
of using the bispectrum is to be able to suppress 
additive Gaussian noise while preserving the phase 
information of the signal. In order to obtain cepstral 
coefficients, features of the speech signal are extracted 
by mel-frequency filter banks, the cosine transform and 
the logarithm operator. Under various noisy test 
utterances, we compare and present the performances of 
the methods which use the bispectrum and the classical 
mel-frequency cepstrum coefficients. 

 

1. Introduction 
Speech signals yield information about the identity of 
the speaker as well as the content of the speech. Speaker 
recognition methods have found various applications 
such as security, voiced internet applications and 
telephone banking. Such systems consist mainly two 
parts: Speaker identification and verification. While 
speaker identification determines the identity of the 
speaker among a group of people from text dependent or 
independent speech signal, speaker verification is 
utilized as a second step to ensure the validity of the 
resultant speaker obtained by the identification process.  
 
In speaker identification systems, speech signals are 
recorded and saved into a database. Training sets, which 
consist of the feature vectors of previously archived 
speech signals, are compared with the test sets. The 
conditions for obtaining the training set and the test set 
can be tremendously different. While the former can 
usually be obtained in noiseless environments, the test 
set may not. This may lead to an important decrease in 
the performance of a speaker identification system. 
Various methods have been proposed in literature in 
order to prevent this problem. They mainly include 
robust feature extraction, speech enhancement 
techniques and noise compensation [1]. 
 
The main advantage of using higher order statistics is to 
be able to suppress Gaussian noise unlike the classical 

autocorrelation-based (power spectrum-based) methods.  
For example, in [2] a particular part of bispectrum is 
suggested for feature extraction for speaker 
identification which is shown to be robust to additive 
Gaussian noise compared to the classical cepstrum.  
 
In this study, we propose to use a bispectrum slice for 
the computation of mel-frequency cepstrum coefficients 
as robust features in a text-independent speaker 
identification system. The organization of the paper is as 
follows: Section 2 is for a brief explanation of feature 
extraction, bispectrum and sum-of-cumulants. In 
Section 3, the speaker identification systems and 
Gaussian mixture models are summarized. Simulation 
results are presented in Section 4. Conclusion is given in 
Section 5. 
 

2. Feature Extraction Using Bispectrum Slice 

Feature extraction of a speech signal is mostly based on 
the spectrum because any information about the 
characteristics of the vocal track can be obtained from 
the spectrum [3]. Although the spectrum of a speech 
signal can be defined by different models, using filter 
banks instead of linear prediction analysis provides 
more robust speech features. In this study, we extend to 
use bispectrum slice instead of the classical spectrum 
cepstrum coefficients obtained by the mel-frequency 
filter banks. The brief introduction of the bispectrum 
slice is given below. 

 

2.1. Bispectrum Slice 

If the autotripplecorrelation of any discrete signal x(n) is 
 
                c(τ1, τ2) = E[x(n)x(n+ τ1)x(n+ τ2)]               (1) 
 
then the bispectrum B(ω1, ω2) is defined as the 2-D 
Fourier transform of its autotripplecorrelation [4]: 
  
             B(ω1,ω2)  =   Ғ{c(τ1,τ2)}                             (2) 
 
where E[.] is the expected value and Ғ{.} is Fourier 
transform. 1-D inverse Fourier transform of the 



bispectrum, q(n), on the ω1 = ω2 line is defined as the 
sum of cumulants [4]: 
 
 q(n) = x(n)*x(n)*k(n)                                     (3) 
 
where * denotes convolution operator  and 
 
                            x(N-1-N/2)    n  odd 
 k(n)=                                                              (4) 
               0                    n  even 
 
for the signal with n=0,1,…,N-1. The sequence, q(n), 
has 4N-3 samples with n=-2(N-1),…,-1,0,1,…,2(N-1).  
 
 
2.2. Feature Extraction 
 
Before the analysis, speech signal is divided into 
segments of 16 ms length and 10 ms overlap. After the 
estimation of the sum of cumulants using (3) for these 
frames, Mel-Frequency Cepstrum Coefficients (MFCC) 
are obtained by utilizing mel-frequency filter banks. 
Figure 1 shows the block diagram of the steps for the 
extraction of features. 
     
 
 
 
 
   

      

 

 

  
Figure 1: Feature Extraction Block Diagram 
 
 
3. Speaker Identification System 
 
Gaussian Mixture Model (GMM) is used for speaker 
identification in this study. In text-independent speaker 
identification systems, the performance of GMM is 
known to be relatively high. Let M be the order, then 
GMM is expressed as: 
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In that expression x is a D dimensional random vector, 
wi (i=1,…,M) are weight coefficients and bi(x) are 
component density functions. The mixture weight 
coefficients satisfy the below equation: 
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GMM is defined with λ = {wi, μi, Ci}, where μi is the 
mean value vectors and Ci is the covariance matrix. For 
speaker identification systems, λ can be represented to 
model the speaker. Then the model parameters are 
estimated by expectation maximization method, which 
maximizes the model likelihood iteratively [6]. 
 
 
4. Simulation Results  
 
For the training and test sets we use TIMIT database. 
The training set contains 50 male speech excerpts with 
the same dialect for various lengths. Test data contains 5 
different sentences from different speech segments for 
each training member. The order of GMM is chosen as 
M=40. The performance of the proposed bispectrum-
based mel-frequency cepstrum coefficients are 
compared with the classical mel-frequency cepstrum 
coefficients.  
 
The evaluation is done by the normalized total score 
which is the logarithmic extraction of the actual 
speaker’s likelihood from the maximum likelihood of 
the other speakers apart from the actual speaker:    
 

)),|(max(),|(log))(log( λλ cc SSXpSSXpXL ≠−== (9)                       
 
Here, X is the features in the test set, S is the speakers in 
the training set and Sc is the actual speaker with λ model 
parameters. If the normalized score is positive, the 
speaker is estimated correctly.  
 
First, we simulated our speaker identification system 
with noiseless training sets and noise-free test sets and 
reached almost %100 correct identification with both 
spectral and bispectral methods. Then, in order to 
compare the robustness of bispectrum to spectrum, we 
add white Gaussian noise with SNR = 40, 20, 15, 10, 5 
dBs to the speech signal. Speaker identification 
performances for both methods are given in Figure 2. 
Below 10 dB, the performance results of both the 
spectrum and the bispectrum slice is low but above 10 
dB, the speaker identification rate is better when the 
bispectral method is used.  
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Figure 2: Correct identification ratios vs. SNR for spectral 
(straight-line) and bispectral methods (dashed-line) are used 
when white Gaussian noise added. 
 
 
Various noises are also added to the speech signals in 
test set to show the effect of the proposed methods. Real 
noise samples, such as babble, car and factory noises, 
are collected from NOISEX database of NATO Speech 
Signal Workgroup [8]. We down sampled that noise 
samples from 19.98 kHz to 16 kHz and added them to 
speech signals with SNR = 30, 25, 15, 10, 5, 0 dBs. 
Although, the distributions of these noises may not be 
Gaussian, they are symmetric since their skewnesses are 
closer to zero. The histograms of the noises can be seen 
in Figure 3. Test results for real noise experiment are 
provided in Figures 4, 5, 6, which show that, at any 
SNR above 0 dB, the performance is higher when the 
bispectrum slice is utilized for feature extraction in our 
speaker identification system.  
    

 
Figure 3: Noise histograms for babble, car and factory 
 

 
Figure 4: Correct identification ratios vs. SNR for spectral 
(straight-line) and bispectral methods (dashed-line) are used 
when babble noise added. 

 
Figure 5: Correct identification ratios vs. SNR for spectral 
(straight-line) and bispectral methods (dashed-line) are used 
when factory noise added. 

 
Figure 6: Correct identification ratios vs. SNR for spectral 
(straight-line) and bispectral methods (dashed-line) are used 
when car noise added. 
 



The next step in our study is to compare the robustness 
of spectral and bispectral methods to colored noise 
produced by wavelet-based methods. We will present 
the results and the comparisons during the presentation 
and in the final version of the paper.  
 
 
5. Conclusion 
 
It is known that additive Gaussian noise deteriorates the 
identification rate seriously in speaker identification 
systems. We propose to use bispectrum slice mel-
frequency cepstrum features as robust and efficient 
features for text-independent speaker identification 
systems. We show the comparisons between the 
classical and bispectrum based methods. 
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