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ABSTRACT

In our recent work [6], we proposed an algorithm for image up-
sampling based on alternation of two procedures: spatially adap-
tive filtering in image domain and projection on the observation-
constrained subspace in a wavelet domain. The nonlocal Block-
Matching 3-D (BM3D) filter was used to suppress ringing and
reconstruct missing detail coefficients. Here we generalize this
method in two aspects. First, we reformulate observation model and
reconstruction algorithm from wavelets to a general class of scaling
transforms, and second, we extend applicability from single image
upsampling to image and video super-resolution.

Experimental results demonstrate significant improvement over
the upsampling method [6] and an overall performance on the level
of the best existing super-resolution methods.

1. INTRODUCTION

Image upsampling or zooming, can be defined as the process of re-
sampling a single low-resolution (LR) image on a high-resolution
grid. Different resampling methods can be used to obtain zoomed
images with specific desired properties, such as edge preservation,
degree of smoothness, etc. In [6], we proposed a wavelet-domain
image upsampling algorithm based on the iterative spatially adap-
tive Block-Matching 3D filtering (BM3D) [3], assuming that the
given low-resolution image is obtained from the approximation sub-
band of an orthonormal wavelet decomposition of a high-resolution
(HR) original image. Its effectiveness was proven in a number of
experiments, showing a significant improvement over some of the
best methods known in the field [12], [11].

However, fine details missing or distorted in the low-resolution
image cannot be reconstructed in the upsampled one. Roughly
speaking, there is no sufficient information in the low-resolution im-
age to do this. The situation changes when a number of LR images
portraying slightly different views of the same scene are available.
The reconstruction algorithm now can try to improve the spatial res-
olution by incorporating into the final HR result the additional new
details revealed in each LR image. The process of combining a se-
quence of undersampled and degraded low-resolution images in or-
der to produce a single high-resolution image is commonly referred
to as a super-resolution (SR) reconstruction.

The classical SR approach is loosely based on the following
three steps: 1) registration of the LR images to a HR coordinate
grid, 2) warping of the LR images onto that grid by interpolation,
and 3) fusion of the warped images into the final HR image. An
additional deblurring step is sometimes considered to compensate
the blur existing in the LR frames. Several algorithms based on
such classical approach exist and detailed reviews can be found,
e.g., in [9] and [14]. For successful reconstruction it is crucial to
perform accurate registration. Most of the existing SR methods rely
either on a parametric global motion estimation, or on a compu-
tationally intensive optical flow calculation. However, an explicit
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registration of the LR frames is often not feasible: on the one hand,
if the registration map has few degrees of freedom, it is too rigid to
model the geometrical distortions caused by the lens system; on the
other hand, when many degrees of freedoms are available (e.g., a
dense optical flow), reliable estimates of the registration parameters
cannot be obtained. In either case, registration artifacts are likely
to appear in the fusion, requiring heavy regularization (smoothing)
for their concealment [9]. The situation becomes even more dif-
ficult when non-global motion is present in images. Modern SR
methods depart from the classical approach and we specially men-
tion two recent SR reconstruction algorithms [13], [7] based on the
nonlocal means (NLM) filtering paradigm [1]. In these algorithms,
instead of trying to obtain an explicit registration as a one-to-one
pixel mapping between frames, a one-to-many mapping is utilized,
where multiple pixels can be assigned to a given one, with weights
typically defined by the similarity of the patches/blocks surrounding
the pixels. The HR image is estimated through a weighted average
of these multiple pixels (or of their surrounding patches) with their
corresponding weights.

The increased redundancy of the NLM, which can exploit also
multiple patches from a same frame, contributes significantly to the
overall good performance of the methods [13].

The BM3D algorithm, used as iterative filter in [6], shares with
the NLM the idea of exploiting nonlocal similarity between blocks.
However, in BM3D a more powerful transform-domain modeling is
used and, as shown in [10], the BM3D turns out to be a much more
effective filter than the NLM. Thus, our image upsampling approach
[6] is naturally suited to be generalized for successful application to
the SR reconstruction problem. This is essentially achieved by re-
placing the BM3D image filter with the V-BM3D video filter [2].
As opposed to the BM3D, which searches and combines blocks
only within a single image, the V-BM3D operates across multiple
frames, exploiting similar blocks also from different frames.

Further, in order to accurately deal with a wider class of LR
downsampling schemes, we reformulate our observation model and
recursive reconstruction algorithm from the wavelet domain to a
general class of scaling transforms (which include wavelets, DCT,
DFT, as well as their corresponding blockwise counterparts).

The paper is organized as follows. In the next section, we intro-
duce our observation modeling for the low-resolution images and
provide a detailed description of the both upsampling and super-
resolution algorithms in a unified form. Then, in Section 3, we
present experimental results, demonstrating the feasibility of the ap-
proach, and provide a comparison with the state-of-the-art. Discus-
sions and conclusion are given in the last section.

2. THE ALGORITHM
2.1 Preliminaries: scaling family of transforms

Let {7, }}1}:[:() be a family of orthonormal transforms of increasing
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Figure 1: Nested support subsets. Qg and Q; are shown as a sub-
matrices of matrix Q;; = Qy of coefficients of the transform 7.

(c) DWT, DCT

the 7, -transform coefficients form a nested sequence of subsets of
Qpr, ie. Qo C -+ C Qyy, where Q) is a set of the coefficients.
The most notable exarnples of such {Tm} m=0 families are discrete
cosine (DCT) or Fourier (DFT) transforms of different sizes, dis-
crete wavelet transforms (DWT) associated to one common scaling
function, as well as block DCT, DFT and DWT transforms. Figure
1 illustrates the nested sequence of supports for these families.
Depending on the specific transform family of choice, the sets
Q,, are commonly referred to as lower-resolution, low-frequency,
or coarser-scale subbands of the Tjs-spectrum.
For m < m’ we define three operators:

e the restriction operator o, , that, from a given 7,,/-spectrum,

extracts its smaller portion deﬁned on €y,, which can be thus
considered as the 7, -spectrum of a smaller image;

e the zero-padding operator U, , that expands a Ty, -spectrum
defined on Q, to the 7,,/-spectrum defined on the superset
Q, D Q, by introducing zeros in the complementary €,/ \

m )

o the projection operator PJ' '
T,,v-spectrum defined on Qm

Note that Uy, . (A)!

Prﬂ;’m, (B) +Upy_p (Blg,,) for any T,,/-spectrum B. Thus, Uy,
can be regarded as “dual” operator of lQ,

that zeroes out all coefficients of

Q, = A for any 7p,-spectrum A, and B =

2.2 Observation model

Let us be given a sequence of R > 1 low-resolution images
Vow r} le of size xl(} x x;, and assume each yjoy - being recon-
structed from the subband of the corresponding 73, spectra of orig-

inal higher-resolution images {yp; ,,}le of size xR/[ X xy, in the
following way:
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where the scaling factor f ), ensures that the means of yp;, and
Vlow r are the same.

The problem is to reconstruct {yhi,,}f=1 from {ylowr}f:l
Clearly, for a fixed r, any good estimate p, of ypi, must have its
Qq subband equal to Bo 3770 Viow ) = T Omir)lq, ,,- Under

this restriction, the estimates constitute an affine subspace Ty,
h,v

of codimension xjx; in a x?/[x 1s-dimensional linear space T
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For R = 1, the observation model (2) corresponds to the image
upsampling problem (as presented in [6] for the specific case of a
wavelet transform family). Whenever R > 1, we are instead in the
image or video super-resolution setting.

2.3 Multistage iterative reconstruction

Scaling from xg X x(‘)’ size to x?/[ X XX/I is performed using the trans-

form family {7} m—o> Progressively across M stages, which are
indicated using the subscript m = 1,..., M. The complete algo-
rithm is defined by the recursive system given in (1). At each stage,
the images are being super-resolved from size xh _1 X xV _; to

h - Viow r }

X X Xy, 1 serves as input for the first stage, and the
output of the current stage { Jrm } ,—1 becomes an input for the next

one. At each stage, the initial estimate )7,(?,7), is obtained from J,. ,,
by zero-padding its spectra following the third equation in (1). Dur-
ing the subsequent iterations, the estimates are obtained according
to the last equation in (1), where the superscript k =0, 1,2, ... cor-

responds to the iteration count inside each stage, j/,g, ,2, is a sequence
of estimates for ., @ is a spatially adaptive filter and o k,m 18
a parameter controlling the strength of this filter. In other words,

(k-1 R

at each iteration we jointly filter the images i ., obtained

r=
from the previous iteration, perform a transform 7, for each r, sub-
stitute the x(}} x x coefficients deﬁned on Qq with 8o 370 (Viow,r )

and take an inverse transform 7,,, ! to obtain yr(k,,)i The flowchart of

the system (1) is presented in Figure 2. The iteration process stops at
5 () s(k—1)

] and [yr m
in some metric becomes less than a certain threshold dy), or if the
maximum number of iterations Amax 7, 1S reached.

iteration kfina] ,, When the distance between {

2.4 The filter

Detailed description of the V-BM3D denoising filter, used in the
algorithm as the spatially adaptive filter @, can be found in [2]. In
brief, the filter works as follows.

1. Block-wise estimates. Each image in a sequence is processed in
sliding-window manner. For each block the filter performs:

(a) Grouping. Searching within all images in the sequence, find
blocks that are similar to the currently processed one, and
then stack them together in a 3-D array (group).

(b) Collaborative hard-thresholding. Apply a 3-D transform to
the formed group, attenuate the noise by hard-thresholding
of the transform coefficients, invert the 3-D transform to
produce estimates of all grouped blocks, and return the esti-
mates of the blocks to their original place.

2. Aggregation. Compute the estimates of the output images by
weighted averaging all of the obtained block-wise estimates that
are overlapping.
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Figure 2: Multistage iterative reconstruction.The inner loop corresponds to an iteration process inside a stage; the outer loop corresponds to

a transition to the next stage.

Due to the similarity between the grouped blocks, the transform can
achieve a highly sparse representation of the true signal so that the
noise or small distortions can be well separated by shrinkage. In this
way, the collaborative filtering reveals even the finest details shared
by grouped fragments and at the same time it preserves the essential
unique features of each individual fragment.

For the purposes of this work, we do not perform the final col-
laborative Wiener filtering stage of the original V-BM3D denoising
algorithm.

Here, the parameter oy ,, is used in place of the standard-
deviation of the noise. This parameter controls the strength of the
filter. In order to prevent smearing of the small details, the sequence
{ok.m} k—0,1,... Should be decreasing with the progress of the itera-

tions.

3. EXPERIMENTAL RESULTS
3.1 General remarks

We consider two sets of experiments. First, in Section 3.3, we assess
how well our SR algorithm can reconstruct a single HR image pro-
vided that the set of LR images covers the whole HR sampling grid.
Second, in Section 3.4, we compare our algorithm for SR of video
sequences, comparing against the state-of-the-art method [13].

As seen from the previous section, the algorithm formulations
for upsampling and super-resolution coincide. In both cases, the
algorithm performs reconstruction of each image of the input se-
quence, and the output sequence always contains the same number
of frames as input. Whether the algorithm performs upsampling or
SR reconstruction, depends on the parameter controlling the num-
ber of frames where V-BM3D searches for the similar blocks (so-
called “temporal search window”), which is typically limited in or-
der to contain complexity. When this parameter is set to one, the
search is restricted to the current frame only and the algorithm in-
dependently upsamples each frame of the input sequence.

In all these experiments, we consider the same downsampling
model, where the LR image is obtained from the HR one by first
blurring using a 3 x3 uniform kernel and then decimating by fac-
tor 3. A scaling family of transforms can be easily associated to
this particular downsampling model, noticing that the LR images
can be treated (up to a scaling factor B ps = 3) to be composed of
DC coefficients of some orthogonal 3x3 block transform. As we
observed in [6], better results can be achieved if the image enlarge-
ment is performed gradually across multiple stages. Thus, the trans-

form family {7, } %:0 should consist of three 2-D block transforms
with 1x 1, 2x2, and 3 x3 block sizes, which results in a progressive
enlargement of 2 and 1.5 times, providing an overall enlargement
of 3 times. As a particular family of transforms satisfying the above

conditions, we choose the block DCT transforms.

3.2 Implementation details

For the presented experiments, the V-BM3D filter [2] inside the re-
construction algorithm is used without the collaborative Wiener fil-
tering step. The filter’s internal 3-D transform is a composition of a
2-D DCT transform applied to each block and of a 1-D Haar wavelet

stage

Parameters I 1 2

Kfinal m 20 20

G0.m 60 35
Ao m 2.5 1.5

block size 12 8

spatial search window 15 25

temporal search window (SR/upsampling) 9/1 9/1

number of blocks in a group (SR/upsampling) | 128/32 | 128/32

Table 1: V-BM3D filter parameters used in the SR and upsampling
algorithm.

transform applied along the third dimension of the group. Other fil-
ter parameters are given in Table 1. Similar to [6], the block size
is decreasing with the stages, within each stage, o is decreased by
Ag m at every iteration. In terms both of smoothing and scale, this
consistent with the “coarse-to-fine” approach analyzed in [5].

In order to avoid the influence of border distortions and provide
more fair comparisons, in all experiments the PSNR and SSIM [15]
values are calculated over the central part of the images, omitting a
border of 15-pixel width.

3.3 Performance assessment and comparison with upsampling
algorithm

To assess the potential of the algorithm, we performed an ideal ex-
periment. The original ground-truth image is shifted horizontally
by d’ pixels and vertically by d” pixels, with d" . d® =0,1,2, thus
producing nine HR images. In particular, for these experiments, the
first frame of the HR sequences from [13] is used as the ground-
truth image. The nine HR images are then blurred and decimated as
described above. In this way, the obtained LR sequence includes all
pixels of a blurred HR image. Provided an ideal perfect registration,
we can expect each reconstructed image to be at least not worse than
the blurred HR one. During the SR reconstruction, block-matching
search is performed in all 9 images.

As a comparison, we also performed upsampling of the same
sequence, by restricting the algorithm to search only within the cur-
rent frame. The reconstruction results are considered for the first
frame only (d”, d” = 0) and are shown in Figures 3 and 4. The cor-
responding PSNR and SSIM values are given in Table 2. Besides
the increased PSNR and SSIM values, one can see that the visual
quality of the SR images is clearly superior than that of the upsam-
pled ones: SR images are sharper, portray more fine details and do
not exhibit ringing artefacts. Comparing to the blurred HR images,
we can say that SR images are slightly sharper, but some minor de-
tails present in the blurred image have not been reconstructed prop-
erly in the SR images (e.g., the eyes and surrounding area, as shown
in Figure 4). Overall, SR and blurred HR image qualities are close
both visually and numerically.



Nearest neighbor HR blurred Upsampled Super-resolved
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Foreman 29.0 0.843 33.8 10930 | 33.5 ] 0913 | 349 ] 0.928
Suzie 30.3 0.812 337 [ 0.89T | 32.8 ] 0.863 | 33.6 | 0.883
Miss America | 32.0 0.867 372 10940 | 36.1 | 0.928 | 37.5 | 0.940

Table 2: PSNR (dB) and SSIM values of the super-resolved and upsampled images (see Section 3.3).

3.4 SR comparison

The method [13] provides a suitable ground for comparison for a
number of reasons: firstly, it is based on the nonlocal means para-
digm, thus exploiting the same kind of spatiotemporal redundancy
as our algorithm; then, it reports high quality results; and finally,
the HR, LR and SR reconstructed sequences are available online,
making the experiments reproducible.

The observation model in [13] includes also presence of the ad-
ditive noise. For this reason the LR images were contaminated with
additive Gaussian noise with standard-deviation equal to 2. Since
our observation model does not assume presence of the noise, we
prefilter the noisy LR input sequence with the standard V-BM3D fil-
ter using default parameters [2]. The denoised LR sequences were
then super-resolved by the algorithm described in this paper. The
mean (over all 30 frames) PSNR and SSIM values for the recon-
structed sequences are summarized in Table 3. The numerical re-
sults obtained by our algorithm are either comparable or superior
than those of [13]. A visual comparison is provided in Figures 5 -
7. Although our SR images are not as sharp as those by the method
[13], we can observe that in terms of artifacts, our estimates are in-
deed much cleaner, yet providing the same amount of reconstructed
image details. Let us also note that while our implementation we
use a temporal search window of 9 frames, in [13] all frames are
involved in the reconstruction of each frame.

We remark that a direct comparison, between the numerical re-
sults of the experiments from this section and those from Section
3.3, is not possible because the input LR sequences for the two ex-
periments are actually different.

4. DISCUSSION AND CONCLUSIONS

This papers extends results of our earlier paper [6] and continues
the series of our works on iterative image reconstruction, started
from [8], where a first attempt was made to apply iterative spatially
adaptive filtering to the compressed sensing task. In fact, for R =1,
M =2, the system (1) becomes equivalent to the recursive system
used in [8], with the exception of a missing excitation-noise term.
The presented experimental results show significant improvement
of the super-resolved images over the upsampled ones. This means
that filter is able to properly follow the local motion, and register
and fuse subpixel-shifted image patches.

The results are promising and much work remains to be done.
First of all, one would like to achieve better deblurring. Despite the
algorithm implicitly relies on the knowledge of the blurring model
(indeed, the blurring kernel is embedded as the basis function used
for defining the coarse approximation coefficients), better visual
quality can possibly be achieved, provided some additional deblur-
ring as in [13]. The use of sharpening by collaborative alpha-rooting
[4] within V-BM3D may also be considered. Future work shall also
extend the observation model and the reconstruction algorithm to
account for the presence of the noise in the LR observations.
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Nearest Protter et al. P d
neighbor [13] ropose
| [ PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |
Foreman 29.0 | 0.835 329 0.903 335 0.910
Suzie 30.3 0.800 33.0 0.880 33.0 0.862
Miss America | 32.0 | 0.862 | 34.74 | 0.913 36.3 0.924

Table 3: Mean (over all frames) PSNR (dB) and SSIM values of the super-resolved video sequences (see Sec. 3.4).

Nearest neighbor Super-resolved

Upsampled

Q

s 51
Ground truth Ground truth (blurred)

Figure 3: Comparison of the super-resolution reconstruction and upsampling results of the first frame of Foreman sequence (see Sec. 3.3).

.

Ground truth Ground truth (blurred)

Figure 4: Comparison of the super-resolution reconstruction and upsampling results of first frame of Suzie sequence (see Sec. 3.3).
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Figure 5: Results for the 1st, 8th, 13th, 18th, 23th, and 28th frame from the "Foreman" sequence. From left to right: low resolution image;
original image (ground truth); Protter et al. [13] algorithm; result of the proposed algorithm.



Figure 6: Results for the 1st, 8th, 13th, 18th, 23th, and 28th frame from the "Suzie" sequence. From left to right: low resolution image;
original image (ground truth); Protter et al. [13] algorithm; result of the proposed algorithm.



Figure 7: Results for the 1st, 8th, 13th, 18th, 23th, and 28th frame from the "Miss America" sequence. From left to right: low resolution
image; original image (ground truth); Protter et al. [13] algorithm; result of the proposed algorithm.



