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ABSTRACT
We propose an image denoising method that exploits both non-
local image modeling and locally adaptive anisotropic estimation.
The method uses grouping of adaptive-shape neighborhoods whose
surrounding square supersets have been found similar by a block-
matching procedure. The data deÞned on these grouped neighbor-
hoods is stacked together, resulting in 3-D data structures which are
generalized cylinders with adaptive-shape cross sections. Because
of the similarity, which follows from the matching, and because of
the adaptive selection of the shape of the neighborhoods, these 3-D
groups are characterized by a high correlation along all the three di-
mensions. We apply a 3-D decorrelating transform, computed as a
separable composition of the Shape-Adaptive DCT (SA-DCT) and
a 1-D orthonormal transform, and subsequently attenuate the noise
by spectrum shrinkage with hard-thresholding or Wiener Þltering.
Inversion of the 3-D transform produces individual estimates for
all grouped neighborhoods. These estimates are returned to their
original locations and aggregated with other estimates coming from
different groups.

Overall, this method generalizes two existing Þlters: the BM3D
Þlter, which uses grouping of Þxed-size square blocks, and the Poin-
wise SA-DCT Þlter, which exploits shrinkage on adaptive-shape
supports. We show that the developed method inherits the strengths
of both Þlters, resulting in a very effective and ßexible tool for im-
age denoising.

1. INTRODUCTION

Image denoising is a fundamental problem in image processing and
a lot of research has been dedicated it. Some of the recent and most
successful advances in the Þeld are the methods [15, 7, 3, 5, 1, 13,
2, 14]. Among these, are two methods by the present authors, the
BM3D Þlter [2] and the Pointwise SA-DCT Þlter (P.SA-DCT) [5],
which are used as a basis for this work.

The BM3D Þlter exploits a speciÞc nonlocal image modeling
[9] through a procedure termed grouping and collaborative Þlter-
ing. Grouping Þnds mutually similar 2-D image blocks and stacks
them together in 3-D arrays. Collaborative Þltering produces in-
dividual estimates of all grouped blocks by Þltering them jointly,
through transform-domain shrinkage of the 3-D arrays (groups). In
doing so, BM3D relies on two strong characteristics of natural im-
ages. First, the abundance of mutually similar patches and, second,
that the content of small blocks is locally highly correlated. On
these assumptions, the group enjoys correlation in all three dimen-
sions and a sparse representation of the true signal is obtained by
applying a decorrelating 3-D transform on the group. The subse-
quent shrinkage achieves effective noise attenuation thanks to spar-
sity. We have shown [2] that the BM3D Þlter is a very efÞcient
and powerful denoiser. Its results are still beyond the capabilities
of most of the more recent and advanced algorithms. Of course,
BM3D is particularly successful when plenty of matching blocks
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can be found (e.g., textures, regular shaped image structures, or
uniform areas), i.e. where the nonlocal modeling is suitable. On
the other hand, the assumption that image content is highly corre-
lated on a square block of Þxed size is sometimes very artiÞcial.
Blocks containing small image details, singularities, or sharp and
curved edges are examples where a non-adaptive transform is not
able to deliver a sparse representation. Thus, for these blocks, the
BM3D Þlter may introduce certain artifacts and the denoising is not
very effective. Unfortunately, these are often the very parts of the
image where the visual attention is mainly focused.

The Pointwise SA-DCT Þlter [5] works differently. It exploits
pointwise-adaptive arbitrarily shaped neighborhoods, adaptive to
image content in such a way that the signal contained in a neighbor-
hood is highly homogeneous. The subsequent application of the (2-
D) shape-adaptive discrete cosine transform (SA-DCT) [12] on such
a neighborhood results in a sparse representation of the true signal,
which enables effective noise attenuation by transform shrinkage.
Due to the adaptivity of neighborhoods to local image details, the
P.SA-DCT Þlter achieves exceptional preservation of edges and sin-
gularities, as shown [5, 4]. However, a drawback of the nonpara-
metric local-homogeneous image model, assumed by the Pointwise
SA-DCT Þlter, becomes evident for texture-rich regions. There, lo-
cal homogeneity is very limited and, thus, the performance of the
Þlter is not satisfactory [4]. Moreover, the P.SA-DCT is a local
Þlter, and as such it cannot take advantage of the abundance of re-
peated structures and patterns found in natural images.

From the mentioned properties of the BM3D and the P.SA-DCT
Þlters, one can infer that their strengths and weaknesses are com-
plementing each other. This is the motivation that leads us to pro-
pose in this work an image denoising method that simultaneously
generalizes these two Þlters. The new method performs grouping
of mutually similar adaptive-shape neighborhoods. Thus, the 3-D
groups become generalized cylinders with adaptive-shape cross sec-
tions (as opposed to the groups in BM3D, which are square prisms
with Þxed-size square cross sections). In this manner, both the non-
local image modeling and the local adaptivity to image features
are exploited. In particular, the spatial correlation within the 2-D
neighborhoods is increased as compared with the BM3D. After the
grouping, we apply a 3-D transform that is a separable composition
of the SA-DCT and a 1-D orthonormal transform. Noise is then
attenuated by spectrum shrinkage with either hard-thresholding or
Wiener Þltering. Similar to the BM3D, inversion of the 3-D trans-
form produces individual estimates for all grouped neighborhoods.
These estimates are returned to their original locations and aggre-
gated with estimates coming from other groups.

We show that this developed method, denominated SA-BM3D,
inherits the strengths of both the P.SA-DCT and the BM3D Þlters
and at the same time overcomes their weaknesses.

2. PRELIMINARIES

We consider noisy observations z of the form
z (x)= y (x)+η(x) , x ∈ X , (1)

where y : X→R is the original grayscale image, η is i.i.d. Gaussian
white noise, η(·)∼N !0,σ2", and x is a spatial variable belonging



Figure 1: Fast implementation of the LPA-ICI anisotropic neigh-
borhoods. �Linewise� one-dimensional directional LPA kernels are
used for 8 directions. The anisotropic neighborhood U+x is con-
structed as the polygonal hull of the adaptive-scale kernels� sup-
ports (left). Thus, only the adaptive scales h+ are needed to con-
struct the neighborhood. Some examples of the anisotropic neigh-
borhoods Ũ+x used for SA-DCT Þltering of the noisy Cameraman
image (right).

to the image domain X ⊂ Z2.
Given a function f : X → R, a subset U ⊂ X , and a function

g : U → R, we denote by f|U : U → R the restriction of f on U ,
f|U (x) = f (x) ∀x ∈ U , and by g|X : X → R the zero-extension
of g to X ,

!
g|X

"
|U = g and g|X (x) = 0 ∀x ∈ X \U . The char-

acteristic (indicator) function of U is deÞned as χU = 1|U |X . We
denote by |U | the cardinality (i.e. the number of elements) of U .
The symbol �~� stands for the convolution operation.

2.1 Adaptive anisotropic neighborhoods
As in [5], we use the local polynomial approximation-intersection
of conÞdence intervals (LPA-ICI) technique [11] in order to asso-
ciate, to each x ∈ X , and adaptive-shape neighborhood in which the
image is homogenous.

2.1.1 Directional pointwise adaptive scales by LPA-ICI

For each of the eight directions θk = (k−1)
4 π , k = 1, . . . ,8, a

varying-scale family of narrow �linewise� directional-LPA [10]
convolution kernels {gh,θk }h∈H is used to obtain a correspond-
ing set of directional varying-scale estimates {ŷh,θk }h∈H , ŷh,θk =
z~ gh,θk , h ∈ H , where H ⊂ R+ is the set of scales. These esti-
mates are then compared according to the ICI rule [6, 8, 11], and as
a result an adaptive scale h+ (x,θk) ∈ H is deÞned for every x ∈ X
and for every direction θk .

2.1.2 Adaptive-shape neighborhood

The anisotropic neighborhoodU+x is the octagon constructed as the
polygonal hull of

#
suppgh+(x,θk ),θk

$8
k=1. Such neighborhoods are

shown in Figure 1. We note that, in our particular implementation,
the value of the adaptive-scale h+ (x,θk) coincides with the length
(measured in pixels) of the directional window in the direction θk
(i.e. with the length of the support of the corresponding directional
kernel). Thus, in order to construct any neighborhoodU+x it sufÞces
to know only the adaptive scales

#
h+ (x,θk)

$8
k=1 for all x ∈ X .

Let us remind that being convolution kernels, the LPA kernels
gh,θk are always �centered� at the origin, therefore U

+
x is always

a neighborhood of the origin. The actual adaptive neighborhood of
x , which contains the observations that are used for estimation, is
instead

Ũ+x =
#
v ∈ X : (x−v) ∈U+x

$
,

in other words Ũ+x (with tilde) is obtained by translation and mir-
roring of U+x (without tilde). In both symbols, the subscript �x�
denotes the point for which the adaptive scales are obtained while
the �+� is used to distinguish the adaptive neighborhoods from the

non-adaptive ones. We remark that neighborhoods Ũ+x 0 ,Ũ
+
x 00 cor-

responding to adjacent or nearby points x 0, x 00 do usually overlap
unless an edge or sharp transition exists between the two points.

Additionally, in this work, we also use the following more gen-
eral mirrored translates of U+x :

Ũ+x,xR = #
v ∈ X : (x− v) ∈U+xR

$=
=

%
v ∈ X : (xR− x+v) ∈ Ũ+xR

&
.

Ũ+x,xR is an adaptive neighborhood of x which differs from Ũ+x in
that Ũ+x,xR uses the adaptive scales corresponding to the point xR
and not those corresponding to x itself. Obviously, Ũ+x,x = Ũ+x .
2.2 Shape-Adaptive DCT transform
As in [5], we consider the orthonormal SA-DCT with DC-
separation [12]. It means that before applying the orthonormal SA-
DCT, we Þrst subtract the data of its mean, which constitutes an
extra coefÞcient that will be processed independently from the ac-
tual SA-DCT coefÞcients. Once the DC is separated, the orthonor-
mal SA-DCT is applied on zero-mean data. The SA-DCT is com-
puted by cascaded application of one-dimensional varying-length
orthonormal DCT transforms Þrst on the columns and then on the
rows (or vice versa1) that constitute the considered region. This
process is illustrated in Figure 2. We denote by T SAU the ortho-
normal SA-DCT transform corresponding to a region U ⊂ X
and by VU ⊂ Z2 the domain of the T SAU transform coefÞcients. Let
T SA−1U be the inverse transform of T SAU . The mean of z on U is
denoted as mU (z)= 1|U |

'
x∈U z (x).

We refer the interested reader to [5] for more subtle details
about the selection between column/row or row/column processing
and the particular coefÞcient alignment strategies used within the
SA-DCT.

3. SA-BM3D ALGORITHM

Similar to the BM3D, the proposed SA-BM3D algorithm (illus-
trated in Figure 3) exploits a two-step approach where
• in the Þrst step, block-matching is performed on the noisy image
and the noise is attenuated by collaborative hard-thresholding,

• in the second step, block-matching is performed on the initial
(basic) estimate obtained in the Þrst step, and the noise is atten-
uated by collaborative empirical Wiener Þltering.

Each of the two steps is presented in the following subsections.

3.1 SA-BM3D with hard thresholding (Step 1)

Once the LPA-ICI adaptive scales
#
h+ (x,θk)

$8
k=1, and thus the

adaptive-shape neighborhoods U+x , have been found (Section 2.1),
for each x ∈ X , the following operations are performed:
• shape-adaptive grouping;
• collaborative hard-thresholding;
• aggregation.
These operations are explained in detail in the following sub-

sections; therein we Þx the currently processed coordinate as xR ∈
X and denominate it reference point.

3.1.1 Shape-adaptive grouping via block-matching

The adaptive neighborhoods Ũ+x can be too small for reliable patch-
matching, especially when Þltering tiny image details in heavy
noise. Therefore, the matching for Ũ+x needs to be carried out for

1Note that even though the SA-DCT is implemented like a separable
2-D transform (using cascaded 1-D transforms on columns and rows), in
general it is not separable and different sets of transform coefÞcients can
be obtained when processing the considered region either Þrst column-wise
and then row-wise or Þrst row-wise and then column-wise.



Figure 2: Illustration of the forward SA-DCT with DC-separation.

Figure 3: Flowchart of the proposed SA-BM3D image denoising method. Operations surrounded by dashed lines are repeated for each
processed coordinate of the input image.

a superset. In particular, we use square blocks as supersets and
perform a block-matching procedure like the one in the BM3D al-
gorithm [2]. In what follows, we deÞne a mapping that associates
to every reference point xR ∈ X a block that can be used as the
reference one in the matching needed for the grouping of Ũ+xR .
Mapping. Let x ∈ X and denote by B̃x ⊂ Z2 be the square block
of size (2hmax−1)× (2hmax−1) centered at x , where hmax =
max{H}. Let B be the collection of all such blocks which are en-
tirely contained in X , B=#B̃x : x ∈ X, B̃x ⊂ X$. Note that for
hmax > 1 the cardinality of B is strictly smaller than |X | because if
x is close enough to the boundary ∂X of X , then B̃x would cross
∂X and hence B̃x * X and B̃x /∈ B. We indicate by XB ⊂ X the
set of points for which we can construct a block belonging to B,
XB =

#
x ∈ X : B̃x ∈ B

$
. To every x ∈ X we can associate a point

xB ∈ XB such that the magnitude
((δB (x)((2 of δB (x) = xB− x is

minimal. For a rectangular X , because of convexity of XB, the sur-
jective mapping x 3→ xB is univocally deÞned and so is δB (x). Note
that δB (x) 4= 0 only for x sufÞciently close to the boundary ∂X of
X .
Block-matching. For each point x ∈ XB, we produce grouping by
block-matching within the image z. That is, for each block B̃x we
look for �similar� blocks B̃x 0 whose range distance dz

!
x, x 0

"
with

respect to B̃x ,
dz
!
x, x 0

"= (((z|B̃x − z|B̃x 0 (((2 ,
is smaller than a Þxed threshold τhtmatch ≥ 0. Thus, we construct the
set Sx so that it contains the central points of the found blocks:

Sx =
%
x 0 ∈ XB : dz

!
x,x 0

"≤ τhtmatch& . (2)

The threshold τhtmatch is the maximum dz-distance for which two
blocks are considered similar2. Obviously dz (x,x)= 0, which im-
plies that the cardinality |Sx | ≥ 1 for any x ∈ XB.
Shape-adaptive grouping. Let now xR ∈ X be a reference point
and deÞne xδR = xR+δB (xR). Using the result SxδR from the block-
matching, we associate to the reference point xR not only its own

2The inßuence of noise on dz is studied in [2]. In case of heavy noise,
to reduce its inßuence on dz , we can exploit a coarse preÞltering embedded
within dz , as described in [2].

adaptive neighborhood Ũ+xR , but a whole collection (disjoint union))UxR of neighborhoods having the same shape and deÞned as3)UxR = *
x+δB (xR)∈SxδR

Ũ+x,xR . (3)

Let us observe that all neighborhoods in )UxR have the same
shape, which is completely determined by the adaptive scales#
h+ (xR,θk)

$8
k=1 at xR . This also implies that for all Ũ

+
x,xR ∈)UxR

the domain of the corresponding SA-DCT coefÞcients VŨ+x,xR
is

one and the same and coincides with VŨ+xR
.

At the current reference point xR , a group is built by stack-
ing together the noisy patches z|Ũ+x,xR , Ũ

+
x,xR ∈ )UxR . This group

is a 3-D data array deÞned on the generalized cylinder Ũ+xR ×%
1, . . . ,

+++SxδR +++&, as illustrated in Figure 4. In compact form, the
group is denoted as ZxR :)UxR →R.

3.1.2 Collaborative hard-thresholding
Given a group ZxR , collaborative Þltering is realized as shrinkage in
a 3-D transform domain. Here, the 3-D transform T 3D is a compo-
sition of the (2-D) SA-DCT with DC-separation on each neighbor-
hood of)UxR with an orthonormal 1-D transform T 1D applied along
the third dimension of the group. As in the BM3D algorithm [2], we
require T 1D to have a DC term. The three steps of the collaborative
hard-thresholding are as follows.
1. Forward T 3D transform (illustrated in Figure 4).
• For each Ũ+x,xR ∈)UxR :
� compute mean value mŨ+x,xR

(z)= 1+++Ũ+x,xR +++
'
v∈Ũ+x,xR z (v);

3The set (3) must not be interpreted as the mere union of the neighbor-
hoods Ũ+x,xR such that x + δB (xR) ∈ SxδR . While, for simplicity, we may
write )UxR = #Ũ+x,xR : x+ δB (xR) ∈ SxδR $, a more proper notation is actu-
ally )UxR = ,-Ũ+x,xR , x. : x+ δB (xR) ∈ SxδR

/
⊂ X× X,

because we need to distinguish between different neighborhoods coming
from different elements of SxδR

.



Figure 4: Illustration of applying T 3D on the adaptive-shape group ZxR .

� compute the SA-DCT spectrum ϕz,x,xR : VŨ+xR
→R as

T SA
Ũ+x,xR

0
z|Ũ+x,xR −mŨ+x,xR (z)

1
;

� deÞne DC coefÞcient ϕDCz,x,xR =
+++Ũ+xR +++1/2mŨ+x,xR (z).

At this stage, for each Ũ+x,xR ∈ )UxR , we have obtained one
DC coefÞcient ϕDCz,x,xR and

+++Ũ+xR +++ SA-DCT coefÞcients ϕz,x,xR .
Thus, we have a total of

-
1+

+++Ũ+xR +++.+++SxδR +++ coefÞcients, struc-
tured as a 3-D array

-
{µ}8VŨ+xR

.
×
%
1, . . . ,

+++SxδR +++&, where {µ}
is a singleton placeholder for separated DC coefÞcients ϕDCz,x,xR .

• Apply T 1D along the vector ϕDCz,x,xR : {µ}×
%
1, . . . ,

+++SxδR +++&→R

and along the vectors ϕz,x,xR : {ν}×
%
1, . . . ,

+++SxδR +++&, ν ∈ VŨ+xR .
This second stage provides us with the full 3-D spectrum

T 3D
!
ZxR

"
of the group ZxR . We emphasize again that there

are
-
1+

+++Ũ+xR +++.+++SxδR +++ spectral coefÞcients.
2. Shrinkage by hard-thresholding
As in [2], we perform hard-thresholding of the spectrum

T 3D
-
Z)UxR

.
using the threshold γ thrσ , where γ thr > 0 is a Þxed

constant. We threshold all coefÞcients except the DC coefÞcient
in the T 3D -spectrum (i.e. the DC coefÞcient of the T 1D -spectrum
of the vector ϕDCz,x,xR ), which systematically is always preserved.
After thresholding, we have NharxR ≥ 1 non-thresholded coefÞcients
(�number of harmonics�).
3. Inverse T 3D transform
Inversion of the T 3D transform is computed as follows.

• Apply the inverse of T 1D and obtain Þltered vectors ϕ̂DCy,x,xR and
ϕ̂y,x,xR which are estimates of the DCs and SA-DCT spectra of
the hypothetical groupYxR formed by stacking together patches
y|Ũ+x,xR , Ũ

+
x,xR ∈)UxR , from the unknown noise-free image y.

• For each Ũ+x,xR ∈)UxR :
� deÞne the estimate of the mean mŨ+x,xR

(y) as

\mŨ+x,xR
(y)=

+++Ũ+xR +++−1/2 ϕ̂DCy,x,xR ;
� compute a local estimate ŷx,xR : Ũ

+
x,xR → R of y|Ũ+x,xR by

inverse SA-DCT of ϕ̂y,x,xR followed by addition of the
mean, ŷx,xR = T

SA−1
Ũ+x,xR

!
ϕ̂y,x,xR

"+ \mŨ+x,xR
(y).

In this way, we obtain local estimates for each of the neighborhoods
in )UxR . All these estimates can be denoted in compact group form
as 2YxR :)UxR →R.

3.1.3 Aggregation

After performing grouping and collaborative Þltering for all xR ∈
X , we have obtained for each xR a group 2YxR of +++SxδR +++ of dis-
tinct local estimates (i.e. Þltered data on the adaptive-shape neigh-
borhoods) of y. Overall, we end up with

'
xR∈X

+++SxδR +++ local es-
timates. We note that each local estimate is supported in one of
the |X | adaptive neighborhoods Ũ+x , for x ∈ X . However, pro-
vided xR 4= x 0R , even when two neighborhoods Ũ+x,xR = Ũ+x,x 0R co-
incide, the respective estimates ŷx,xR and ŷx,x 0R

can be different,
as they are obtained from Þltering possibly different groups ZxR
and Zx 0R . Thus, the collection of local estimates

3
xR∈X 2YxR =3

xR∈X, x+δB (xR)∈SxδR
ŷx,xR is a highly redundant and rich repre-

sentation of the original image y.
In order to obtain a single global estimate ŷht : X→R deÞned

on the whole image domain, all these local estimates are averaged
together using adaptive weights wxR > 0 in the following convex
combination:

ŷht =
'
xR∈X

'
x+δB (xR)∈SxδR

wxR ŷx,xR
|X'

xR∈X
'
x+δB (xR)∈SxδR

wxRχŨ+x,xR
, (4)

where the weights wxR are deÞned by

wxR =
σ−2

NharxR |Ũ+xR|
. (5)

3.2 SA-BM3D with Wiener Þltering (Step 2)

As in [2, 5], the denoising performance is signiÞcantly improved by
applying a second step with empirical Wiener Þltering. The initial
estimate ŷht obtained in the Þrst step is used for two purposes; Þrst,
the shape-adaptive grouping exploits block-matching performed on
ŷht rather than on the noisy image and, second, the magnitude of
the spectrum of ŷht is used to perform empirical Wiener Þltering
(rather than hard-thresholding as in the Þrst step). For a reference
point xR ∈ X , the shape-adaptive grouping and the collaborative
Wiener Þltering are given in the following two subsections.

3.2.1 Shape-adaptive grouping

Because the noise in ŷht is assumed to be signiÞcantly attenuated,
we can obtain more accurate block-matching by replacing the dis-
tance dz by a distance dŷht where the similarity between blocks is
evaluated on ŷht instead of z:

dŷht
!
x,x 0

"= (((ŷht|B̃x − ŷht|B̃x 0 (((2 .



Thus, we redeÞne the sets Sx (which contain the coordinates of the
matched blocks) as

Sx =
%
x 0 ∈ XB : dŷht

!
x,x 0

"≤ τwiematch& , (6)

where τwiematch > 0 is another threshold for the range distance be-
tween blocks.

Using (6), we construct the collection of neighborhoods )UxR
as in (3). Subsequently, )UxR is used to build two groups, Þrst,
the group ZxR : )UxR → R by stacking together the noisy patches
z|Ũ+x,xR , Ũ

+
x,xR ∈ )UxR , and second, 2YhtxR : )UxR → R by stacking

together the initial estimate patches ŷht|Ũ+x,xR
, Ũ+x,xR ∈ )UxR . Both

groups are deÞned on the same domain )UxR .
3.2.2 Collaborative Wiener Þltering
The shrinkage of the 3-D spectrum of the group ZxR is performed
by empirical Wiener Þltering which uses the magnitude of the T 3D

spectrum of the group 2YhtxR . Because of the DC-separation, some
care is required when these 3-D spectra are deÞned.

In particular, while the 3-D spectrum of ZxR is deÞned as in
Section 3.1.2, the spectrum of 2YhtxR is computed by subtracting
from ŷht|Ũ+x,xR

the mean mŨ+x,xR
(z), Ũ+x,xR ∈ )UxR . Additionally,

the shrinkage coefÞcients for the DC-vector are computed using di-
rectly the corresponding DC-vector with the means of ŷht|Ũ+x,xR

. Let

us describe precisely these operations.
1. Forward T 3D transform
• For each Ũ+x,xR ∈)UxR :
� compute mean value mŨ+x,xR

(z)= 1+++Ũ+x,xR +++
'
v∈Ũ+x,xR z (v);

� compute mean value mŨ+x,xR
!
ŷht
"= 1+++Ũ+x,xR+++

'
v∈Ũ+x,xR ŷ

ht(v);

� compute the SA-DCT spectrum ϕz,x,xR : VŨ+xR
→R as

T SAŨ+x,xR

0
z|Ũ+x,xR −mŨ+x,xR(z)

1
;

� compute the SA-DCT spectrum ϕ ŷht,x,xR : VŨ+xR
→R as

T SAŨ+x,xR

0
ŷht|Ũ+x,xR

−mŨ+x,xR(z)
1
;

(note that we subtract mŨ+x,xR
(z) from both z|Ũ+x,xR and ŷ

ht
|Ũ+x,xR

)

� deÞne DC coefÞcient ϕDCz,x,xR =
+++Ũ+xR +++1/2mŨ+x,xR (z).

� deÞne DC coefÞcient ϕDCŷht,x,xR =
+++Ũ+xR +++1/2mŨ+x,xR-ŷht..

• Like in Section 3.1.2, apply T 1D along the vectors ϕDCz,x,xR ,
ϕDCŷht,x,xR

, ϕz,x,xR and ϕ ŷht,x,xR .

This second stage provides us with the full 3-D spectrum
T 3D

!
ZxR

"
of ZxR and with a special reference 3-D spectrum

T̆ 3D
-2YhtxR. of 2YhtxR . We need to distinguish between T 3D and

T̆ 3D because from ŷht|Ũ+x,xR
we subtract mŨ+x,xR

(z) instead of the

meanmŨ+x,xR

-
ŷht
.
. The asymmetry of the DC-separation in the

deÞnition of the 3-D transforms for the groups ZxR and 2YxR is
to circumvent the intrinsic redundancy in the SA-DCTwith DC-
separation, which has as spectrum of

+++Ũ+xR ++++1 elements when+++Ũ+xR +++would sufÞce. Essentially, by subtracting the same means
from both groups, we treat these subtracted means as determin-

Image σ BM3D P.SA-DCT SA-BM3D

10 34.98
0.9421

33.50
0.9342

34.75
0.9419

Barbara 20 31.78
0.9054

30.00
0.8862

31.65
0.9056

30 29.81
0.8687

28.10
0.8365

29.81
0.8709

10 35.93
0.9166

35.58
0.9140

35.95
0.9175

Lena 20 33.05
0.8772

32.63
0.8718

33.08
0.8785

30 31.26
0.8449

30.86
0.8393

31.33
0.8474

10 37.35
0.9679

37.12
0.9657

37.57
0.9682

Montage 20 33.61
0.9404

33.36
0.9362

33.92
0.9407

30 31.37
0.9114

31.06
0.9075

31.70
0.9138

10 34.18
0.9319

33.98
0.9316

34.35
0.9331

Cameraman 20 30.48
0.8755

30.18
0.8752

30.61
0.8772

30 28.64
0.8375

28.24
0.8318

28.72
0.8384

Table 1: PSNR (upper entries) and SSIM (lower entries) compar-
ison between the proposed SA-BM3D, the BM3D, and the P.SA-
DCT Þlters.

istic terms that would then be inactive in the Wiener Þltering of
the other coefÞcients.

2. Wiener Þltering

We obtain an estimate \T 3D
!
YxR

"
of the T 3D-spectrum of YxR as

\T 3D
!
YxR

"=WxR T
3D !ZxR " ,

where the groupWxR composed of the empirical Wiener shrinkage
coefÞcients is deÞned by

WxR =
-
T̆ 3D

-2YhtxR..2-
T̆ 3D

-2YhtxR..2+σ2 . (7)

Let us remark that here all multiplications and divisions of groups
are element-by-element operations.

3. Inverse T 3D transform (computed exactly as in Section 3.1.2).

3.2.3 Aggregation
As in Section 3.1.3, after processing all coordinates xR ∈ X , we ob-
tain local estimates on adaptive-shape neighborhoods from all the
groups 2YxR , xR ∈ X . In order to obtain a single global estimate
ŷwie : X→ R deÞned on the whole image domain, we average to-
gether all the local estimates using a weighted averaging identical
to (4). However, the weights wxR are now deÞned by

wxR =
σ−2((WxR
((2
2 |Ũ+xR|

, (8)

where the squared 52-norm of WxR is naturally computed as the
sum of the square of each individual Wiener shrinkage coefÞcient
contained in the group.

4. RESULTS

We present experimental results obtained with a preliminary ver-
sion of the proposed SA-BM3D algorithm. The algorithm parame-
ters are Þxed for all experiments. Here we list some of the most



Image σ 10 20 30 40 50

Lena 35.95
0.9175

33.08
0.8785

31.33
0.8474

29.98
0.8198

28.50
0.7822

Cameraman 34.35
0.9331

30.61
0.8772

28.72
0.8384

27.29
0.8089

25.99
0.7664

Barbara 34.75
0.9419

31.65
0.9056

29.81
0.8709

27.69
0.8202

25.29
0.7218

Peppers 34.72
0.9283

31.22
0.8856

29.16
0.8501

27.67
0.8214

26.54
0.7961

House 36.85
0.9275

33.86
0.8781

32.12
30.74

30.74
0.8283

28.69
0.7897

Montage 37.57
0.9682

33.92
0.9407

31.70
0.9138

29.94
0.8884

28.24
0.8509

Boats 33.88
0.8893

30.81
0.8247

29.04
0.7773

27.70
0.7364

26.38
0.6856

Table 2: PSNR (upper entries) and SSIM (lower entries) results of
the proposed SA-BM3D for various σ and test images.

important ones. The 1-D transform T 1D (part of the separable T 3D )
was the 1-D Haar wavelet full-dyadic decomposition. The scales
H = {1,2,3,4,5,6} and H = {1,2,3,4} are respectively used in
the Þrst and the second step. The maximum number of matched
blocks N2 = 16 in the Þrst step and N2 = 32 in the second. If there
are fewer matches, only the best matching 2 j are kept, j ∈ N, so to
be able to apply the Haar transform.

In Table 1 we provide a comparison of the PSNR and the
mean structural similarity index map [16] (SSIM) results of the SA-
BM3D, BM3D and P.SA-DCT methods. A visual comparison is
given in Figures 5 and 6, where we show enlarged details for Bar-
bara,Montage, andCameraman. In these Þgures we use a relatively
high standard-deviation of the noise, σ = 35, in order to emphasize
the differences in the results by each method. One can make the
following observations.
• Textures in Barbara are preserved equally well by both the
BM3D and the SA-BM3D � and signiÞcantly better as com-
pared with the P.SA-DCT Þlter.

• Sharp edges in Cameraman are reconstructed equally well by
both the P.SA-DCT and the SA-BM3D Þlters, while the BM3D
Þlter introduces some ringing and blurring.

• The PSNR and SSIM results of the SA-BM3D are comparable
or better than the ones of the BM3D and the P.SA-DCT Þlters.
In particular, the problems of the P.SA-DCT Þlter in reconstruct-
ing textures, resulting in poor PSNR for Barbara, has been over-
come by the SA-BM3D, whose results are comparable with the
ones of the BM3D Þlter. An interesting result can be seen in
Table 1 for Barbara in the case of σ = 20,30 and in Figure 5
for σ = 35; in these cases the BM3D performs best in PSNR but
the SA-BM3D is best in SSIM4.

In addition, in Table 2 we give PSNR and SSIM results of the SA-
BM3D for a broader set of test images and various values of σ .

5. CONCLUSIONS

As a simultaneous generalization of the BM3D and the Pointwise
SA-DCT Þlters, the proposed denoising method exploits both:
• nonlocal image modeling realized by Þnding and grouping of
similar image neighborhoods (as in the BM3D Þlter);

• pointwise adaptive anisotropic estimation realized by grouping
of adaptive-shape image neighborhoods (as in the P.SA-DCT
Þlter).

The developed algorithm was shown in Section 4 to inherit the
strengths of both methods (i.e. BM3D�s good reconstruction of
textures and regular image structures and P.SA-DCT�s good recon-
struction of sharp edges and image singularities) and at the same

4A discussion about the subjective perceptual quality of the P.SA-DCT,
with particular emphasis on the restoration of textures, can be found in [4].

compensating for their deÞciencies (i.e. P.SA-DCT�s ineffective-
ness for textures and the BM3D�s blurring and detail loss around
sharp curved edges and singularities).
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BM3D P.SA-DCT SA-BM3D
28.98 (0.8482) 27.35 (0.8110) 28.96 (0.8514)

30.46 (0.8962) 30.12 (0.8933) 30.79 (0.9010)

Figure 5: Comparison between denoised Barbara andMontage by the BM3D (left), the SA-DCT (center), and the SA-BM3D (right) Þlters.
The numbers above the images are the corresponding PSNR and SSIM (in parentheses) values (calculated on the whole image). The standard
deviation of the noise in the input images is σ = 35.



BM3D P.SA-DCT SA-BM3D
27.93 (0.8218) 27.51 (0.8147) 27.95 (0.8232)

Figure 6: Comparison between denoised Cameraman by the BM3D (left), the SA-DCT (senter), and the SA-BM3D (right) Þlters. The
numbers above the images are the corresponding PSNR and SSIM (in parentheses) values (calculated on the whole image). The standard
deviation of the noise in the input image is σ = 35.


