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ABSTRACT

Reconstruction of a light field from a set of non-uniformly
distributed samples is important for holographic type of
3D scene display. The non-uniform sampling problem has
been already addressed and rapidly convergent iterative
schemes developed, mainly based on the method of Pro-
jection Onto Convex Sets (POCS) and matrix inversion
by the method of Conjugate Gradients (CG). This paper
presents a derivation of the convergence rates for both of
the schemes and analyzes the factors which influence the
error decay. The presence of clusters and gaps in the dis-
tribution of the given samples turns out to have the most
significant influence on the convergence. Based on the
analysis, a regularization method is derived for the CG-
based reconstruction scheme which proves to be power-
ful even when the local sample density estimate is rough.
The POCS-based scheme is generalized for the case of
off-grid known samples. Its error analysis leads to similar
conclusions for the convergence impact factors as in the
CG-based scheme. In addition, the analysis suggests sce-
narios where the POCS excels, and others where the CG
is much better.

1. INTRODUCTION

The computation of the light field over the entire three-
dimensional (3D) space from an abstract 3D scene repre-
sentation is known as the forward problem in holography.
Holographic 3D display systems use the light field infor-
mation to display a scene, and thus benefit from efficient
techniques which solve the forward problem. The devel-
opment of such techniques is a challenging task, since 3D
scenes consist of various shapes and shades. In a general
setting, the 3D scene information can be assumed to be
available as non-uniformly distributed in space light field
points. Thus the forward problem can be formulated as to
reconstruct a light field from irregularly distributed sam-
ples.

A real-time application needs to reconstruct the field
for large data sample sets in fast and accurate manner. Pre-
viously, we have developed iterative reconstruction
schemes, based mainly on the method of Projection Onto
Convex Sets (POCS) [1], and matrix inversion through the
Conjugate Gradients (CG) method [2]. The POCS-based
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scheme assumes that the known field samples belong to
a pre-defined regular grid, and utilizes anO(N log N)-
complex propagation algorithm to iterate between succes-
sive lines which define the convex sets. The CG-based
scheme builds a discrete model of the light field which
represents the reconstruction task as matrix inversion prob-
lem, and solves it iteratively through CG. However, for
certain sample distributions the involved matrix has high
condition number and inversion with CG converges slowly.

The main goal of this paper is to perform a theoret-
ical analysis of the convergence rate of the POCS- and
CG-based reconstruction schemes. We aim at identify-
ing and analyzing the main factors which influence the
convergence and the computational efficiency, and to il-
lustrate their impact. The results can be used to achieve
faster convergence and/or better computational efficiency.

2. PROBLEM FORMULATION

In this section, we formulate the problem of reconstruc-
tion of a diffraction field from its sampled version, where
the sampling coordinates are given on a non-uniform grid.
We start with a brief review of diffraction theory equa-
tions we need, then we specify a finite dimensional model
of diffraction to be used in the reconstruction.

2.1. A finite-dimensional model of diffraction

Diffraction theory studies phenomena occurring during
propagation and reflection of light within, and at the bor-
ders of different physical media. In general, these phe-
nomena are described through complex-valued functions
representing light (optical) wave fields and their distribu-
tion across space. In the general case, these are vector
functions confined to the Maxwell equations [3]. When
the medium is free space and the light source is monochro-
matic with wavelengthλ, the corresponding light field is
accurately described by a scalar function. Under the con-
ditions of linearity, isotropy and homogeneity of the free
space, the light field at any spatial point can be related to
that on a plane through the Rayleigh-Sommerfeld diffrac-
tion integral [4]. The same integral can be used to com-
pute the optical field on a plane given the field on another
parallel plane, having linear and shift-invariant relation-
ship between the two functions [4, 5]. Under the assump-
tion that the distancer between the parallel planes sat-
isfiesr >> λ, the Rayleigh-Sommerfeld diffraction inte-



Figure 1. The vectorsk1 = [k1x, k1z ] andk2 = [k2x, k2z]
are the wave vectors of the plane waves. The field at the
output line is equal to the superposition of the plane waves
illuminated on the input line according to Eq. 1 [1].

gral can be regarded as an equivalent to the so-calledplane
wave decompositionapproach [4, 6, 7].

In the rest of the paper, the plane wave decomposition
approach is used. For the sake of simplicity, the discus-
sion is restricted to one transverse dimension only. The
diffraction field at any point in the 2D free space is com-
puted as:

u(x, z) =

2π
λ
∫

− 2π
λ

a(kx)ej(kxx+kzz)dkx, (1)

whereu(x, z) is the field over 2D space, thex axis is the
transverse axis and thez axis is the optical axis along
which the field propagates. This integral represents the
light field u(x, z) as a superposition of plane waves
ej(kxx+kzz), where each plane wave is oriented at an an-
gle determined by the wave vectork = [kx, kz], as il-
lustrated in Figure 1. The variablekz is related tokx by
k2 = k2

z + k2
x wherek = 2π

λ
is the length of each wave

vector. In the superposition integral each plane wave con-
tributes with complex amplitudea(kx). This superposi-
tion of plane waves bears another interpretation, which is
more convenient for our purpose. The variableskx and
kz are the spatial frequencies of the propagating plane
waves along thex and z axes respectively. The angles
of the plane waves determine different spatial frequencies
kx along the transversal dimensionx. Therefore, different
plane waves determine harmonics with different frequen-
cieskx in the transverse plane. Consequently, the complex
amplitudesa(kx) can be considered as the Fourier spec-
trum of the of the fieldu(x, 0) on a reference line withz =
0. A propagating monochromatic wave with wavelengthλ
cannot have a harmonic component in the transverse plane
with higher frequency than2π

λ
sincekx = k cosφ (cf.

Figure 1). Therefore, in the case of free space propagation
of monochromatic light, the function on the reference line
u(x, 0) is assumed band-limited. This also determines the
limits of the integral in Eq. 1.

To elucidate the role of the functiona(kx), let us con-
sider the plane waves in Eq. 1 split asej(kxx+kzz) =

ej
√

k2−k2
xzejkxx. The plane wave decomposition integral

takes the form:

u(x, z) =

2π
λ
∫

− 2π
λ

a(kx)ej
√

k2−k2
xzejkxxdkx. (2)

Now interpret Eq. 2 as inverse Fourier integral where the

functiona(kx)zi
= a(kx)ej

√
k2−k2

xzi is the Fourier trans-
form of the fieldu(x, zi) at a line slicez = zi. In other
words, the fieldu(x, z) at any particular linez = zi can be
computed from the field on the initial lineu(x, 0) by three
consecutive steps: (1) Fourier transform to finda(kx); (2)
Fourier-domain multiplication by the transfer function of

the free spaceej
√

k2−k2
xz; and (3) inverse Fourier trans-

form to get back to spatial domain. This interpretation
has both theoretical and numerical importance. Theoreti-
cally, it clearly shows the dependence between input, sys-
tem and output. Numerically, it suggests the utilization of
an FFT algorithm, under proper sampling [1].

According to Eq. 1, every point of the fieldu(x, z)
can be expressed in terms of the spectruma(kx) of the
field u(x, 0) on the reference line. Consider anessentially
space-limited functionu(x, 0) or, more precisely, a func-
tion whose space - bandwidth product is finite, and denote
the spatial extent of interest byT . Such a function can be
periodized, which is equivalent to discretization ofa(kx).
A periodic and bandlimited function is equivalently rep-
resented by a finite number(M) of discrete spectral com-
ponents. That is, the discrete values of the frequencykx

are :

kx =
2πm

T
, (3)

wherem = −⌊M
2 ⌋, ..., ⌊M−1

2 ⌋. Substitutingkx as given
by Eq. 3 in Eq. 2 leads to afinite-dimensionalmodel of
diffraction:

u(x, z) =

⌊M−1

2
⌋

∑

m=−⌊M
2
⌋

amej 2π
T

√

T2

λ2 −m2 zej 2π
T

mx, (4)

wheream = a(2π
T

m) are the coefficients of the Fourier
series expansion ofu(x, 0). This model assumes the field
at the reference linez = 0 is a trigonometric polynomial
of orderM , which is easily transferable to any otherz

coordinate thought the transfer functionej
√

k2−k2
xz.

2.2. Non-uniformly sampled diffraction fields

The finite-dimensional model in Eq. 4 can be regarded as
a function expansion with respect toM kernels formed
as product of exponents alongx axis and chirps alongz
axis, weighted by the coefficientsam. TheseM gener-
ators determine any particular monochromatic field with
wavelengthλ and spatial extend of the reference lineT .
In the general case of irregular sampling, the diffraction
field u(x, z) is given at a finite set ofs sampling points
{(xi, zi)}s

i=1. The irregular sampling and reconstruction
problem can be stated as to find the unknown field gen-
erating coefficientsam, given the samples{u(xi, zi)}s

i=1.



Eq. 4 can be written for each point in the irregular sam-
pling set{(xi, zi)}s

i=1:

u(xi, zi) =

⌊M−1

2
⌋

∑

m=−⌊M
2
⌋

amej 2π
T

√
β2−m2 ziej 2π

T
mxi , (5)

for i = 1, ..., s.
Theses equations form a linear system for theM un-

knownsam. Speaking linear algebra, this system will
have a solution if it is of full rank. To characterize the
stability of the sampling set with respect to the field gener-
ators, we are interested in having a sampling set bounded
by the energy of the field at the first line, as

A ‖a‖2 ≤
s
∑

i=1

|u(xi, zi)|2 ≤ B ‖a‖2
. (6)

Such set of sampling points{(xi, zi)}s
i=1 which has

bounded energy for any choice of generating coefficients
am with strictly positive boundsA andB is referred to as
stable sampling set[8].

In the following we describe and analyze two differ-
ent approaches to find the coefficientsam. The first uses
iterative algorithm to solve the system of Eq. 5 [2]. The
second algorithm iterates from given point to given point
and falls in the framework of the method of POCS [9, 10].

3. RECONSTRUCTION BY ITERATIVE MATRIX
INVERSION

3.1. Method description

The system in Eq. 5 is linear and can be expressed in a
matrix form:

u = Ra, (7)

wherea = [a−⌊M
2
⌋, a−⌊M

2
⌋+1, ..., a⌊M−1

2
⌋]

T is the un-
known vector of the field generating coefficients andu =
[u(x1, z1), u(x2, z2), ..., u(xs, zs)]

T is the vector of given
samples.R is the reconstruction matrix

R = {rp,q}
= {ej 2π

T

√
β2−(q−⌊M

2
⌋+1)2 zpej 2π

T
(q−⌊M

2
⌋+1)xp},

p = 1, ..., s, q = 1, ..., M, (8)

The diffraction field at the point(xi, zi) equals the inner
product of thei-th row ofR with a.

We need a fast and numerically stable algorithm to
find (approximate) solution̂a for the unknown vectora
and we limit the consideration to the over-determined case
s ≥ M .

Expressing the residual between the true vector and its
approximation

g = u− Râ, (9)

and minimizing theL2 norm of this residual‖u − Râ‖2,
one ends with solving aLeast Squares (LS)problem. Reach-
ing an LS solution goes through finding the (pseudo-)inverse

of the matrixR, which operation is of cubic complex-
ity in the general case [11]. We opt for the conjugate
gradient method (CG), known as one of the most rapidly
convergent and numerically stable algorithms for solving
LS problems iteratively [12]. However, it requires a Her-
mitian and positive definite matrix. When the matrix is
rectangular, as in our case, we can consider the follow-
ing equivalent matrix equation that will produce the same
solution as Eq. 7:

RHRa = RHu. (10)

Now the matrix to be solved by CG is the Hermitian ma-
trix RHR. The residual whose norm is minimized by it-
erating CG in this case is measured as:

g = RHu − RHRâ. (11)

CG applied on the matrixRHR has a form, where the
matrix RHR is never explicitly computed. This form is
called CG method on normal equations (CGN) and is out-
lined below [12]:

1. initializeb = RHu â0 arbitrary,g0 = b−RHRâ0

andd0 = g0

2. forn = 1 to nit

(a) α =
gH

n gn

dH
n RHRdn

(b) ân+1 = ân + αdn

(c) gn+1 = b − RHRân+1

(d) γ =
gH

n+1gn+1

gH
n gn

(e) dn+1 = gn+1 + γdn

end

3. reconstruct the diffraction fieldu(x, z) from the es-
timated field generating coefficient vectorâ with
Eq. 4.

Any iterative algorithm for solving LS problems builds
the solution step by step, updating the solution vector each
time with a small portion (α) along some search direc-
tion dn (step 2b). The basic idea of CG is to build the
search directionsdn conjugate to each other, so that after
at mostM steps the solution will be found. By conjugate
is meant that the directions are orthogonal to each other,
where the orthogonality is measured with respect to the
RHR matrix of the LS problem -dH

n RHRdk = 0. The
value ofα is chosen in such a manner that the current error
en+1 = ân+1 − a is conjugate to the previous direction
dn (step 2a). This makes the residualgn+1 orthogonal
to all previous search directions. The new directiondn+1

is build from this residualgn+1 as to be conjugate to all
previous directions (step 2d-e).



3.2. Convergence analysis

This subsection presents the derivation of the approxima-
tion error at then-th CG iteration in terms of the initial
error. Then, factors influencing the final expression can be
analyzed with respect to different sampling distributions.
The analysis can be used as a base to decrease the impact
of the distributions on the convergence rate.

Write the error vectoren+1 in the form:

en+1 = an+1 − a = an + αndn − a = en + αndn

= en−1 + αn−1dn−1 + αndn = ...

= e0 +

n
∑

k=0

αkdk. (12)

This equation shows thaten+1belongs to a spacee0 +
Dn+1, whereDn+1 = span{d0,d1, ...,dn}. The search
directions are built from the residuals (step 2e) and there-
fore Dn+1 = span{g0,g1, ...,gn}. Now denoteQ =
RHR and write each residualgn in the form:

gn = −Qen = −Q(en−1 + αn−1dn−1)

= gn−1 − αn−1Qdn−1. (13)

Recall thatdn−1 ∈ Dn and therefore each new subspace
Dn+1 is constructed fromDn and the subspaceQDn.
Hence,

Dn = span{g0,Qg0,Q
2g0, ...,Q

n−1g0}
= span{Qe0,Q

2e0,Q
3e0, ...,Q

ne0}. (14)

The subspacesDn are known as Krylov subspaces. Recall
that the erroren belongs to the spacee0 + Dn. Then it
can be expressed as a linear combination of the spanning
elementsQie0 of this subspace:

en =

(

I +

n
∑

i=1

φiQ
i

)

e0 = Pn(Q)e0. (15)

Pn(Q) is the polynomial of ordern from the parenthesis
of the above expression. Ifv is an eigenvector ofQ with
respective eigenvalueλ, thenQiv = λiv and therefore
Pn(Q)v = Pn(λ)v. Since the matrixQ is Hermitian, the
eigenvectors can be chosen to form an orthonormal set and
the errore0 can be expressed as a linear combination of
these eigenvectors. Inserting this linear combination in the
last form of Eq. 15,en can be expressed as similar linear
combination of the eigenvectors, where the coefficients of
this combination are multiplied byPn(λi). Now theQ-
norm of the error can be written as [13]:

‖en‖Q ≤ min
Pn

max
λ∈Λ(Q)

P 2
n(λ) ‖e0‖Q . (16)

CG determines alpha in such a manner which minimizes
‖en‖Q within the spaceDn + e0 (step 2a), or, in other
words CG finds the polynomialPn(λ) which minimizes
the expression in Eq. 16. However, the convergence is
determined by the eigenvalue which gives maximum value
of Pn(λ).

Since our goal is to analyze and estimate the error
reduction aftern iterations of CG, we need to find the
polynomialPn(λ) explicitly. This means that the coef-
ficientsφi in Eq. 15 must be known. However, they de-
pend on the coefficientsαi andγi which are not available
before the algorithm is run. More general approach is to
find a polynomial which minimize Eq. 16 over the interval
[λmin, λmax] between the smallest and largest eigenvalue,
rather than on particular set of eigenvaluesΛ(Q). Such a
polynomial is known to be a relation of two Chebyshev
polynomialsTn of ordern [12]:

Pn(λ) =
Tn

(

λmax+λmin−2λ
λmax−λmin

)

Tn

(

λmax+λmin

λmax−λmin

) . (17)

The polynomial in the numerator has maximal value of1
inside the interval[λmin, λmax] and therefore the erroren

can be estimated as

‖en‖Q ≤
[

Tn

(

λmax + λmin

λmax − λmin

)]−1

‖e0‖Q

=

[

Tn

(

κ + 1

κ − 1

)]−1

‖e0‖Q (18)

= 2

[(√
κ + 1√
κ − 1

)n

+

(√
κ − 1√
κ + 1

)n]−1

‖e0‖Q ,

whereκ = λmax/λmin is the condition number of the
matrix Q. The second addend inside the square brackets
converges to zero asn grows, so it is common to estimate
the error with the weaker inequality

‖en‖Q ≤ 2

(√
κ − 1√
κ + 1

)n

‖e0‖Q . (19)

This equation suggests that the convergence of the CG al-
gorithm highly depends on the condition number of the
matrixQ. To relateκ to the bounds a stable sampling set
(cf. Eq. 6), the energy of the known samples is can be
expressed as:

‖u‖2
2 = uHu = aHRHRa = aHQa. (20)

For a stable sampling set the energy of the samples is
strictly positive and thus the matrixQ is strictly positive
definite, i.e. its eigenvalues are always positive. Since the
energy of the samples is bounded for all vectorsa, con-
sider the case when it is an eigenvectorv of Q:

A ‖v‖2
2 ≤ vHQv ≤ B ‖v‖2

2 , or

A ‖v‖2
2 ≤ λvHv ≤ B ‖v‖2

2 . (21)

This last equation implies thatA ≤ λ ≤ B, for all eigen-
values ofQ. ThereforeA ≤ λmin andλmax ≤ B and
consequently the condition number ofQ can be estimated
as κ(Q) ≤ B/A. The constantsA and B are deter-
mined from the reconstruction function and the sampling
set. Suppose that the coefficientsa determine a light field
which is a beam centered along thez-axis, and has es-
sentially finite extent alongx. Suppose further that the



Figure 2. Projection Onto Convex Sets

samples do not cover the extent of the beam, leaving a
large gap. The energy of such samples will be very small
in comparison with the energy ofa, no matter how dense
they are outside the gap. This pushes the lower boundA
from Eq. 6 down and consequently increasesκ(Q). Now
consider the case when we have a dense cluster of sam-
ples lying on the beam. The same local information will
be added several times in Eq. 6, which will increaseB
andκ(Q). Thus, the presence of clusters and gaps in the
density of the sampling set has significant influence on the
condition number ofQ.

An add-hoc approach to compensate for the clustering
is to weight different samples according to their density.
Samples from areas with higher density are assigned with
small weights and samples from less populated areas are
emphasized as more important with higher weights. This
weighting can be represented in a matrix form as multiply-
ing the known samples vectoru with a diagonal weighting
matrixW. Then, Eq. 7 is modified as follows:

Wu = WRa. (22)

CG can be used to solve this LS problem by further mul-
tiplying both sides byRH to obtain a symmetric matrix
RHWRa and target vectorRHWu.

4. RECONSTRUCTION BY POCS

As a second approach we consider an iterative technique,
developed based on the POCS method. POCS is a com-
putational approach for finding an element of a feasible
region defined by the intersection of a number of con-
vex constraints, starting with an arbitrary infeasible point
[14, 15]. Figure 2 illustrates how convergence to the in-
tersection is achieved by iterative projections onto the in-
dividual convex sets. In our earlier work [1], POCS was
used to reconstruct a diffraction field from a set of irreg-
ularly distributed samples, which belong to a predefined
uniform grid. Here, the same algorithm is reformulated
to serve the general case when the given field samples
have random positions, unrelated to any particular uni-
form grid.

4.1. Method description

The POCS-based reconstruction method from [1] consid-
ers the known data samples as the constraints that deter-
mine the convex sets. Naturally, a convex set is defined

as all possible diffraction fields that have the given data
points on a certain line. This is beneficial only in the case
these points belong to a uniform grid with sampling in-
terval T/M , and aligned with the starting sampling grid
on the reference line. In such a case, the algorithm makes
use of an FFT-based computation of diffraction field from
line to line. This was the key-point of the algorithm de-
veloped in [1]. There, the algorithm was based on iter-
ating from line to line efficiently by the use of FFT, and
re-substituting the values of the known data points at each
line, as they were always on positions of anM -point reg-
ular grid. However, in the case of no structured samples
such an iteration is not possible. Consider, e.g. the case
of single point per line, or the case of dense points not
aligned with respect to the starting grid.

Here, we suggest a modification to overcome these
difficulties. We still want to benefit from using FFT. How-
ever, instead of propagating from line to line, we propa-
gate thenew informationfrom each particular convex set
Cl, l = 1...L to the unknown coefficientsam. In order to
use anM -point IDFT for this propagation,we define the
setCl as all known samplesu(xi, zi) with zi = zl, which
can be hosted by anM -point uniform gridxl. In the gen-
eral case there might be no more than one sample per line
to be considered as belonging to the setCl. In such a case,
the number of convex setsL will coincide with the num-
ber of sampling pointss and each projection will result to
an update caused by a single point. However, if two or
more points per line happen to belong to uniform grids,
we should benefit from this. Again, in the general case
each such gridxl will be not aligned to the initial grid
and can be assumed centered at some pointχl 6= 0 and
encompassing a spatial interval of lengthT alongx:

xl = {(xl)k}M−1
k=0 = χl + {−T/2 + kT/M}M−1

k=0 (23)

Now the formal definition of a setCl, l = 1...L can be
stated as:

Cl = {∀f(x, z) ∈ DFM : f(pl) = u(pl)} ,

pl = {(xi, zi), i = 1...s : zi = zl, xi ∈ xl}, (24)

wherepl is the set of points which are hosted by the grid
xl andDFM denotes the space of diffraction fields, gen-
erated byM nonzero coefficients through Eq. 4.

To complete the POCS method, the projections onto
the sets have to be determined. Consider a fieldf(x, y),

generated through Eq. 4 by coefficientsa
(f)
m . Its projec-

tion Pl ontoCl can be defined as substituting its samples
f(pl) by the known samplesu(pl) which define the set,

and reflecting this substitution onto the coefficientsa
(f)
m .

The substitution can be represented as just addition of the
differenceu − f at the positionspl of the samples which
define the set:

Plf(x, z) = f(x, z)+
∑

(xi,zi)∈pl

(u−f)(xi, zl)δ(x−xi, z−zl),

(25)
whereδ(x, z) is a Kronecker delta. The substitution acts
only on line z = zl and on pointspl which belong to



the gridxl. It is sufficient to propagate the information
from the gridxl back to the coefficientsfm. According
to Eq. 4, the Fourier series coefficients of the fieldu(x, z)

at z = zl areame
j 2π

T

√

T2

λ2 −m2 zl . These coefficients are
related throughM -point DFT withM regular samples on
a gridx0, centered at the origin. This can be represented
in a matrix form as:

Hzl
a = Fu(x0, zl), (26)

whereH−1
zl

= diag(e
j 2π

T

√

T2

λ2 −m2 zl) andF is the DFT
matrix. Having a sampling gridxl for a setCl means it is
shifted from the origin byχl.Alternatively, we can assume
shifting the fielduχl

(x, z) = u(x + χl, z) prior to sam-
pling onx0. Eq. 4 performs this operation by modulation:
amej 2π

T
mχl . This changes Eq. 26 to:

Hzl
Eχl

a = Fu(xl, zl), (27)

whereEχi
= diag(ej 2π

T
mχi). Eventually,

a = E−1
χl

H−1
zl

Fu(xl, zl) (28)

is the equation which propagates information from the
field line u(x, zl), sampled with a regular gridxl, to the
coefficientsam. Denote byf an s-dimensional vector
which contains the samplesf(xi, zi), i = 1...s, ordered
in the same way as the known samplesu(xi, zi) in the
vectoru from Eq. 7. The differenceu − f sampled at the
grid xl can be represented with the following equation:

(u − f)(xl, zl) = Sl(u − f), (29)

whereSl is aM × s permutation matrix which takes the
samples(u − f)(xi, zi), (xi, zi) ∈ pl from the difference
vectoru−uf and positions them properly on the gridxl.
ThusSl has value1 on positions(k, i), wherei is such
that(xi, zi) ∈ pl andk are the positions of these samples
on the gridxl.

Eq. 28 written for the sampled difference(u−f)(xl, zl)
from Eq. 29 describes the back-propagation of the differ-
ence information to the field generating coefficientsa

(f)
m ,

ordered in a vectora(f). Consequently, the projectionPl

can be re-defined to act on the field generating coefficient
vectora(f):

Pla
(f) = a(f) + E−1

χl
H−1

zl
FSl(u − f). (30)

The POCS-based reconstruction algorithm proceeds
as follows:

1. initialize â0,0 arbitrary

2. forn = 1 to nit

for l = 1 to L

(a) predict the field at the points of the given sam-
ples{(xi, zi)}s

i=1 asû(n,l) = Rân,l.

(b) calculatêan,l+1 = Plân,l by projecting the
predicted field̂u(n,l)(x, z) through Eq. 30

end

3. reconstruct the diffraction fieldu(x, z) from the re-
covered field generating coefficient vectorâ with
Eq. 4.

4.2. Convergence analysis

We attempt on deriving an expression for the error ob-
tained at then-th iteration in terms of the error at previous
iterations. Such expression can be analyzed to find factors
which influence the decay of the error norm through the
iterations, and the impact of these factors.

The error vectoren,l+1 which is obtained at then-th
iteration, after projecting on the setCl can be derived as
follows:

en,l+1 = a − ân,l+1 = a − Plân,l

= a − ân,l − E−1
χl

H−1
zl

FSl(u − û(n,l))

= en,l − E−1
χl

H−1
zl

FSlR(a − â(n,l))

=
(

I − E−1
χl

H−1
zl

FSlR
)

e(n,l). (31)

In order to ensure convergence, that is‖en,l+1‖ ≤ ‖en,l‖,
the iteration matrix

(

I− E−1
χl

H−1
zl

FSlR
)

must benon-
expansivei.e. it does not increase the the norm of a vector,
when applied to it. Astrict non-expansiveness of the ma-
trix is sufficient condition and a non-strict non- expansive-
ness is a necessary condition for convergence. The norm
of the iteration matrix is a measure for expansiveness:

∥

∥I− E−1
χl

H−1
zl

FSlR
∥

∥ =
∥

∥E−1
χl

H−1
zl

F
(

F−1Hzl
Eχl

− SlR
)
∥

∥ ≤
∥

∥E−1
χl

H−1
zl

F
∥

∥

∥

∥F−1Hzl
Eχl

− SlR
∥

∥ =
∥

∥F−1Hzl
Eχl

− SlR
∥

∥ . (32)

The matricesHzl
andExl

represent propagation of the
coefficients and shift in spatial domain alongx by χl. Ac-
cording to the definition of the matrix norm, the derivation
from Eq. 32 continues as:

∥

∥F−1Hzl
Eχl

− SlR
∥

∥ =

max
a,‖a‖=1

∥

∥F−1Hzl
Eχl

a − SlRa
∥

∥ =

max
a,‖a‖=1

‖u(xl, zl) − Slu‖ . (33)

The operationSlu selects the samplesu(xi, zi), (xi, zi) ∈
pl which determine the setCl from the vectoru, and puts
them on the respective positions of the gridxl. Therefore
the differenceu(xl, zl) − Slu is u(xl, zl) with zeros in-
stead of the set determining samplesu(xi, zi), (xi, zi) ∈
pl. ForL2 norm, it can be written as:

‖u(xl, zl) − Slu‖2
2 = ‖u(xl, zl)‖2

2 − ‖u(pl)‖2
2 . (34)

As the norm of the coefficient vectora is unity, the norm
of the M -point uniformly sampled fieldu(xl, zl) on the
line zl is unity as well. Therefore, the norm of the differ-
enceu(xl, zl) − Slu is always less than or equal to unity.
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Figure 3. Performance of the CG-based reconstruction
on data with (solid line) cluster with and without (dashed
line) using weights for regularization.

Hence the iteration matrix
(

I − E−1
χl

H−1
zl

FSlR
)

is non-
expansive and the algorithm is convergent.

Eq. 34 suggest that if samples forming the setCl con-
tain large portion of the energy ofu(xl, zl) then the con-
vergence is faster. Consider the case whenu(x, z) is a
beam, with finite extent alongx at the linez = zl. If this
beam falls into a place where the samplesu(pl) form a
gap, then these samples will have small energy. Increasing
their density outside the gap will not decrease the norm in
Eq. 34 and therefore will not speed up the convergence.
Thus, taking the maximal value of this norm in Eq. 33 over
all possible field generatorsa will produce a value close
to 1 in the case when there are clusters or gaps in the sam-
plesu(pl). On the other hand, if these samples are spread
along the whole spatial extentT , then for anya they will
take significant part of the energy ofu(xl, zl) resulting in
lower norm in Eq. 33. Clusters alongz are also undesired.
Closely related points define closely spaced convex sets.
A projection from a set to set will not change much the
projected signal and will bring little new information.

The POCS performance highly depends on the struc-
ture of the given samples. Fully arbitraty sample positions
determine large number of sets (up tos) while samples on
few lines and on regural grids determine low number of
sets and more efficient projectctions from set to set.

5. EXPERIMENTS

The theoretical analysis on the convergence of the de-
scribed approaches is illustrated by three different experi-
ments. The given samples for the experiments were gener-
ated by Eq. 4, whereM = 256 non-zero field generating
coefficientsam were chosen as a Gaussian pulse centered
at the origin. Assessment of the results is based on the
normalized error between the originala and reconstructed
â coefficient vectors -e = ‖a − â‖2 / ‖a‖.

The goal of the first experiment is to verify the ben-
efit of using adaptive weights to regularize the CG-based
method for the case when there are clusters in the known
samples. The number of the given samples is chosen to
bes = 1.5M such that the system in Eq. 5 is not under-
determined.M samples are chosen to be randomly scat-
tered within a spatial rectangle, centered at the origin and
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Figure 4. Performance of the POCS-based reconstruction
method on data which defines structured (solid line) and
unstructured (dashed line) convex sets.

lying in the half-planez > 0, while the rest0.5M sam-
ples are chosen to form a cluster. The CG-based recon-
struction method is run with and without adaptive weights
on the samples for regularization. The error convergence
is shown in Figure 3 with solid and dashed lines respec-
tively. The condition numbers of the weighted and un-
weighted matrices reflects the benefit of using the weights
- κ(RHWR) = 2826, κ(RHR) = 8031. A simple ap-
proach is used to measure the clustering of the samples
and assign the adaptive weights inW. The spatial rect-
angle where the known samples are situated is subdivided
into rectangular cells with a coarse grid. The number of
samplesnc inside each cellc is counted, and each sample
which falls inside the cellc is weighted by1/nc. While
this method is not very precise, as it does not adapt to
the cluster shapes, it is used here only to demonstrate the
regularization power of the adaptive weights iterative ap-
proach.

The second experiment illustrates the rapid conver-
gence of the POCS-based reconstruction method when
structured convex sets can be formed from the known sam-
ples. Two sets ofs = 1.5M scattered light field samples
were generated. The samples for the first set are chosen to
be randomly scattered within a spatial rectangle, centered
at the origin and lying in the half-planez > 0. The sam-
ples for the second set are chosen inside the same spatial
rectangle, but they are selected so that they form4 struc-
tured convex sets. Each of these sets contains points which
lie on the same distancez, and are irregularly scattered
such that anM -point regular grid is able to host them.
The error convergence of the POCS-based reconstruction
method is shown in Figure 4 with a solid line for the struc-
tured data set and dashed line for the completely random
data set.

In general, the CG-based reconstruction algorithm con-
verges faster than the POCS-based algorithm. However,
when the known samples can be used to form structured
convex sets, the POCS-based algorithm uses much less
computations. This can be illustrated by choosing irregu-
larly scattered data points which form structured data sets,
in the same manner as in the previous experiment. For
such data, the error convergence rate in terms of number of
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Figure 5. Performance in terms of number of iterations
nit for the POCS-based (solid line) and CG-based (dashed
line) reconstruction methods on structured data.
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Figure 6. Performance in terms of complex multipli-
cations (CM ) for the POCS-based (solid line) and CG-
based (dashed line) reconstruction methods on structured
data.

iterations is similar for both reconstruction methods (Fig-
ure 5). However, one iteration of CG has computational
complexity ofO(Ms), while the POCS-based algorithm
has complexity ofO(M log M) for the projection from
one structured set to another, resulting inO(LM log M)
per iteration forL sets. In this experiment the structured
sets areL = 4, and the benefit of using POCS instead of
CG can be seen in Figure 6.

6. CONCLUSION

In this work, we aimed at analyzing the convergence of the
two preferred iterative schemes for diffraction field recon-
struction from non-uniformly distributed samples. The
convergence of the CG-based reconstruction method is
highly dependent on the condition number of the non-
uniform sample generating matrix. For clustered sam-
ple distributions, this matrix has a high condition num-
ber which can be reduced by adaptively weighting the
samples. This method shows efficiency even when the
weight selection method is rather rough. The POCS-based
reconstruction method is generalized for the case when
the known samples do not belong to a pre-defined reg-
ular grid. A detailed theoretical analysis shows that if
structured convex sets can be defined from the samples
distribution, the reconstruction method is rapidly conver-
gent and efficient implementation exists. Numerical sim-
ulations show smaller computational costs than those re-
quired by the CG-based approach.
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