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ABSTRACT scheme assumes that the known field samples belong to

Reconstruction of a light field from a set of non-uniformly a pre-defined regL_JIar grid,_and ut_ilizes AN log N)-
distributed samples is important for holographic type of cgmp_lex prop_agatlor_l algorithm to iterate between succes-
3D scene display. The non-uniform sampling problem has S'Vﬁ I'neSbWIZ'Ch ddgflne the cc;jn\iexf ?ﬁts.l' I:? ClijG'br?Sﬁd
been already addressed and rapidly convergent iterativ cheme bullds a |screte.mo € ot the lignt field whic
schemes developed, mainly based on the method of profepresents the rec_:opstruptlontask as matrix inversiao-pro
jection Onto Convex Sets (POCS) and matrix inversion lem, _and solves _'t |t_era_t|vely thrpugh CG. Ho_vvever, f_or
by the method of Conjugate Gradients (CG). This papercertaun sample distributions the involved matrix has high

presents a derivation of the convergence rates for both Ofcondmon number and inversion with CG converges slowtly.

the schemes and analyzes the factors which influence the '€ main goal of this paper is to perform a theoret-

error decay. The presence of clusters and gaps in the dis!C8l @nalysis of the convergence rate of the POCS- and

tribution of the given samples turns out to have the most CG-Pased reconstruction schemes. We aim at identify-
significant influence on the convergence. Based on the!Nd @nd analyzing the main factors which influence the
analysis, a regularization method is derived for the CG- convergence and the computational efficiency, and to il-
based reconstruction scheme which proves to be poWer_lustrate their impact. The results can be used to achieve
ful even when the local sample density estimate is rough_faster convergence and/or better computational efficiency
The F_’OCS—based scheme is generallged for the case of 2 PROBLEM EORMULATION
off-grid known samples. Its error analysis leads to similar
conclusions for the convergence impact factors as in theln this section, we formulate the problem of reconstruc-
CG-based scheme. In addition, the analysis suggests scetion of a diffraction field from its sampled version, where
narios where the POCS excels, and others where the CGhe sampling coordinates are given on a non-uniform grid.
is much better. We start with a brief review of diffraction theory equa-
tions we need, then we specify a finite dimensional model
1. INTRODUCTION of diffraction to be used in the reconstruction.

The computation of the light field over the entire three- - : . :
dimensional (3D) space from an abstract 3D scene repre-2-1- A finite-dimensional model of diffraction

sentation is known as the forward problem in holography. piffraction theory studies phenomena occurring during
Holographic 3D display systems use the light field infor- ,rgpagation and reflection of light within, and at the bor-
mation to display a scene, and thus benefit from efficient gers of different physical media. In general, these phe-
techniques which solve the forward problem. The devel- nomena are described through complex-valued functions
opment of such techniques is a challenging task, since 3Drepresenting light (optical) wave fields and their distribu
scenes consist of various shapes and shades. In a generghn across space. In the general case, these are vector
setting, the 3D scene information can be assumed to begnctions confined to the Maxwell equations [3]. When
available as non-uniformly distributed in space light field the medium is free space and the light source is monochro-
points. Thus the forward problem can be formulated as to matic with wavelength\, the corresponding light field is
reconstruct a light field from irregularly distributed sam-  5ccyrately described by a scalar function. Under the con-
ples. ) o ) ditions of linearity, isotropy and homogeneity of the free
A real-time application needs to reconstruct the field space, the light field at any spatial point can be related to
for large data sample sets in fast and accurate manner. Pregat on a plane through the Rayleigh-Sommerfeld diffrac-
viously, we have _developed iterative recpns_truction tion integral [4]. The same integral can be used to com-
schemes, based mainly on the method of Projection Ontop, e the optical field on a plane given the field on another
Convex Sets (POCS) [1], and matrix inversion through the pargjlel plane, having linear and shift-invariant relatio
Conjugate Gradients (CG) method [2]. The POCS-basedghip petween the two functions [4, 5]. Under the assump-
This work was supported by the Academy of Finland, project No tiON that the distance between the parallel planes sat-
213462 (Finnish Centre of Excellence program (2006 - 2011). isfiesr >> ), the Rayleigh-Sommerfeld diffraction inte-
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Figure 1. The vectork; = [klx, klz] andkg = [k?gw, kgz]

eIV R =kizeikzz The plane wave decomposition integral
takes the form:

a(ky)e?VE —Rizgikam g

u(z, z) (2
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Now interpret Eq. 2 as inverse Fourier integral where the
functiona(k,)., = a(k,)e’V**~¥2% is the Fourier trans-
form of the fieldu(z, z;) at a line slicez = z;. In other
words, the field(z, z) at any particular line = z; can be
computed from the field on the initial ling(z, 0) by three
consecutive steps: (1) Fourier transform to firié,.); (2)

are the wave vectors of the plane waves. The field at therourier-domain multiplication by the transfer function of

output line is equal to the superposition of the plane waves
illuminated on the input line according to Eq. 1 [1].

gral can be regarded as an equivalent to the so-cplitet:
wave decompositioapproach [4, 6, 7].

In the rest of the paper, the plane wave decomposition
approach is used. For the sake of simplicity, the discus-
sion is restricted to one transverse dimension only. The
diffraction field at any point in the 2D free space is com-
puted as:

aky)e? FemtR=2) g, (1)

whereu(z, z) is the field over 2D space, theaxis is the
transverse axis and the axis is the optical axis along
which the field propagates. This integral represents the
light field u(z,z) as a superposition of plane waves
elk=2tk=2) "where each plane wave is oriented at an an-
gle determined by the wave vectkr = [k, k.|, as il-
lustrated in Figure 1. The variable is related tok, by

k? = k2 + k2 wherek = 2T is the length of each wave
vector. In the superposition integral each plane wave con-
tributes with complex amplitude(k,,). This superposi-
tion of plane waves bears another interpretation, which is
more convenient for our purpose. The variablgsand

k, are the spatial frequencies of the propagating plane
waves along the: and z axes respectively. The angles

the free space’V* ~%:#; and (3) inverse Fourier trans-
form to get back to spatial domain. This interpretation
has both theoretical and numerical importance. Theoreti-
cally, it clearly shows the dependence between input, sys-
tem and output. Numerically, it suggests the utilization of
an FFT algorithm, under proper sampling [1].

According to Eqg. 1, every point of the field(z, )
can be expressed in terms of the spectiuif,) of the
field u(x,0) on the reference line. Consider essentially
space-limited functiom(x, 0) or, more precisely, a func-
tion whose space - bandwidth product is finite, and denote
the spatial extent of interest 4. Such a function can be
periodized, which is equivalent to discretizationgf:., ).
A periodic and bandlimited function is equivalently rep-
resented by a finite numbéh/) of discrete spectral com-
ponents. That is, the discrete values of the frequéncy

are :
_ 2mm

b= ©
M

wherem = —| & |, ..., |21 |. Substitutingk, as given
by Eqg. 3 in Eqg. 2 leads to finite-dimensionamodel of
diffraction:
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wherea,,, = a(3m) are the coefficients of the Fourier
series expansion af(z, 0). This model assumes the field
at the reference line = 0 is a trigonometric polynomial

of the plane waves determine different spatial frequencies®f 0rder M, which is easily transferable to any other

k. along the transversal dimensionTherefore, different
plane waves determine harmonics with different frequen-
ciesk, in the transverse plane. Consequently, the complex
amplitudesa(k,) can be considered as the Fourier spec-
trum of the of the field:(x, 0) on a reference line with =

0. A propagating monochromatic wave with wavelength

coordinate thought the transfer functiety/** —#22.
2.2. Non-uniformly sampled diffraction fields

The finite-dimensional model in Eq. 4 can be regarded as
a function expansion with respect fd kernels formed
as product of exponents alongaxis and chirps along

cannot have a harmonic component in the transverse planaxis, weighted by the coefficients,. TheseM gener-

with higher frequency thar%1 sincek, = kcos¢ (cf.

ators determine any particular monochromatic field with

Figure 1). Therefore, in the case of free space propagationvavelength\ and spatial extend of the reference life

of monochromatic light, the function on the reference line
u(z,0) is assumed band-limited. This also determines the
limits of the integral in Eq. 1.

To elucidate the role of the functiar{k, ), let us con-
sider the plane waves in Eq. 1 split ag*=+k-2) —

In the general case of irregular sampling, the diffraction
field u(x, z) is given at a finite set of sampling points
{(x4,2:)}{_,. The irregular sampling and reconstruction
problem can be stated as to find the unknown field gen-
erating coefficients,,, given the samplegu(z;, z;) }5_;.



Eq. 4 can be written for each point in the irregular sam- of the matrix R, which operation is of cubic complex-

pling set{(x;, zi)};_4: ity in the general case [11]. We opt for the conjugate
gradient method (CG), known as one of the most rapidly
convergent and numerically stable algorithms for solving

L2 . om LS problems iteratively [12]. However, it requires a Her-
u(w;, z;) = Z ) TV T2l Fme (5 mitign and positive dé‘i[nite] matrix. When ct1he matrix is
m=— 4 | rectangular, as in our case, we can consider the follow-
' ing equivalent matrix equation that will produce the same
fori=1,...s. _ solution as Eq. 7:
Theses equations form a linear system for thé un-
knownsa,,. Speaking linear algebra, this system will R¥Ra = RHu. (10)

have a solution if it is of full rank. To characterize the
stability of the sampling set with respect to the field gener-
ators, we are interested in having a sampling set boundet{\r‘
by the energy of the field at the first line, as

ow the matrix to be solved by CG is the Hermitian ma-
ix RZR. The residual whose norm is minimized by it-
erating CG in this case is measured as:

Alal® <3 fulwz)P < Blal®. @) g=R"u-R"Ra 1)
i=1

CG applied on the matriR”R has a form, where the

Such set of sampling point§(w;, z;)};_, which has oy RHR is never explicitly computed. This form is
bounded energy for any choice of generating coefﬁuentsca"ed CG method on normal equations (CGN) and is out-
a., With strictly positive bounds! and B is referred to as lined below [12]:

stable sampling sd8].

In the following we describe and analyze two differ-
ent approaches to find the coefficients. The first uses
iterative algorithm to solve the system of Eqg. 5 [2]. The
second algorithm iterates from given point to given point
and falls in the framework of the method of POCS [9, 10].

1. initializeb = R”u 4, arbitrary,go = b—R”Ra,
anddo =80

2. forn =1ton;

H
3. RECONSTRUCTION BY ITERATIVE MATRIX @ a= ﬁ
INVERSION )
(b) én+1 =4, +ad,

3.1. Method description o
(€) gn+1 =b—R"Ré,41

The system in Eq. 5 is linear and can be expressed in a

H
matrix form: (d) v = Zuipe
u = Ra, 7) !
_ (e) dn+1 =gnt1 +7dn
wherea = [“—L%J’?—L%J+1’""IGL%J]. is the un-
known vector of the field generating coefficients ane: end
[u(m1, 21), u(wa, 22), ..., u(xs, 25)]T is the vector of given
samplesR is the reconstruction matrix 3. reconstruct the diffraction field(x, z) from the es-
timated field generating coefficient vectarwith
R = {rpq} Eq. 4.
= {dFV LTI 2 i F (o= L5 4 Dap )
=1, .. s.q=1. ..M, ®8) Any iterative algorithm for solving LS problems builds

the solution step by step, updating the solution vector each
time with a small portion4) along some search direc-
tion d,, (step 2b). The basic idea of CG is to build the
search directiond,, conjugate to each other, so that after

find (approximate) solutios for the unknown vectoa at mostM steps the solution will be found. By conjugate

and we limit the consideration to the over-determined case!S Méant that the directions are orthogonal to each other,
s> M. where the orthogonality is measured with respect to the

R R matrix of the LS problem d’ R Rd;, = 0. The
value ofa is chosen in such a manner that the current error
e,+1 = 4,41 — a is conjugate to the previous direction
d,, (step 2a). This makes the residggl,; orthogonal
and minimizing theL, norm of this residuaju — Ra||,, to all previous search directions. The new directib ;

one ends with solving Beast Squares (L$yoblem. Reach- is build from this residuag,, 11 as to be conjugate to all
ing an LS solution goes through finding the (pseudo-)invergerevious directions (step 2d-e).

The diffraction field at the poinfx;, z;) equals the inner
product of the-th row of R with a.
We need a fast and numerically stable algorithm to

Expressing the residual between the true vector and its
approximation
g=u-— Réa (9)



3.2. Convergence analysis Since our goal is to analyze and estimate the error
reduction aftern iterations of CG, we need to find the
polynomial P,,(\) explicitly. This means that the coef-
ficients¢; in Eg. 15 must be known. However, they de-
pend on the coefficients; and~; which are not available
before the algorithm is run. More general approach is to
aﬁﬁd a polynomial which minimize Eq. 16 over the interval
[Amin, Amaz] Detween the smallest and largest eigenvalue,
rather than on particular set of eigenvalug€)). Such a
polynomial is known to be a relation of two Chebyshev
polynomialsT;, of ordern [12]:

This subsection presents the derivation of the approxima-
tion error at then-th CG iteration in terms of the initial
error. Then, factors influencing the final expression can be
analyzed with respect to different sampling distributions
The analysis can be used as a base to decrease the imp
of the distributions on the convergence rate.

Write the error vectoe,, ;1 in the form:

€pt1 = apyl —a=ap+ apd, —a=-e, + a,d,

€p—1+ O‘nfldnfl + andn = ..

= T (A,,mﬁA,m-,ﬁzA)
= e+ Z akdk . (12) Pn ()\) _ Amaz —Amin (17)
k=0 Tn (i\maa‘ i‘imww )

This equation shows that,;belongs to a space, +
D41, whereD,, 11 = span{dg,ds,...,d, }. The search
directions are built from the residuals (step 2e) and there-
fore D,,+1 = span{go,g1,...,8n}. Now denoteQ =

The polynomial in the numerator has maximal valud of
inside the interval\,,,in , Amas] and therefore the erres,
can be estimated as

RHAR and write each residugj, in the form: Amaz 4 Amin \ 171
el < |70 (=5 )| el
gn = —Qe,= _Q(en—l + a7L—1d7L—1) max :YIL”L
= 8n-1— an-1Qdy—1. (13) = T, rtl ||e0H (18)
k—1 Q
Recall thatd,,—; € D,, and therefore each new subspace n -l
D, 41 is constructed fromD,, and the subspac@D,,. = [(‘/EJF 1) (‘/E 1) ] leollq
Hence, Vi = VK +
B 9 i wheres = Amaz/Amin 1S the condition number of the
Dn = span{go, Q8o Q°go, . Q" "o} matrix Q. The second addend inside the square brackets

2 3 . .
= span{Qeo, Q"ep, Q’ey, ..., Q"eo}. (14)  converges to zero asgrows, so it is common to estimate

the error with the weaker inequalit
The subspace®,, are known as Krylov subspaces. Recall g y
VE—1

that the erroke,, belongs to the spac& + D,,. Then it "
can be expressed as a linear combination of the spanning lenllq <2 VE+1 lleollq - (19)

element’ey of this subspace:
This equation suggests that the convergence of the CG al-

n ; gorithm highly depends on the condition number of the
e, = |1+ Z ¢iQ" | eo = Pu(Qleo. (15 matrix Q. To relatex to the bounds a stable sampling set
=1 (cf. Eq. 6), the energy of the known samples is can be

P,(Q) is the polynomial of orden from the parenthesis expressed as:

of the above expression. ifis an eigenvector of with 2 H. _ _HpH _H

respective eigenvalug, thenQ’v = \'v and therefore lufl; = u¥u=a"R7Ra = a"Qa. (20)
Pn(Q)v = P, (A)v. Since the matriQ is Hermitian, the  For a stable sampling set the energy of the samples is
eigenvectors can be chosen to form an orthonormal set andrictly positive and thus the matri® is strictly positive

the errore, can be expressed as a linear combination of definite, i.e. its eigenvalues are always positive. Sinee th
these eigenvectors. Inserting this linear combinatiohén t energy of the samples is bounded for all vectargon-

last form of Eq. 15e,, can be expressed as similar linear sjder the case when it is an eigenvectaf Q:
combination of the eigenvectors, where the coefficients of

this combination are multiplied by, ();). Now the Q- Allv]; <vPQv < Blv|3,or
norm of the error can be written as [13]: Alv|2 < avv < B|v|?. (21)
lenllq < min RS Pr(M) lleollq - (16)  This last equation implies that < \ < B, for all eigen-

values ofQ. ThereforeA < A\,in and M. < B and
CG determines alpha in such a manner which minimizes consequently the condition number@fcan be estimated
len||q within the spaceD,, + e (step 2a), or, in other asx(Q) < B/A. The constantsd and B are deter-
words CG finds the polynomidP, (A) which minimizes mined from the reconstruction function and the sampling
the expression in Eq. 16. However, the convergence isset. Suppose that the coefficieatdetermine a light field
determined by the eigenvalue which gives maximum value which is a beam centered along thexis, and has es-
of P, (). sentially finite extent along. Suppose further that the



as all possible diffraction fields that have the given data
points on a certain line. This is beneficial only in the case
these points belong to a uniform grid with sampling in-
terval T/M, and aligned with the starting sampling grid
on the reference line. In such a case, the algorithm makes
use of an FFT-based computation of diffraction field from
line to line. This was the key-point of the algorithm de-
veloped in [1]. There, the algorithm was based on iter-
ating from line to line efficiently by the use of FFT, and
re-substituting the values of the known data points at each
Figure 2. Projection Onto Convex Sets line, as they were always on positions of &fRpoint reg-
ular grid. However, in the case of no structured samples
such an iteration is not possible. Consider, e.g. the case
of single point per line, or the case of dense points not
aligned with respect to the starting grid.

Here, we suggest a modification to overcome these

samples do not cover the extent of the beam, leaving a
large gap. The energy of such samples will be very small
in comparison with the energy af no matter how dense

they are outside the gap. This pushes the lower botind difficulties. We still want to benefit from using FFT. How-

from Eq. 6 down and consequently increasé®). Now . . : .

consider the case when we have a dense cluster of sams """ instead of propagating from line to line, we propa-
ples lying on the beam. The same local information will gate thenew infohrmatiirfrom eac#_ p_articular convex set
be added several times in Eqg. 6, which will incredse quléla?AZ;.lé)iJ[r?ttl[)eFl'Jl'nfor:’otvf;lir; cc;g g'ear:g’r’]“v\ig g(ra?‘ﬁret?he
andx(Q). Thus, the presence of clusters and gaps in theSetC as aFI)I known samples( p p) v?/ith o which
density of the sampling set has significant influence on the™>- ! pesizs, z;) Wi 2; = 21,

condition number of. can be hosted by al/-point uniform gridx;. In the gen-

. _eral case there might be no more than one sample per line
An add-hoc approach to compensate for the clustering . .
. ) : . i .. “to be considered as belonging to theGet In such a case,
is to weight different samples according to their density.

o . . . the number of convex sefs will coincide with the num-

Samples from areas with higher density are assigned with ; . T .

. ber of sampling points and each projection will result to
small weights and samples from less populated areas are : . ;

. . AR . ._an update caused by a single point. However, if two or
emphasized as more important with higher weights. This : . ) :

N . ] . more points per line happen to belong to uniform grids,

weighting can be represented in a matrix form as multiply-

ing the known samples vectamwith a diagonal weighting we should benefit from this. Again, in the general case
matrix W. Then, Eq. 7 is modified as follows: each such gric; will be not aligned to the initial grid

and can be assumed centered at some pQint 0 and
Wu = WRa. (22) encompassing a spatial interval of len@ttalongz:

M—-1 M-1
. = _g = —T/2+kKT/M}, 23
CG can be used to solve this LS problem by further mul- ! {Grhimo =0+ A=T2H KT /MYy (23)
tiplying both sides byR ! to obtain a symmetric matrix ~ Now the formal definition of a se€;,/ = 1...L can be
RH¥WRa and target vectaR ¥ Wu. stated as:

4. RECONSTRUCTION BY POCS C; = {Vf(z,2) € DFr : f(p1) = u(p1)},

As a second approach we consider an iterative technique, Pt = {(#i,zi),i = 1s:zi =z, m € xa}, - (24)
developed based on the POCS method. POCS is a com
putational approach for finding an element of a feasible
region defined by the intersection of a humber of con- erated byM nonzero coefficients through Eq. 4.
vex constraints, starting with an arbitrary infeasiblerpoi To complete the POCS method, the projections onto
[14, 15]. Figure 2 illustrates how convergence to the in- 4 <ats have to be determined. Consider a fflel 1),
tersection is achieved by iterative projections onto the in - ) .

- : generated through Eq. 4 by coefﬁuenﬁé . Its projec-
dividual convex sets. In our earlier work [1], POCS was , T

tion P, ontoC; can be defined as substituting its samples

used to reconstruct a diffraction field from a set of irreg- : X
ularly distributed samples, which belong to a predefined f(p) by the known samples(p,) which define the set,

uniform grid. Here, the same algorithm is reformulated @nd reflecting this substitution onto the_coeﬁicig@@.
to serve the general case when the given field samplesThe substitution can be represented as just addition of the
have random positions, unrelated to any particular uni- différenceu — f at the positiong of the samples which

wherep; is the set of points which are hosted by the grid
x; andDF); denotes the space of diffraction fields, gen-

form grid. define the set:

4.1. Method description Pif(x,2) = f(,2)+ D (u—f)wi2)0(@—wi, 2—2),
(zi,2i)€EP1

The POCS-based reconstruction method from [1] consid- (25)

ers the known data samples as the constraints that deterwhered(z, z) is a Kronecker delta. The substitution acts
mine the convex sets. Naturally, a convex set is definedonly on linez = 2, and on pointgp; which belong to



the gridx;. It is sufficient to propagate the information end
from the gridx; back to the coefficientg,,. According

to Eq. 4, the Fourier series coefficients of the field, =) 3. reconstruct the diffraction field(z, z) from the re-
1% TE 2 2 . covered field generating coefficient vectmwith
atz = z area,,e’ TV 32 ', These coefficients are Eq. 4.

related through\/ -point DFT with M regular samples on
a gridxg, centered at the origin. This can be represented4.2. Convergence analysis

in a matrix form as: . .
We attempt on deriving an expression for the error ob-

H. a = Fu(xo, 2, (26) _taine(_j at thex-th iteration_in terms of the error at p_revious
iterations. Such expression can be analyzed to find factors
which influence the decay of the error norm through the
iterations, and the impact of these factors.

The error vectoe,, ;1 which is obtained at the-th
iteration, after projecting on the s€l; can be derived as

. 2
whereH_ ! = dz‘ag(e]%ﬁ\/%’m2 “) andF is the DFT
matrix. Having a sampling grig; for a setC; means it is
shifted from the origin by .Alternatively, we can assume
shifting the fieldu,, (z, z) = u(x + x;, z) prior to sam-

[ i ; . follows:
pling onxq. Eq. 4 performs this operation by modulation:
Sy : _
ame’ T ™Xt, This changes Eq. 26 to: eniis = a—Anii —a— Py
HzlEXla = :FLL(Xl7 Zl); (27) = a— én,l _ E):lle_llFSl(u _ ﬁ(nJ))
-2 o en,l 7E71H;1FSIR(3757 . )
whereE,, = diag(e/ 7 ™X:). Eventually, _ia _1L (n,l)
= (I-E'H_'FS|R)e(,,. (31)

a= E;}H;lFu(xl, 21) (28) )
In order to ensure convergence, thatés ;11| < |len,],

is the equation which propagates information from the the iteration matrix(I — E'H_'FS;R) must benon-
field line u(z, ), sampled with a regular grig;, to the expansive.e. it does not increase the the norm of a vector,
coefficientsa,,. Denote byf an s-dimensional vector ~When applied to it. Astrict non-expansiveness of the ma-
which contains the sample§z;, z;),i = 1...s, ordered trix is sufficient condition and a non-strict non- expansive
in the same way as the known samples;, z;) in the ness is a necessary condition for convergence. The norm
vectoru from Eq. 7. The difference — f sampled atthe  Of the iteration matrix is a measure for expansiveness:

grid x; can be represented with the following equation:
l i i 1B H FSIR -

(u— f)(x1,21) = Si(u— 1), (29) |ELHS'F (F'HLE,, - SR)| <
whereS; is aM x s permutation matrix which takes the |EL H,,'F|| |[F'H.,E,, - SIR|| =
samplesu — f)(z;, zi), (x4, z:) € pi from the difference |F~'H.E,, - SiIR]. (32)

vectoru — uy and positions them properly on the gsigl

ThusS; has valuel on positions(k, i), wherei is such The matricedH,, and E,, represent propagation of the

that(z;, z;) € p; andk are the positions of these samples coefficients and shift in spatial domain alondyy ;. Ac-

on the gridx;. cording to the definition of the matrix norm, the derivation
Eq. 28 written for the sampled differeng@e— f)(x;, z;) from Eq. 32 continues as:

from Eq. 29 describes the back-propagation of the differ-

ence information to the field generating coefficiean&@, ||F71sz E, - SlRH =

ordered in a vectosa(f). Consequently, the projectia® max |F~'H, Eya— SRa| =

can be re-defined to act on the field generating coefficient a,lafl=1

vectora(f): A lu(xz, 21) — S| - (33)

(f) — 4(f) —lgy-1 _
pPall =all + E HFSi(u—f). (30) gy operatior$,u selects the samplesz;, z;), (z, z;) €

The POCS-based reconstruction algorithm proceedsP which determine t_he S@l. f_rom the vectc_)ru, and puts
as follows: them on the respective positions of the gtid Therefore
the differenceu(x;, z;) — S;u is u(xy, z;) with zeros in-

1. initialize &, o arbitrary stead of the set determining sampl&s;;, z;), (¢, z;) €

p:. For Ly norm, it can be written as:
2. forn =1tony

forl=1toL luloxt, 1) — Spull? = e, 2112 — a3 (34)

(a) predict the field at the points of the given sam-

R N As the norm of the coefficient vectaris unity, the norm
ples{(x;, z)}5_, asa™!) = Ra, .

of the M-point uniformly sampled field:(x;, ;) on the
(b) calculatea,, ;1 = Pa,,; by projecting the line z; is unity as well. Therefore, the norm of the differ-
predicted fieldi(™ (z, z) through Eq. 30 enceu(x;, z;) — S;u is always less than or equal to unity.
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Figure 3. Performance of the CG-based reconstructionFigure 4. Performance of the POCS-based reconstruction

on data with (solid line) cluster with and without (dashed Method on data which defines structured (solid line) and
line) using weights for regularization. unstructured (dashed line) convex sets.

Hence the iteration matrigl — E_'H_'FS,R) is non- lying in the half-planez > 0, while the res0.5M sam-

expansive and the algorithm is convergent. ples are chosen to form a cluster. The CG-based recon-
Eqg. 34 suggest that if samples forming theGgton- struction method is run with and without adaptive weights

tain large portion of the energy af(x;, z;) then the con-  on the samples for regularization. The error convergence

vergence is faster. Consider the case wheén z) is a is shown in Figure 3 with solid and dashed lines respec-

beam, with finite extent along at the linez = z;. If this tively. The condition numbers of the weighted and un-
beam falls into a place where the sampiép,;) form a weighted matrices reflects the benefit of using the weights
gap, then these samples will have small energy. Increasing (R WR) = 2826, x(R¥R) = 8031. A simple ap-
their density outside the gap will not decrease the norm in proach is used to measure the clustering of the samples
Eq. 34 and therefore will not speed up the convergence.and assign the adaptive weightsWi. The spatial rect-
Thus, taking the maximal value of this normin Eq. 33 over angle where the known samples are situated is subdivided
all possible field generatoeswill produce a value close into rectangular cells with a coarse grid. The number of
to 1 in the case when there are clusters or gaps in the samsamples:. inside each celt is counted, and each sample
plesu(p;). On the other hand, if these samples are spreadwhich falls inside the celt is weighted byl /n.. While
along the whole spatial extefit, then for anya they will this method is not very precise, as it does not adapt to
take significant part of the energy ofx;, z;) resulting in the cluster shapes, it is used here only to demonstrate the
lower normin Eq. 33. Clusters alongare also undesired. regularization power of the adaptive weights iterative ap-
Closely related points define closely spaced convex setsproach.
A projection from a set to set will not change much the  The second experiment illustrates the rapid conver-
projected signal and will bring little new information. gence of the POCS-based reconstruction method when
The POCS performance highly depends on the struc-structured convex sets can be formed from the known sam-
ture of the given samples. Fully arbitraty sample positions ples. Two sets of = 1.5M scattered light field samples
determine large number of sets (upsjavhile sampleson  were generated. The samples for the first set are chosen to
few lines and on regural grids determine low number of be randomly scattered within a spatial rectangle, centered
sets and more efficient projectctions from set to set. at the origin and lying in the half-plane> 0. The sam-
ples for the second set are chosen inside the same spatial
5. EXPERIMENTS rectangle, but they are selected so that they férstruc-
The theoretical analysis on the convergence of the de-tured convexsets. Each of these sets contains points which
scribed approaches is illustrated by three different éxper lie on the same distance and are irregularly scattered
ments. The given samples for the experiments were genersuch that an\/-point regular grid is able to host them.
ated by Eq. 4, wherd/ = 256 non-zero field generating  The error convergence of the POCS-based reconstruction
CoefﬁcientSam were chosen as a Gaussian pu|se CenteredmethOd is shown in Figure 4 with a solid line for the struc-
at the origin. Assessment of the results is based on thetured data set and dashed line for the completely random
normalized error between the origiraéind reconstructed ~ data set.
a coefficient vectors e = ||la — 4|, / ||a]|. In general, the CG-based reconstruction algorithm con-
The goal of the first experiment is to verify the ben- verges faster than the POCS-based algorithm. However,
efit of using adaptive weights to regularize the CG-based when the known samples can be used to form structured
method for the case when there are clusters in the knownconvex sets, the POCS-based algorithm uses much less
samples. The number of the given samples is chosen tocomputations. This can be illustrated by choosing irregu-
bes = 1.5M such that the system in EqQ. 5 is not under- larly scattered data points which form structured datg sets
determined.M samples are chosen to be randomly scat- in the same manner as in the previous experiment. For
tered within a spatial rectangle, centered at the origin andsuch data, the error convergence rate in terms of number of



Figure 5. Performance in terms of number of iterations
n;; for the POCS-based (solid line) and CG-based (dashed
line) reconstruction methods on structured data.

Figure 6. Performance in terms of complex multipli-
cations C'M) for the POCS-based (solid line) and CG-
based (dashed line) reconstruction methods on structured

data.

iterations is similar for both reconstruction methods {Fig
ure 5). However, one iteration of CG has computational
complexity of O(M s), while the POCS-based algorithm
has complexity ofO(M log M) for the projection from
one structured set to another, resultingd0LM log M)
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