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ABSTRACT
We outline the evolution of the nonparametric regression modelling
in imaging from the local Nadaraya-Watson estimates to the non-
local means and further to the latest nonlocal block-matching tech-
niques based on transform-domain Þltering. The considered meth-
ods are classiÞed mainly according to two leading features: lo-
cal/nonlocal and pointwise/multipoint. Here nonlocal is an alter-
native to local, and multipoint is alternative to pointwise. The alter-
natives, though an obvious simpliÞcation, allow to impose a fruitful
and transparent classiÞcation of the basic ideas in the advanced
techniques. Within this framework, we introduce a novel multiple-
model interpretation of the basic modelling used in the BM3D al-
gorithm [11], highlighting a source of the outstanding performance
of this type of algorithms.

1. INTRODUCTION

Suppose we have independent random observation pairs {zi ,xi }ni=1
given for simplicity in additive form zi = yi +εi , where yi = y(xi )
is a signal of interest, xi ∈ Rd denotes a vector of �features� or
explanatory variables which determines the signal observations yi ,
and εi = ε(xi ) is an additive noise. The problem is to reconstruct
y(x) from {zi }ni=1. In statistics, the function y is treated as a re-
gression of z on x , y(x)= E{z|x}. In this way, the reconstruction at
hand is from the Þeld of the regression techniques. If a parametric
model cannot be proposed for y then, strictly speaking, the problem
is from a class of the nonparametric ones. Paradoxically, one of the
most productive ideas in nonparametric regression is a parametric
local modeling. This localization is developed in a variety modiÞ-
cations and can be exploited for the argument feature variables x , in
the signal space y, or in the transform/spectrum domains. This para-
metric modelling �in small� makes a big deal of difference versus
the parametric modelling �in large�.
The idea of local smoothing and local approximation is so natural

that it is not surprising it has appeared in many branches of science.
Citing [39], we can mention early works in statistics using local
polynomials by the Italian meteorologist Schiaparelli (1866) and
the Danish actuary Gram (1879) (famous for developing the Gram-
Schmidt procedure for orthogonalization of vectors). In sixties-
seventies of the twentieth century the idea became subject of an in-
tensive theoretical study and applications: in statistics due Nadaraya
(1964, [44]), Watson (1964, [59]), Cleveland (1979, [9]) and in en-
gineering due Brown (1963 [5]), Savitzky and Golay (1964, [53]),
Katkovnik (1976 [29]).
Being initially developed as local in x , the technique obtained

recently a further signiÞcant development with localization in the
signal y and in the combined x and y domains as nonlocal means
algorithm [6]. For imaging, the nonlocal modelling appeared to be
extremely successful when exploited in transform domain. This is
a promising direction where the current development is focused.
One of the top achievements in the class of nonlocal transform-

based methods is represented by the block-matching 3D (BM3D)
algorithm recently proposed for image denoising [11]. The quality
demonstrated by this algorithm and its modiÞcations are beyond
ability of most alternative techniques.

The scope of the paper is twofold. First, we outline the evo-
lution of the nonparametric regression modelling from the local
Nadaraya-Watson estimates to nonlocal means and further to the
nonlocal block-matching techniques. Second, we propose a novel
interpretation of the basic modelling used in the BM3D algorithm.
The term �multiple-model grouping� is introduced for this model-
ing. This novel interpretation allows to highlight a source of the
outstanding performance of this type of the algorithms.
In what follows, the considered techniques are classiÞed mainly

according to two leading features: local/nonlocal and point-
wise/multipoint. Here nonlocal is an alternative to local, and multi-
point is alternative to pointwise.
We call an algorithm local if the weights used in the design of

the algorithm depend on the distances from the estimation x0 and
observation xs points in such a way that to distant points corre-
spond small weights, with the size of the estimation support is es-
sentially restricted by these distances. An algorithm is nonlocal if
these weights and the estimation support are functions of the differ-
ences of the corresponding signal (image intensity) values at the
estimation point y0 and observations ys . In this way, even dis-
tant points can be awarded large weights and the support is often
composed of disconnected parts of the image domain. Note that
the weights used in local algorithms can be dependent also on ys ,
but, nevertheless, the weights are overall dominated by the distance!!!x0− xs !!!. An important example of this speciÞc type of local Þlters
is the Yaroslavsky Þlter [63], referred in [6, 7] as a precursor of the
nonlocal means Þlter.
Let us make clear the pointwise/multipoint alternative. We call

an estimator multipoint if the estimate is calculated for all observa-
tion pixels used in estimation. The set of points used in estimation
can be an image block or an arbitrarily-shaped region adaptively
or non-adaptively selected. In contrast to a multipoint estimator,
a pointwise estimator gives the estimate for a single point only,
namely x0. To be more ßexible, we can say that the multipoint
estimator gives the estimates for a set of points while the pointwise
is restricted to estimation for a single only. The multipoint estimates
are typically not the Þnal ones. The Þnal estimates are calculated by
aggregating (fusing) a number of multipoint estimates, since typi-
cally many such estimates are available for each point (a common
of many overlapping neighborhoods). In the pointwise approach the
pointwise estimates are calculated directly as the Þnal ones.
We found that the classiÞcation of the algorithms according to

these two features: local/nonlocal and pointwise/multipoint is fruit-
ful for giving an overview of this quickly developing Þeld. Table
1 illustrates the proposed classiÞcation of the algorithms as well as
the organization of this paper.
The local algorithms are well documented in numerous papers

and books (e.g., [63], [39], [30], [3], [55]). This is why we only
slightly touch this direction and mainly are focused on the compar-
atively novel emerging area of nonlocal modelling and estimation.
In this paper, image denoising is considered as the basic problem

convenient for overview of the various ideas, while these types of
algorithms are widely used for a plethora of image processing prob-
lems including restoration/deblurring, interpolation, reconstruction,



LOCAL NONLOCAL

POINTWISE

Section 2 Section 4

Signal-independent weights (Sections 2.1-2.2):
Nadaraya-Watson [9],[5],[53],[44],[59], LPA [19],[29],[39],
Lepski�s approach [38], LPA-ICI [25],[31],[30],[20],
sliding window transform [62],[61];

Signal-dependent weights (Section 2.3):
Yaroslavsky Þlter [63], SUSAN Þlter [54], Sigma-Þlter [37],
bilateral Þlter [57],[15], kernel regression [56], AWS [50],[55].

Weighted means (Section 4.1):
neighborhood Þlter [6],
NL-means algorithm [6], Lebesgue denoising [60],
Exemplar-based [33],[35],[34],
scale and rotation invariant [40],[65];

Higher-order models (Section 4.2):
kernel regression [8].

MULTIPOINT

Section 3 Section 5

Sliding-window transform [45],[46],[14],[64],[16],[26],[27];
shape-adaptive transform [22],[21];
learned bases: adaptive PCA [43], K-SVD [18].

Single-model groups (Section 5.1):
Blockwise NL-means [6].

Multiple-model groups (Section 5.2):
BM3D [11], Shape-Adaptive BM3D [12].

Table 1: Organization of the paper and classiÞcation of the algorithms.

enhancement, and compression. In our review and classiÞcation,
we have no pretension of completeness. The methods and algo-
rithms that appear in Table 1, as well as others to which we refer
throughout the text, are cited mainly to give few concrete examples
of possible implementations of the general schemes discussed in the
next four sections.

2. LOCAL POINTWISE MODELLING

2.1 Pointwise weighted means
The weighted local mean as a nonparametric regression estimator
of the form

ŷh(x0)=
"
s
gh,x0 (xs)zs , gh,x (xs)= wh(x− xs)#

swh(x− xs)
, (1)

has been independently introduced by Nadaraya [44], as a heuris-
tic idea, and by Watson [59], who derived it from the deÞnition of
regression as the conditional expectation and using the Parzen esti-
mate of the conditional probability density.
It is convenient to treat this estimator as a zero-order local poly-

nomial approximation and derive it as a minimizer for the win-
dowed (weighted) mean-squares criterion:

ŷh(x0) = Ĉ , Ĉ = argminC Ih,x0 (C), (2)

Ih,x0(C) =
"
s
wh(x0− xs)[zs −C]2. (3)

The window wh(x) = w(x/h) deÞnes the neighborhood Xh of x0
used in the estimator. A scalar (for simplicity) parameter h > 0
gives the size of this neighborhood as well as the weights for
the observations. In particular, for the Gaussian window we have
w(x)= exp(−||x||2).

2.2 Pointwise polynomial modelling

In the local polynomial approximation (LPA), the observations zs
in the quadratic criterion (3) are Þtted by polynomials. The coefÞ-
cients of these polynomials found by minimization of Ih,x0 serve as
the pointwise estimates of y and its derivatives at the point x0 (e.g.
[19], [29], [39], [30]). This sort of estimates is a typical example
of what we call pointwise local estimates. Of course, for the zero-
order polynomial we obtain the Nadaraya-Watson estimates (1).

2.2.1 Adaptivity of pointwise polynomial estimates

The accuracy of the local estimates is quite dependent on the size
and shape of the neighborhood used for estimation. Adaptivity of
these estimates is a special subject that recently obtained a wide de-
velopment concerning, in particular, the adaptive selection of the
neighborhood size/shape or of the weights. The main idea of the re-
cent methods is to describe a greatest possible local neighborhood
of every pixel in which the local parametric assumption is justiÞed
by the data [50], [49], [30]. These methods, mainly linked with
the Lepski�s approach [38], [25], are valid also for the higher-order
local modeling. One of the efÞcient technique is known as the LPA-
ICI algorithm [31],[25]. Here ICI stands for the intersection of con-
Þdence intervals (ICI) rule, one of the modiÞcations of the Lepski�s
approach.
A modern overview of the adaptive local image processing is

presented in [30] and [20], a general theory of the adaptive im-
age/signal processing developed for quite general statistical models
can be seen in [55].
In this line of algorithms using the localized adaptive weights, we

wish to emphasize the works by Polzehl and Spokoiny [50], [49],
where efÞcient adaptive algorithms are developed for the class of
exponential distributions.



2.3 Signal-dependent windows

There are a variety of works where the local weights wh(x0− xs)
depend also on the observations zs . A principal difference of
these algorithms versus the nonlocal ones is that all the signiÞcant
weights are localized in the neighborhood of x0.
In particular, Smith and Brady [54] presented the SUSAN algo-

rithm where the localization is enabled by the weights depending
on the distances from x0 to the observation points xs :

wh(x0− xs , y0− ys)= e−
||x0−xs ||2

h2
−|y0−ys |2

γ , γ ,h > 0.

Similar ideas are exploited in the Sigma-Þlter by Lee [37] and in
the �bilateral Þlter� by Tomasi and Manduchi [57], [15]. These al-
gorithms are local, mainly motivated by the edge detection problem
where the localization is a natural assumption. Further development
and interpretation of this sort of local estimator can be seen in [15]
and [4]. In the works by Yaroslavsky [63] the localization of the
weights is enabled by taking observations from the ball centered at
x0. The accuracy analysis of this algorithms can be seen in [6].
It this context, it is worth mentioning also the kernel estimator by

Takeda et al. [56], which is particular higher-order LPA estimator
where the weights are deÞned as in the bilateral Þlter.

3. LOCALMULTIPOINT MODELLING

The main progress in the performance of local (as well as of nonlo-
cal) estimation has been achieved in a direction completely different
from that pursued in the aforementioned local modelling, where the
low-order polynomial approximations is a main tool. In this sec-
tion, we consider full-rank high-order approximations with a max-
imum number of basis functions (typically non-polynomials). For
the orthogonal basis functions, this modelling is treated as the corre-
sponding transform-domain representation, with Þltering produced
by shrinkage in the spectrum (transform) domain. The data are
typically processed by overlapping subsets, i.e. windows, blocks
or generic neighborhoods, and multiple estimates are obtained for
each individual point (e.g., [16], [26] and references therein). Esti-
mation is composed from three successive steps: 1) data windowing
(blocking); 2) multipoint processing; 3) calculation of the Þnal esti-
mate by aggregating (fusing) the multiple multipoint estimates. It is
found, that this sort of redundant approximations with multiple es-
timates for each pixel essentially improves the performance of the
algorithms.

3.1 Sliding-window transform domain
Let the signal be deÞned on a regular 2-D grid X . Consider a win-
dowing C ={Xr , r = 1, . . . ,Ns} of X with Ns blocks (uniform win-
dows) Xr ⊂ X of size nr ×nr such that ∪Nsr=1Xr = X . Mathemat-
ically speaking, this windowing is a covering of X . Thus, each
x ∈ X belongs to at least one subset Xr . The blocks may be over-
lapping and therefore some of the elements may belong to more
than one block. The noise-free data y (x) and the noisy data z(x)
windowed on Xr are arranged in nr ×nr blocks denoted as Yr and
Zr , respectively.
In what follows, we use transforms (orthonormal series) in con-

junction with the concept of the redundancy of natural signals.
Mainly these are the 2-D discrete Fourier and cosine transforms
(DFT and DCT), orthogonal polynomials, and wavelet transforms.
The transform, denoted as T 2Dr , is applied for each window Xr in-
dependently as

θr = T 2D
r (Yr ) ,

$
= DrYr DTr

%
r = 1, . . . ,Ns , (4)

where θr is the spectrum of Yr . The equality enclosed in square
brackets holds when the transform T 2Dr is realized as a separable

composition of 1-D transforms, each computed by matrix multipli-
cation against an nr ×nr orthogonal matrix Dr . The inverse T 2D−1r
of T 2D

r deÞnes the signal from the spectrum as

Yr = T 2D−1r (θr ),
$
= DTr θr Dr

%
r = 1, . . . ,Ns .

The noisy spectrum of the noisy signal is deÞned as

θ̃r = T 2D
r (Zr ),

$
= Dr Zr DTr

%
r = 1, . . . ,Ns . (5)

The signal y is sparse if it can be well approximated by a small
number of non-zero elements of the spectrum θr . The number of
non-zero elements of θr , denoted using the standard notation as||θr ||0, is interpreted as the complexity of the model in the block.
The blockwise estimates are simpler for calculation than the es-

timates produced for the whole image because the blocks are much
smaller than the whole image. This is a computational motivation
for the blocking. Another even more important point is that the
blocking imposes a localization of the image on small pieces where
simpler models may Þt the observations. These shorter models are
easy to be compared and selected. Here we can recognize the basic
motivation for the zero-order or low-order LPA, which is simple and
for small neighborhoods can well Þt the data which globally can in-
stead be complex and not allow a simple parametric modelling. By
windowing we introduce a small segments exactly with the same
reasons in order to use simple parametric models (expansions in
the series deÞning the corresponding transforms) for overall com-
plex data. A principal difference versus the pointwise estimation
is that with blocks the concept of the center actually do not have a
proper sense and the estimates are thus calculated for all points in
the block. Thus, instead of the pointwise estimation we arrive to the
blockwise (multipoint) estimation. For the overlapping blocks this
leads to the next problem: the multiple estimates for the points and
the necessity to aggregate (fuse) these multiple estimates in the Þnal
ones.

3.2 Estimation
For the white Gaussian noise, the penalized minus log-likelihood
maximization gives the estimates as

θ̂r =argmin
ϑ

||Zr −T 2D−1r (ϑ) ||22+λpen(ϑ), (6)

Ŷr =T 2D−1
r

&
θ̂r
'
,

where pen(ϑ) is a penalty term and λ > 0 is a parameter that con-
trols the trade-off between the penalty and the Þdelity term. The
penalty pen(ϑ) is used for characterizing the model complexity and
appears naturally in this modeling, provided that the spectrum θr is
random with the prior density p(θr ) ∝ e−λpen(θr ). The estimator
(6) can be presented in the following equivalent form

θ̂r = argmin
ϑ

||θ̃r −ϑ||22+λpen(ϑ), (7)

where the noisy spectrum is calculated as (5).
If the penalty is additive for the items of the spectrum ϑ ,

pen(ϑ) =#i, j pen(ϑ(i, j)), where ϑ(i, j) is an element of ϑ , then
the problem can be solved independently for each element of the
matrix θ̂r as a scalar optimization problem:

θ̂r,(i, j) = argmin
x

&
θ̃r,(i, j)− x

'2+λpen(x). (8)

This solution depends on θ̃r,(i, j) and λ, and it can be presented in
the form

θ̂r,(i, j) = ρ
&
θ̃r,(i, j),λ

'
, (9)



where ρ is deÞned by the penalty function in (8).
Hard and soft thresholding are simple and popular techniques

[13]:
(1) Hard thresholding. The penalty is ||x||0, i.e. ||x||0 = 1 if x -= 0
and ||x||0 = 0 if x = 0. It can be shown that

θ̂r,(i, j) = θ̃r,(i, j) ·1
&
|θ̃r,(i, j)| ≥ λ

'
. (10)

In thresholding for the block of the size nr ×nr the so-called uni-
versal threshold λ is deÞned depending on nr as λ= σ

(
2logn2r .

(2) Soft thresholding. The penalty function is pen(x)= ||x||1 = |x|.
The function ρ in (9) is deÞned as

ρ
&
θ̃r,(i, j),σ

'
= θ̃r,(i, j) ·

&
1−λ/|θ̃r,(i, j)|

'
+ . (11)

3.3 Aggregation
At the points where the blocks overlap, multiple estimates appear.
Then, the Þnal estimate is calculated as the average or a weighted
average of these multiple estimates:

ŷ =
#
r µr ŷr#

r µrχ (Xr )
, (12)

where ŷr is obtained by returning the blockwise (multipoint) esti-
mates Ŷr = T 2D−1r

&
θ̂r
'
to the respective place Xr (and extending

it as zero outside Xr ), µr(i, j) are the weights used for these esti-
mates, and χ (Xr ) is the characteristic (indicator) function of Xr .
Although in many works equal weights µr = 1 ∀r are tradition-

ally used (e.g., [10], [28], [45], [46]), it is a well established fact that
the efÞciency of the aggregated estimates (12) sensibly depends on
the choice of the weights.
In particular, using weights µr inversely proportional to the vari-

ances of the corresponding estimates ŷr is found to be a very effec-
tive choice, leading to a dramatic improvement of the accuracy of
estimation [14],[64].
We wish to mention few related works. In [16], Elad consid-

ers shrinkage in redundant representations and derives an optimal
estimator minimizing a global energy criterion. Guleryuz [26] stud-
ies the use of different weights for aggregating blockwise estimates
from sliding window transforms. Vice versa, the optimization of
the shrinkage function, given Þxed simple averaging of the local
estimates, is considered by Hel-Or and Shaked [27].
We note also that earlier versions of sliding/running window Þl-

ters proposed by Yaroslavsky [62, 61] do not belong to the local
multipoint Þlters because only the central pixel is retained from
each blockwise estimate. Thus, there are no multiple estimates and
no aggregation and these Þlters are actually pointwise ones with
signal-independent weights.

3.4 Shape-adaptive transform domain
A particularly effective sliding window transform domain Þlter is
obtained when the window is made adaptive with respect to the local
image content. The adaptation can be in terms of size or, more
generally, of shape.
The approach to estimation for a point x0 can be roughly de-

scribed as the following four stage procedure:
Stage I (spatial adaptation): For every x ∈ X , deÞne a neighbor-
hood Ũ+x of x where a simple low-order polynomial model Þts the
data;
Stage II (order selection): apply some localized transform (para-
metric series model) to the data on the set Ũ+x , use thresholding
operator (model selection procedure) in order to identify the signif-
icant (i.e. nonzero) elements of the transform (and thus the order of
the parametric model).
Stage III (multipoint estimation): Calculate, by inverse-
transformation of the signiÞcant elements only, the corresponding

estimates ŷŨ+x (v) of the signal for all v ∈ Ũ
+
x . These ŷŨx are cal-

culated for all x ∈ X .
Stage IV (aggregation): Let x0 ∈ X and Ix0 =

)
x ∈ X : x0 ∈ Ũ+x

*
be the set of the centers of the neighborhoods which have x0 as a
common point. The Þnal estimate ŷ(x0) is calculated as an aggre-
gate of

)
ŷŨ+x

&
x0
'*
x∈Ix0

.

This procedure is at the base of the Pointwise Shape-Adaptive
DCT algorithm [22],[21], developed for a number of different im-
age Þltering problems. The algorithm shows a very good perfor-
mance, among the best within the class of local estimators.

3.4.1 Learned bases
Another approach to increase the performance of blockwise esti-
mators is to use transforms or redundant bases that have been opti-
mized with respect to the given image or set of images at hand. The
Adaptive Principal Components algorithm by Muresan and Parks
[43] and, particularly, the K-SVD algorithm by Elad and Aharon
[18] are successful examples of this sort of methods.

4. NONLOCAL POINTWISE MODELLING

4.1 Nonlocal pointwise weighted means
Similar to (2), a nonlocal estimator can be derived as a minimizer
for

Ih,x0 (C)=
"
s
wh(y0− ys)[zs −C]2, y0 = y(x0), (13)

where the weights wh depend on the distance between the signal
values at the observation points ys and the desirable point y0 =
y(x0). Minimization of (13) gives the weighted mean estimate in
the form (neighborhood Þlter [6]):

ŷh(x0)=
"
s
gh,s(y0)zs , gh,s(x)= wh(y0− ys)#

swh(y0− ys)
. (14)

This estimator is local in the signal space y similar to (1) while it
can be nonlocal in x depending on the type of the function y.
The ideal set of observations for the noiseless data is the set

{x : y(x)= y0 = y(x0)}, (15)

where y(x) takes the value y0.
The estimate (14) is the weighted mean of the observed zs and

the only link with x0 goes through y0 = y(x0). It is a principal
difÞculty of this estimate, as it requires to know the accurate y0 and
ys used in (14). In other words, to calculate the estimate we need to
know the estimated signal.
There are a number of ways to deal with this problem.

4.1.1 Weights deÞned by pointwise differences
The simplest and straightforward idea is replace ys be zs , then,

ŷh(x0) =
"
s
gh,s(z0)zs , (16)

gh,s(z0) = wh(z0− zs)#
swh(z0− zs)

, z0 = z(x0).

As the observed zs are used instead of the true values ys it results
in a principal modiÞcation of the very meaning of the estimate (14).
Indeed, provided a given weight gh,s , this estimate is linear with
respect to the observations zs , while when we use ys = zs the es-
timate (16) becomes nonlinear with respect to the observations and
the noise in these observations.



4.1.2 Weights deÞned by neighborhoodwise differences: NL-
means algorithm
The weights in the formula (16) are calculated as differences of in-
dividual noisy samples z0 and zs . In practice, this can yield a quite
different outcome from the difference between the true signal sam-
ples y0 and ys , assumed in (13).
The nonlocal means (NL-means) as they are introduced in [6]

are given in different form where these weights calculated over spa-
tial neighborhoods of the points x0 and xs . This neighborhood-
wise differences can be interpreted as more reliable way to estimate
y0− ys from the noise samples alone. Then, the nonlocal mean esti-
mate is calculated in a pointwise manner as the weighted mean with
the weights deÞned by the proximity measure between the image
patches used in the estimate. This estimation can be formalized as
minimization of the local criterion similar to (13)

Ih,x0 (C)=
"
s
wh,s(x0,xs)[zs −C]2, (17)

with, say, Gaussian weights (as it in [6])

wh,s(x0,xs)= e−
#
v∈V

&
z
&
x0+v

'
−z(xs+v)

'2
h (18)

deÞned by the Euclidean distance between the observations z in V -
neighborhoods of the points x0 and xs , V being a Þxed neighbor-
hood of 0.
The nonlocal means estimate is calculated as

ŷh(x0)=
"
s
gh,s(x0)zs , gh,s(x0)= wh,s(x0,xs)#

swh,s(x0,xs)
. (19)

The detailed review of the nonlocal means estimates with a num-
ber of generalizations and developments are presented by Buades,
Coll and Morel [6],[7]. From the results in [6], we wish to note the
accuracy analysis of the estimator (16) with respect to both signal
y and the noise. These asymptotic accuracy results are given for
h→ 0 and exploited to prove that the nonlocal mean estimates can
be asymptotically optimal under a generic statistical image model-
ing. This sort of estimates has been developed, more less in parallel,
in a number of publications with different motivation varying from
computer vision ideas to statistical nonparametric regression (see,
e.g., [6], [60], [33], [35], [34], [7] and references therein). Exten-
sion of the original approach including scale and rotation invariance
for the data patches used to deÞne the weights are proposed in [40]
and [65].

4.1.3 Recursive reweighting
The next natural idea is to use for the weights gh,s preprocessed
observations ẑs , say, preÞltered by a procedure independent of (16):

ŷh(x0) =
"
s
gh,s(ẑ0)zs , (20)

gh,s(ẑ0) = wh(ẑ0− ẑs)#
swh(ẑ0− ẑs)

.

For the preÞltering we can exploit the estimate of the same nonlocal
average (16) ẑs = ŷh(xs). Then the algorithm becomes recursive
with successive of use the estimates for the weight recalculation:

ŷ(k+1)h (x0) =
"
s
gh,s(ŷ

(k)
h (x0))zs , x0 ∈ X, (21)

gh,s(y
(k)
h (x0)) = wh(ŷ

(k)
h (x0)− ŷ(k)h (xs))#

swh(ŷ
(k)
h (x0)− ŷ(k)h (xs))

.

If the algorithm converges, the limit recursive estimate ŷh is a solu-
tion of the set of the nonlinear equations

ŷh(x0) =
"
s
gh,s(ŷh(x0))zs , x0 ∈ X, (22)

gh,s(ŷh(x0)) = wh(ŷh(x0)− ŷh(xs))#
swh(ŷh(x0)− ŷh(xs))

.

These estimates can be very different from the estimates (20) which
can be treated as a Þrst step of the recursive procedure (21). We
do not know results concerning the study of these estimates for the
Þltering of z which are recursive on ŷ(k)h . However, recursive equa-
tions of a similar style are considered by the methods referred in
Section 4.3.

4.1.4 Weights averaging: Bayesian approach

There is an alternative idea how to deal with the dependence of
the weights wh on the unknown signal y. Let us use the Bayesian
rationale and replace the local criterion (13) by an a-posteriori con-
ditional mean calculated provided that the given observations are
Þxed:

Ĩh,x0 (C)= Ey{Ih,x0(C)|zs , s = 1, . . . ,N}. (23)

Assume for simplicity that we consider the scalar case, d = 1,
then ys are random and independent with the priori p.d.f. p0(ys),
then the conditional p.d.f. of ys provided a given zs is calculated
according to the Bayes formula:

p(ys |zs)= p(zs |ys)p0(ys)+
p(zs |ys)p0(ys)dys .

For the Gaussian observations model zs =N (ys ,σ2) and p0(ys)=
const., it gives

p(ys |zs)∝ p(zs |ys)= 1√
2πσ

e−
(zs−ys )2
2σ2 .

Thus, (23) is easily calculated as

Ĩh,x0 (C)=
=
"
s

, ,
p(y0|z0)p(ys |zs)wh(y0− ys)[zs −C]2dysdy0 =

=
"
s
w̃h(z0− zs)[zs −C]2.

In particular, for the Gaussian window

wh(y)= 1√
2πh

e−
y2

2h2 ,

tedious calculations show that

w̃h(z)∝ e−
z2

2(h2+2σ2) ,

where the proportionality factor depends on h and σ but not on z.
Provided a change of the parameter h in the weight function wh

for
-
h2+2σ2, we have w̃h(z) ∝ wh(z), which makes this weight

function legitimate for the use with noisy data zs instead of un-
known ys . The larger value of h, coming from the change of para-
meter, means a larger window size and stronger smoothing, in some
sense equivalent to data preÞltering.



4.2 Nonlocal pointwise higher-order models
Use of the higher-order LPA in the local estimates is well know
and well studied area (e.g., [30]). In particular, for the Þrst-order
estimate we have the criterion and the estimate in the form

Ih,x0 (C,C1)=
"
s
wh(x0− xs)[zs −C0−C1(x0− xs)]2, (24)

ŷh(x0)= Ĉ0, (Ĉ0,Ĉ1)= argmin
C0,C1

Ih,x0 (C0,C1),

where the weights are deÞned as in (1). Recall that Ĉ1 in (24) is an
estimate of the derivative ∂y(x0)/∂x .
Let us try to use this Þrst-order LPA model in the context of the

nonlocal mean (13) and combine the weights depending of the dis-
tance between the signal values from (13) with the linear on x Þt
for the observed zs from (24). Then the nonlocal criterion is of the
form

Ih,x0(C) =
"
s
wh(y0− ys)[zs −C0−C1(x− xs)]2, (25)

y0 = y(x0).

Again Ĉ1 is an estimate of the derivative ∂y(x0)/∂x . Accordingly
to the used windowing the ideal neighborhood X∗ is deÞned as in
(15), i.e. it is a set of x where y(x) = y0. However, the derivative
∂y/∂x can be different for the points in this X∗ and then the linear
model C +C1(x − xs) does not Þt y(x) for all x ∈ X∗. Figure 1
illustrates a possible situation, where the set X∗ includes all y(x)=
y but the derivatives in this points have different signs.
The ideal neighborhood should be different from (15) and in-

clude both the signal and derivative values

X∗ =
.
x : y(x)= y(x0), ∂y(x)

∂x
= ∂y(x0)

∂x

/
. (26)

It follows from this consideration that, for the class of the non-
local estimators, the windowing function wh should correspond to
the model used in estimation and actually incorporate this model.
For the linear model it can be done selecting the window function
deÞning the distance in both the signal and signal derivative values.
In particular as follows

Ih,x0(C)=
=
"
s
wh1 (y

0− ys)wh2
&
∂y(x0)
∂x − ∂y(xs)

∂x

'
·

· [zs −C−C1(x− xs)]2. (27)

In implementation of this estimation, the unknown ys and
∂y(xs)/∂x could be replaced by the corresponding estimates ob-
tained from LPA or by independent estimates as it is discussed in
the previous section.
Figure 1 illustrates the differences between the neighborhoods

used for estimation in the case of the local pointwise model (1)
and the nonlocal zero and Þrst order models. The area III shows
the local neighborhood for the local pointwise estimate deÞned by
the window width parameter h. For the nonlocal zero-order mod-
elling (25), the neighborhood is deÞned as a set of x values where
|y − y0| ≤ 4. In the Þgure this area is a deÞned as the union
of all the subareas I and II. However, if the Þrst order model is
used for the nonlocal modelling according to (26)-(27) at least the
sign of the derivative ∂y/∂x should also be taken in consideration.
Thus, if we say that for the desired neighborhoods ∂y/∂x > 0 or
∂y/∂x < 0, there two different sets deÞned either as the union of
the subareas I or as the union of the subareas II, respectively. In
this sense, the nonlocal zero-order model does not distinguish be-
tween the subareas I and II.

While the low-order polynomial approximations for the local es-
timates is one of the main streams in the theory and in applications,
it has not received sufÞcient attention in nonlocal setting. The Þrst
results in this direction are reported in [8], where the polynomial ap-
proximations up to second order are used. However, the polynomial
modelling is not included in the window function, where weights
depending only on the signal values (and not on the derivatives) are
used. We mention also the work [1], where different models of self-
similarity in images are studied, with particular emphasis on afÞne
(i.e. Þrst order) similarity between blocks.
While in the above text we considered only polynomial expan-

sions, of course, the higher-order modeling is not restricted to poly-
nomials. The more general case using transforms is illustrated di-
rectly in the forthcoming Section 5 for multipoint modeling.

4.3 Variational formulations
A variety of methods for image denoising are derived by consider-
ing image processing as a variational problem where the restored
image is computed by minimization of some energy functional.
Typically, such functionals consist of a Þdelity term such as the
norm of the difference between the true image and the observed
noisy image and a regularization penalty term:

J = λ||y− z||22+pen(y). (28)

One of the successful Þlters in this class is the Rudin-Osher-
Fatemi (ROF) method [52],[51]. Here, the clear images deÞned
by a variational problem using the total variation penalty. The suc-
cess of this penalty stems from the fact that it allows discontinuous
solutions and hence preserves edges while Þltering high-frequency
oscillations due to noise. Several other methods are derived from
the original ROF model [42],[47],[58]. Overall, these methods can
be treated as essentially local methods [36]. The regularization in-
volves only the signal and its derivatives evaluated at the same point,
resulting in a Euler-Lagrange equation in differential form.
Recently, a novel class of the variational methods involving non-

local terms has been proposed (see [36],[24],[23],[40],[41] and ref-
erences therein) where the corresponding Euler-Lagrange equations
takes a differential-integral form. These new methods have been
motivated by the concept of the nonlocal means, used to deÞne non-
local differential operators calculated over some neighborhoods.
First, it is shown that the nonlocal means can be derived by min-

imizing a special functional. Second, this functional is used as the
penalty term in (28), where

pen(y)=
,
g

0
|y (x)− y (v)|2

h2

1
w(|x−v|)dxdv, (29)

w > 0 is a window function, and g is a differentiable function used
for Þlter design. Minimization of (29) on y gives the equation

y(x)= 1
C(x)

,
g6
& |y(x)−y(v)|2

h2
'
y(x 6)w(|x−v|)dv, (30)

C(x)=
,
g6
& |y(x)−y(v)|2

h2
'
w(|x−v|)dv.

In particular, for g = 1− exp(−x), it gives g6
& |y(x)−y(v)|2

h2
'
=

exp
&
−|y(x)−y(v)|2h2

'
.

The image reconstruction is achieved by a recursive minimiza-
tion of the criterion (28) using the iteration given by (30):

ŷ(k+1)(x)= 1
C(x)

,
g6
2
| ŷ(k)(x)−ŷ(k)(v)|2

h2

3
ŷ(k)(v)w(|x− v|)du.

(31)
The Þrst iteration of this algorithm with ŷ(0) = z can be interpreted
as the nonlocal estimates (16).



Figure 1: Local versus nonlocal supports for zero- and Þrst-order polynomial Þtting: local (1) III; nonlocal zero-order model (25) I∪II;
nonlocal Þrst-order model (26)-(27) II.

It is interesting to note also that these iterations look similar to
the recursive procedure (21). Actually, these iterations deal with
the same problem of how to calculate weights that depend on the
unknown signal y.
Let us go back to the formulation (28). Using (29)-(30), we arrive

to the equation including the observations z

y(x)= 1
C(x)

2
λz+

,
g6
& |y(x)−y(v)|2

h2
'
y(v)w(|x− v|)dv

3
,

To conclude this section, we wish to note that the concepts of lo-
cality and nonlocality, as well as the derived algorithms, are differ-
ent for the nonparametric regression approach, on which we focus,
and for the variational formulations, sketched here. Overall, as it is
clear from what was discussed, there are very interesting connec-
tions and parallels between these different approaches.

5. NONLOCALMULTIPOINT MODELLING

5.1 Single-model groups
As in Section 3.1, we consider the blocks Y j obtained by window-
ing. Furthermore, we assume that there is a similarity between some
of these blocks. Following the pointwise nonlocal mean (13), we
can introduce a nonlocal multipoint estimator by the criterion

IYr (ϑ)=
"
j
w(||Y j −Yr ||22)||Z j −T 2D−1 (ϑ) ||22+λpen(ϑ).

(32)
Here w is a weight function deÞning a correspondence of the block
Y j to the so-called reference-block Yr , ||Z j − T 2D−1 (ϑ) ||22 is a
measure of discrepancy between the observed Z j and the model
T 2D−1 (ϑ), the penalty term λpen(ϑ) controls the complexity of
the model or smoothness of the estimate. The model is expressed
by the T 2D -spectrum ϑ .
More speciÞcally, due to the orthonormality of T 2D , (32) can be

presented in the spectral variables only:

IYr (ϑ)=
"
j
w(||θ j −θr ||22)||θ̃ j −ϑ||22+λpen(ϑ). (33)

5.1.1 Groups
For simplicity, the weights in (32) can be replaced by indicators

w(||Y j −Yr ||22)= 1(||Y j −Yr ||22 <4), (34)

where 4 > 0 is a similarity threshold. This means that w(||Y j −
Yr ||22)= 1 if ||Y j −Yr ||22 ≤4 and 0 otherwise. By denoting as K4r
the set of indexes j for which these weights are nonzero, (33) can
be given in the form

IYr (ϑ)=
"
j∈K4r

||θ̃ j −ϑ||22+λpen(ϑ). (35)

The set of blocks selected according to (34) is called the group cor-
responding to the reference block Yr . The ideal set of observations
corresponding to the reference block in (32) and (33) is

K∗r = K 0r = {x : Y j = Yr , j = 1, . . . ,N}, (36)

i.e. the selected blocks Y j are identical to the reference block Yr .
The inequality in the rule (34) relaxes this strict requirement for the
blocks similar enough to the reference block.
The aim of grouping is a joint processing of the windowed data

in the group. The criterion (35) can be rewritten as

IYr (ϑ)= #(K4r )||θ̄r −ϑ||22+λpen(ϑ)+const.,
where

θ̄r = 1
#(K4r )

"
j∈K4r

θ̃ j , (37)

and #(K4r ) is the cardinality of the set K4r of the blocks included
in the estimate for the reference block Yr .
Then

θ̂r = argmin
ϑ

IYr (ϑ)= (38)

argmin
ϑ

||θ̄r −ϑ||22+
λ

#(K4r )
pen(ϑ)= ρ

2
θ̄r ,

λ

#(K4r )

3
.

It means that for the penalty additive with respect to the elements
of the spectrum, θ̂r is obtained by thresholding the sample mean
estimate (37). Once the spectrum elements of the reference block
are found, the signal multipoint estimate for the reference block is
calculated according to the formula

Ŷr = T 2D−1
&
θ̂r
'
. (39)

The Þnal estimate of the signal is obtained according to the aggre-
gation formula (12).
A variety of quite different versions of the considered approach

can be developed. First, various estimates of unknown Y j and Yr
can be used in the block�s grouping rule; second, different metrics
for comparison of this estimates and the weights w(||Y j −Yr ||22) in
the estimates. Finally, various forms of shrinkage can be applied to
the block-wise estimates θ̃r before and after averaging in (37). We
wish to note that already in [6], a blockwise version of the nonlo-
cal means is suggested, where similar blocks are averaged together
based on their similarity but without a penalty which could regular-
ize the model for the block estimate.
In general, the estimator described above corresponds to what we

may call a single (parametric) model approach, because for each



group of blocks a unique parametric model [in the form T 2D−1 (ϑ)
in (32)] is used, where the parameter θ is taking values that will Þt
for all grouped blocks. It results in a speciÞc use of this blockwise
estimates in the group where they are combined as a sample mean
or as a weighted mean estimates similar to (37).
As it is already mentioned in the previous subsection, the

weighted means in the form (12) allows signiÞcantly improve over
the multipoint estimate (39), in particular using the inverse vari-
ances of the estimates as the weights. However, this weighting does
not follow from the used problem formulation and can be treated
as a heuristic modiÞcation of the algorithm obtained by accurate
optimization of the penalized energy criterion.

5.2 Multiple-model groups: collaborative Þltering
In this section we formally derive the block-matching 3D (BM3D)
algorithm proposed in [11] considering a penalized energy criterion
where separate models are used for the data in each block. In this
way, we obtain a multiple-model group. In our modelling, we use
the same T 2D -basis functions for all blocks and say that the models
are different if their T 2D -spectra are allowed to be different.
In (32), for each block, the observed Z j are Þtted by T 2D−1 (ϑ),

where ϑ is the same for all j . This is a single-model group. Let us
assume that, in this Þtting, ϑ can take different values ϑ j for differ-
ent Z j in the same group. Then, the quadratic part of the criterion
(33) is changed and we obtain the multiple-model criterion:

IYr (
4
ϑ j
5
j )=

=
"

j
w(||θ j − θr ||22)||Z j −T 2D−1 8ϑ j 9 ||22

+λpen&4ϑ j5 j' .
(40)

In the transform domain it gives

IYr (
4
ϑ j
5
j )=

"
j
w(||θ j −θr ||22)||θ̃ j −ϑ j ||22

+λpen&4ϑ j5 j' ,
(41)

for θ̃r = T 2D (Zr ).
Here, if the penalty term is additive with respect to j , the mini-

mization of IYr is trivialized and the very meaning of group is lost,
because the solution is obtained by minimizing independently for
each j . As a matter of fact, once a multiple-model group is assem-
bled, it is the penalty term that should establish the interaction be-
tween different members of the group. A practical way to establish
such interaction is the following.

5.2.1 Collaborative Þltering
For transparency, let us simplify again the weightsw to an indicator
of the form (34). In this way, (41) becomes

IYr (
4
ϑ j
5
j )=

 "
j∈K4r

||θ̃ j −ϑ j ||22

+λpen&4ϑ j5 j∈K4r ' .
Let us consider 6̃r = {θ̃ j } j∈K4r be the set of T 2D -spectra in

the group, which we can treat as 3-D array, where j is the index
used for the third dimension. Apply a 1-D orthonormal transform
T 1D with respect to j . In this way we arrive to a groupwise 3-D
spectrum of the group as 7̃r = T 1D (6̃r ). Consistent with this rep-
resentation, we replace the penalty pen(

4
ϑ j
5
j ) with an equivalent

penalty pen(7), where 7 = T 1D ({ϑ j } j∈K4r ) is the corresponding
3-D spectrum obtained by applying the 1-D transform T 1D on the
collection of 2-D spectra {ϑ j } j∈K4r . We denote the 3-D transform
obtained by the composition of T 1D and T 2D as T 3D .

We use this 3-D spectrum representation as a special model of
data collected in this group, with the penalty pen(7) deÞning the
complexity of the data in the group:

IYr (7)= ||7̃r −7||22+λpen(7).
Then, the estimation of the true 7r is deÞned as

7̂r = argmin
7

&
||7̃r −7||22+λpen(7)

'
, (42)

6̂r = {θ̂r, j } j∈K4r = T 1D
−1&7̂r' ,

Ŷr, j = T 2D−1
&
θ̂r, j

'
. (43)

Again, if the penalty pen(7) is additive with respect to the compo-
nents of 7, the minimization in (42) is scalar and independent for
each element of 7; thus, it can be solved by thresholding of 7̃r .
The consecutive T 1D−1 and T 2D−1 inverse transforms return Þrst
the estimates 6̂r = {θ̂r, j } j∈K4r of T 2D -spectra of the blocks in the
group, and hence the multipoint estimates Ŷr, j of these blocks. Be-
cause these estimates can be different in different groups, we use
the double indexes for the signal estimates Ŷr, j , where j stays for
the index of the block and r for the group where these estimates are
obtained.
It gives a clear idea of the principal speciÞc features of the mul-

tiple modeling used in this section versus the single-model group
modelling.
First, the Þltering (thresholding) gives individual estimates for

each block in the group. Note that in the single-model group of
the previous section a unique estimate is calculated and used for the
reference-block only.
Second, an essential difference exists in how the data in the group

are processed. The sample mean or weighted mean estimate (37)
means that the data in the group are treated as quite relevant (reli-
able) to the signal estimated for this reference block. Contrary to
it, the multiple-model approach produces individual estimates for
all participants of the group (collaborative Þltering), where the joint
spectrum in 7̂r is exploited in order to improve the estimates for
each of the blocks in the group. Thus, we obtain a more ßexible
technique where say an erroneously included block is not able to
damage seriously the estimates of other blocks and itself could not
be damaged by data from other blocks.
Figure 2 illustrates the collaborative Þltering procedure in the

particular case of hard-thresholding of the 3-D spectrum: after
shrinkage there remain only few nonzero coefÞcients in the 3-D
spectrum. This sparsity is due both to decorrelation within each
grouped block operated by the T 2D (intra-block decorrelation) and
to decorrelation across the corresponding spectral components of
the block operated by the T 1D (inter-block decorrelation). After
applying the T 2D−1 inverse transform, we obtain a number of inter-
mediate block estimates (the red stack at the top-right of the Þgure).
Each of these is obviously T 2D -sparse. The blockwise estimates
(the purple stack at the bottom-right of the Þgure) are obtained by
applying the T 1D−1 inverse transform on the intermediate block
estimates. As a matter of fact, each one of the blockwise estimates
is calculated as a linear combination of the intermediate estimates,
where the coefÞcients of the linear combination are simply the co-
efÞcients of one of the T 1D basis elements. Note that the blockwise
estimates are not necessarily T 2D -sparse than the intermediate esti-
mates, as it is illustrated in the Þgure. In a very broad sense, our re-
sults support the idea that in multipoint image estimation a weighted
average of a few sparse estimates is better than single sparse es-
timate alone [17]. In the single-model group we have a penalty
that enforces sparsity on a single estimate, whereas in the multiple-
model group the sparsity is enforced for the group as a whole but
not on the individual blockwise estimates, which are instead a linear
combination of intermediate blockwise estimates that are sparse.



Figure 2: Illustration of the collaborative hard-thresholding.

5.2.2 Aggregation
As a result of the multiple estimation, we obtain multiple estimates
for each x in X and the Þnal signal estimate is calculated by fusing
these blockwise estimates in a single Þnal one. The main formula
used for this aggregation is the weighted mean (12).

6. CONCLUSION

In this paper we reviewed recent developments in the Þeld of non-
parametric regression modeling and image processing.
In these conclusive comments, we would like to discuss some

theoretical aspects of these developments and, in particular, what
problems, of principal importance in our opinion, are not solved.
The considered methods were classiÞed mainly according to two

leading features: local/nonlocal and pointwise/multipoint. This dis-
cussion is organized according to this classiÞcation.
(1) Local pointwise estimators.
These estimators are supported by strong theoretical results cov-

ering nearly all aspects of estimation: estimation accuracy, adapta-
tion with varying spatially adaptive neighborhoods, etc.
Unsolved problem: simultaneous selection of adaptive neighbor-

hood and order of the local parametric model.
It is a generalized model selection problem where the model sup-

port is treated as an element of the model selection. Note that this
setting is very different from the classical model selection problem
where the model support is assumed to be Þxed.
(2) Local multipoint estimators.
(2a) These estimators deal with multiple preliminary estimators

and the Þnal estimate is calculated by aggregation (fusing) of the
preliminary estimates. The existing aggregation methods assume
that the models of the preliminary estimates are given.
Unsolved problem: simultaneous optimization of aggregation

and models for the preliminary estimates.
(2b) These two step procedures actually heuristic or semiheuris-

tic as the aggregation turned out as the only method to exploit the
produced redundant estimates.
Unsolved problem: development of the statistical observation

model leading to the two step procedure with the preliminary and
aggregation step as a result of some standard statistical estimation
technique (ML, EM, etc.).
(3) Nonlocal pointwise and multipoint estimators.
(3a) The signal dependent weights deÞne the support of the es-

timator, i.e. the points included in estimate, and the weights of the
included observations. In many developments, in particular in our

BM3D algorithm, the use of the indicator window deÞnes the non-
local support while the details of the comparative weighting of this
windows is ignored. Under this simpliÞcation, all basic aspects of
the algorithms are similar to the ones of standard transform-domain
Þltering.
The situation becomes much different when we take into consid-

eration the window weights varying according to unknown signal
values. Using estimates for these unknown values results in the es-
timates which are principally different from the usual local ones.
The limit estimate is a solution of the nonlinear equation (22):

ŷh(x0)=
"
s
gh,s(ŷh(x0))zs .

It is difÞcult to say what sort of estimate we obtain even for the
noiseless signal. For the local estimates with the signal-independent
kernel gh,s we know eigenfunctions of this kernel (polynomial for
the LPA) and we know the smoothing properties of this Þlter. For
the case of signal-dependent kernel the smoothing properties of this
Þlter are actually unknown. The works by Buades et al. [6] and
Kindermann et al. [36] are only very Þrst steps in the direction of
studying this sort of nonlinear operators.
Unsolved problem: smoothing properties of the nonlocal point-

wise and multipoint estimator with respect to noiseless and noisy
signals.
(3b) This point similar to (2b) but for the nonlocal estimators.
Unsolved problem: development of the statistical observation

model leading to the windowing, grouping, blockwise estimation
and aggregation as a result of some standard statistical estimation
technique (ML, EM, etc.).
The model (criteria (40)-(42)) proposed in this paper gives only

the blockwise/groupwise estimates while the windowing and the ag-
gregation are treated as separate steps. Use of the mix-distribution
for observation modelling in the work [32] was one of the Þrst at-
tempts to move in this direction.
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