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1. ABSTRACT

The nonparametric regression originated in mathematical
statistics offers an original approach to signal processing
problems (e.g., [1], [2]). It basically results in linear Þlter-
ing with the linear Þlters designed using some moving win-
dow local approximations. In many applications like speech
recognition or image denoising, nonlinear or locally adaptive
methods have been shown to be more efficient than the linear
ones. The typical examples are given by non-linear wavelet
thresholding, [3], and pointwise adaptive kernel smoothing,
[4], [5]. The Þrst local pointwise (varying window size) adap-
tive nonparametric regression statistical procedure was sug-
gested by Lepski [6] (see also [4], [5], and [7]). This approach
has been further developed in application to various signal
and image processing problems [8]�[12]. Particularly, [12]
offered another view on the problem of local adaptive esti-
mation based on the link between adaptive estimation and
multiple testing. This allows to treat in a uniÞed way differ-
ent types of images, including Gaussian and Poissonian. An-
other important feature is that the problem of choosing the
tuning parameters of the procedure is carefully addressed,
leading to an efficient automatic procedure. The presenta-
tion extends these ideas to a general approach to spatially
adaptive local parametric estimation.
Suppose we have independent observations {Zi}ni=1 of the

form Zi = (Xi, Yi). Here Xi denotes a vector of �features�
or explanatory variables which determines the distribution
of the random �observation � Yi. The d-dimensional vec-
tor Xi ∈ Rd can be viewed as a location in time or space
and Yi as the �observation at Xi�. Our model assumes that
the distribution of each Yi is determined by a parameter fi
which may depend on the location Xi, fi = f(Xi). In many
cases the natural parametrization is chosen which provides
the relation fi = E{Yi}. The estimation problem is to recon-
struct f(x) from the data {Zi}i=1,...,n. This set-up includes
Gaussian images Yi = f(Xi) + εi with a regression func-
tion f(·) and i.i.d. Gaussian errors εi ∼ N (0, σ2); Poisson
images with P (Yi = k|Xi = x) = fk(x) exp(−f(x))/k!;
Bernoulli (binary response) images with P (Yi = 1) =
f(Xi), P (Yi = 0) = 1 − f(Xi). The joint distribution of
the samples Y1, . . . , Yn is given by the log-likelihood L =!n

i=1 log p(Yi, f(Xi)).
In the parametric setup, the whole function f(·) is deter-

mined by a parameter vector θ: f(·) = f(·,θ). This reduces
the problem of estimating f to the problem of estimating
θ ∈ Θ ∈ Rp. The maximum likelihood approach yields the
estimates

�θ = argmax
θ

L(θ) = argmax
θ

"
i

log p(Yi, f(Xi,θ)).

However, a parametric assumption f(·) ≡ f(·,θ) can be too
restrictive, especially if the family f(·,θ) is not very rich.
Local parametric approach supposes that for every x there is
a vicinity U of x such that f(Xi) ≈ f(Xi,θ) for all Xi ∈ U .
Given U = U(x), one can estimate the local parameter θ =

θ(x) by maximizing the localized log-likelihood LU (θ):

�θ(x) = argmax
θ

LU (θ)

= argmax
θ

"
Xi∈U

log p(Yi, f(Xi,θ)).

leading to the estimate �f(x) = f(x, �θ(x)). More generally,
one can deÞne locality around x by a collection of weights
W (x) = {wi(x)} leading to the local estimate

�θ(x) = argmax
θ

L(W (x),θ)

= argmax
θ

"
i

log p(Yi, f(Xi,θ))wi(x).

The focus in applying the local parametric approach is choos-
ing the collection of localizing weights wi(x). We discuss
two different approaches for selecting such weights adaptively
from the observed data. One is based on the pointwise adap-
tive choosing of directional bandwidths [12]. The other one
explores the idea of structural adaptive estimation, so called
Adaptive Weights Smoothing procedure [13]-[15].
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