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ABSTRACT

One way to increase compression efficiency beyond the data
rates achievable by modern video codecs is to not encode all
the pixels. In particular, regions belonging to areas that the
viewer will not perceive the specific details in the scene could
be skipped or encoded at a much lower data rate. This ap-
proach can be extended by using a model of the Human Visual
System and a statistical model of the texture pixels in a frame.
The goal was to determine where “insignificant” texture re-
gions or “detail-irrelevant” regions in the frame are located
and then use a texture model for the pixels in the region. By
“insignificant” pixels we mean regions in the frame that the
observer will not notice are different without observing the
original video sequence. We will describe the texture model-
ing approach we use and show that using this approach can
increase the compression efficiency by more that 15% over
more classical approaches.

Index Terms— coding efficiency, texture analysis, video
coding.

1. INTRODUCTION

In the past two decades, conventional hybrid video codecs
have been succeeded in increasing the video quality while re-
ducing the data rate [1]. One interesting approach to reduce
the data rate is to use a different coding method for pixels be-
longing to areas with large amount of details that are costly
to encode. In early video coding systems this was achieved
by either reducing the size of the frame and/or a combination
of frame skipping. In MPEG-4, shape coding is used to code
shapes in a frame after they are segmented. In many cases
the shapes in a frame consist of important objects in the scene
and poor segmentation of the objects can cause problems in
the reconstructed video. Further developments introduce new
coding techniques that focus on the semantic meanings of ob-
jects represented in the video sequence. As a result, one way
to accomplish such a goal beyond the data rates achievable by
modern codecs is to not encode all the pixels. In particular,
regions belonging to areas that viewer does not perceive the
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specific details could be skipped or encoded at a much lower
data rate. In 1959, Synthetic Highs was proposed [2] which
introduced the concept of dividing an image into textures and
edges. Two approaches were described to encode each type
of structure in the image. This approach, used in image cod-
ing, was later extended by using a model of the Human Visual
System (HVS) and a statistical model of the texture pixels in
a frame [3, 4]. The goal is to determine where “insignificant”
texture regions or “detail-irrelevant” regions in the frame are
located and then use a texture model for the pixels in these
regions. By “insignificant” pixels we mean regions in a frame
that the observer will not notice what has been changed. The
encoder fits the model to the image and transmits the model
parameters to the decoder as side information which uses the
model to reconstruct the pixels. Since a frame is not homoge-
neous one may need to use different types of models for var-
ious texture regions in a frame An example of texture based
methods is described in [1, 5, 6], where coding methods are
described using the concept that textures such as grass, water,
sand, and flowers can be synthesized with acceptable percep-
tual quality instead of coding them using more classical ap-
proaches. The problem with using this approach in video is
that if each frame is encoded separately the areas that have
been reconstructed with the texture models will be obvious
when the video is displayed. This then requires that the tex-
ture to be modeled both spatially and temporally. An example
of such approach, reported by Wiegand and colleagues, is de-
scribed in [1, 7], where a video coder was designed using the
fact that textures such as grass, water, sand, and flowers can
be synthesized with acceptable perceptual quality insteadof
coding them using mean square error. Since the latter has a
higher data rate in order to represent the details in the textures
which are not visually important, the approach can be used to
increase the overall coding efficiency. The issues then are the
trade-offs between data rate, modeling efficiency, and image
quality.

2. MODEL OVERVIEW

2.1. Overview

Our goal is to not encode all the pixels in the sequence. Par-
ticularly, those pixels belonging to areas with large amount



of details that are costly to encode. This approach is a mid-
level content-based video coding scheme. That is, regions
with similar homogeneous motion, color and texture proper-
ties are processed together. The semantic interpretation of
these regions is thereby irrelevant. Rather, it is assumed in the
framework that video content can be divided into perceptually
relevant and perceptually irrelevant textures. Consequently,
for these perceptually irrelevant textures, the semantic mean-
ing of the displayed texture is more relevant to the viewer than
the specific details therein. In the present work it is assumed
that for mean square error (MSE) distortion criteria is not suit-
able for efficient video coding, since irrelevant detail textures
may be reproduced and they are costly to code. A general
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Fig. 1. Texture Coding System Overview.

scheme for video coding using texture analysis and synthe-
sis is illustrated in Figure 1. The texture analyzer identifies
homogeneous regions in a frame and labels them as textures.
This step can be done by using several texture segmentation
strategies that will be introduced later. To ensure the tempo-
ral consistency of the identified textures throughout the video
sequence, global motion models are used to warp texture re-
gions from frame-to-frame. A set of motion parameters for
each texture region is sent to the texture synthesizer at the
decoder as side information. The output of the texture an-
alyzer is passed to a conventional video codec, e.g. H.264,
with synthesizable regions labeled as skip macroblocks. At
the decoder, frames are partially reconstructed except forthe
synthesizable parts which are inserted later by the texturesyn-
thesizer using the texture side information.

2.2. Texture Analysis

Spatial Analysis
The first step in implementing the system described in Fig-
ure 1 is to extract regions in a frame that correspond to the
same texture. In texture analysis there are two major issues
that need to be addressed, namely texture feature extraction
and texture boundary detection or segmentation. Texture seg-
mentation is often a two step process in which features are
first obtained, followed by the segmentation step which is a
“grouping” operation of the homogeneous regions based on
the feature properties and a grouping metric [8, 9]. Feature
extraction is used to measure local texture properties in an
image. Typically, four approaches have been used for tex-
ture feature extraction: statistical or feature-based methods,
model-based methods, transform or spatial-frequency meth-
ods and structural methods. In feature-based methods, char-

acteristics of homogeneous regions are chosen as the texture
features such as the co-occurrence matrix or geometrical fea-
tures such as edges [8]. Model-based methods assume that
the texture is described by a stochastic model and uses model
parameters to segment the texture regions. Examples of such
methods are found in [9] where a multiresolution Gaussian
autoregressive model is described and in [4] where an image
model is formulated using a seasonal autoregressive time se-
ries. Subband decomposition, especially the use of wavelets,
is often seen in spatial-frequency methods [10]. Structural
methods are based on the notion that textures are composed
of primitives that are well-defined and spatially repetitive
[11, 12]. Boundary detection or segmentation is followed to
group the features into regions with similar texture properties.
In our previous work [5], we have concentrated on examining
spatial texture models that are based on simple features and
statistical models, such as color and edges. We have also stud-
ied statistical and transform models, including gray levelco-
occurrence matrix and Gabor filter [6]. The color feature we
examined is a color histogram defined in the Hue-Saturation-
Value color space with fixed color space quantization. We
used the Kirsch edge operator as our edge detector. The Gray
Level Co-occurrence Matrix describes the spatial relationbe-
tween pixels and their neighbors by means of the occurrence
probability of each pair of gray levels of the image. Gabor fil-
ters describe various features related to the local power spec-
trum of a signal. Once we computed the characteristics of the
image, segmentation is performed to divide the image into
different regions based on their properties, these methodsin-
clude direct segmentation techniques or classification meth-
ods.
Temporal Analysis
The spatial texture models referred in the previous sectionop-
erate on each frame of a given sequence independently of
the other frames of the same sequence. This yields incon-
sistency in the segmentation across the sequence and can be
very noticeable when the video is viewed. One can address
this problem by using spatial-temporal texture models [13]or
using something similar to motion compensation for the tex-
ture models in each frame [1]. In order to maintain temporal
consistency of the texture regions, the video sequence is first
divided into groups of frames (GoF). Each GoF consists of
two key frames (the first and last frame of the GoF) and sev-
eral middle frames to be modeled with textures between the
two key frames. This is illustrated in Figure 2.

The key frames will either be I or P frames when they
are coded. For every texture region in each of the middle
frames we look for similar textures in both key frames. The
corresponding region (if it can be found in at least one of the
key frames) is then mapped into the segmented texture region.
There are three possible cases, the texture is only found in the
first key frame, the last key frame, or it is found in both key
frames. This is illustrated in Figure 3. In most cases, similar
textures can be found in both key frames. In this case, the



(a) GOF (b) Key Frames

Fig. 2. Illustration of Group of Frames(GOF). (a) A se-
quences of GOFs, (b) Two key frames within a GOF.

texture resulting from the smallest error will be considered.

Fig. 3. Choice of Key Frame.

The texture regions are warped from frame-to-frame us-
ing a motion model to provide temporal consistency in the
segmentation as illustrated in Fig.4. The mapping is based
on a global motion assumption for every texture region in the
frame, i.e., the displacement of the entire region can be de-
scribed by just one set motion parameters. We modified a
8-parameter (i.e. planar perspective) motion model to com-
pensate the global motion [14]. This can be expressed as:

x′ =
a1 + a3x + a4y

1 + a7x + a8y

y′ =
a2 + a5x + a6y

1 + a7x + a8y
(1)

Where (x, y) is the location of the pixel in the texture frame
and (x′, y′) is the corresponding mapped coordinates. The
planar perspective model is suitable to describe arbitraryrigid
object motion if the camera operation is restricted to rotation
and zoom. It is also suitable for arbitrary camera operation, if
the objects with rigid motion are restricted planar motion.In
practice these assumptions often hold over a short period ofa
GoF [5].

When an identified texture region in one of the texture
frames is warped toward the key frame of the GoF, only the
pixels of the warped texture region that lie within the corre-
sponding texture region of the key frame of the GoF are used
for synthesis. Although this reduces the texture region in the
texture frame, it is more conservative and usually gives better
results in terms of visual quality.

Fig. 4. The Motion Model is Used For Warping the Texture
From The Key Frame to Texture Frame.

The motion parameters(a0, a1, . . . , a8) are estimated us-
ing a simplified implementation of a robust M-estimator for
global motion estimation [14]. The weighting function is sim-
plified to a rectangular function, i.e. a point is either weighted
fully or considered as outliers and are discarded:

w(ǫ) =

{

1 ǫ2 < cµ

0 ǫ2 > cµ
(2)

whereǫ, the residual, is obtained from the difference of the
luminance between the actual and the warped pixels. The sum
of squares of all the residuals except the outliers is minimized.
Thenµ is the average sum of squares of all N points within
regionR,

µ =
1

N

∑

p∈R

ǫ2 (3)

c is used to adjust the sensitivity of the optimization. With
an increasing value ofc, more pixels in both structure and
unstructured areas are used for the iteration.

We estimated the set of parameters using an iterative
Gauss-Newton method. The process of warping and opti-
mization is done for both key frames, hence two sets of mo-
tion parameters are estimated (each set corresponds to a key
frame) and the set that has smallest MSE between the synthe-
sized and original texture region is used We used as a “stop-
ping criterion” the first minimum obtained in the cost function
µ.

Unstructured image regions can have a bad impact on the
motion parameter estimates results. The residuals will be
small in unstructured areas even if the motion parameters es-
timates are poor. However, areas such as edges are likely to
result in large areas even if the estimation is good. To ensure
the adequate performance of the estimator, the unstructured
regions are detected and excluded from the estimation. The
pixels in the unstructured regions are obtained by:

V =

{

1 |Ix| > d ∩ |Iy| > d

0 else
(4)

In some cases a better estimate of the motion parameters
may be obtained by first interpolating pixels and then doing
the motion estimation [15]. The interpolation method is the
same as the H.264 sub-pixel interpolator. We used bilinear
interpolation for half pixels for the Y samples on all frames



Fig. 5. Bilinear Interpolation.

for our motion model. An example of the interpolated Y sam-
ples is shown in Figure 5. The set of motion parameters along
with the flag to indicate the corresponding key frame are sent
to decoder as side information.

2.3. Texture Synthesis and Integration into H.264/AVC

At the decoder, reference frames and non-synthesizable parts
of other frames are conventionally decoded. The remaining
parts labeled as synthesizable regions are skipped by the en-
coder and their values remain blank in the conventional cod-
ing process. The texture synthesizer is then used to recon-
struct the corresponding missing pixels. With the assumption
that the frame to frame motion can be described using a pla-
nar perspective model, then given the motion parameter set
and the control parameter that indicated which frame (first or
last frame of the GoF) is used as the key frame, the texture
regions can be reconstructed by warping the texture from the
key frame toward each synthesizable texture region identified
by the texture analyzer. As for the integration process the tex-
ture models described in the previous sections have been in-
tegrated into the H.264/AVC JM 11.0 reference software. In
our implementation, the video sequence is first divided into
groups of frames (GoF). Each GoF consists of two reference
frames (first and last frame of the considered GoF) and sev-
eral middle frames between the two reference frames. The
reference frames are conventionally coded as I or P frames;
the middle frames are encoded as B frames that are candi-
dates for texture synthesis. For every texture region in each
of the middle frames, the texture analyzer looked for similar
textures in both reference frames. The corresponding area (if
it can be found in at least one of the reference frames) is then
mapped into the segmented texture region based on a global
motion model. When a B frame contains identified synthesiz-
able texture regions, the corresponding segmentation masks,
motion parameters as well as the control flag to indicate which
reference frame is used are transmitted as side information
to the decoder. All macroblocks belonging to a synthesiz-
able texture region are handled as skipped macroblocks in the

Table 1. Data Rate Savings Obtained for Different Sequences. Us-
ing a Quantization Parameter of 24.

Sequence Original Data Rate
data rate Savings
[kb/s] Texture-based

Tabletennis 840.49 15.22%
Flowergarden 2399.31 20.23%
Coastguard 2593.82 16.02%

Football 1962.14 16.45%

H.264/AVC reference software. Hence, all parameters and
variables used for decoding the macroblocks inside the slice,
in decoder order, are set as specified for skipped macroblocks.

This includes the reconstructed YUV samples that are
needed for intra prediction, the motion vectors and the refer-
ence indices that are used for motion vector prediction. After
all macroblocks of a current frame are completely decoded,
texture synthesis is performed in which macroblocks belong-
ing to a synthesizable texture region are replaced with the tex-
tures identified in the corresponding reference frame.

3. RESULTS AND CONCLUSION

We used our spatial and temporal texture models to exam-
ine several video sequences. We are interested in measuring
the performance of the models we tested in terms of coding
efficiency, for detailed results see table 1. To estimate the
new data rate for each test sequence, we substract from the
original data rate (coded with the H.264 test coder) the data
rate savings for macroblocks that are not coded using H.264
codec. The data rate used to construct the side information,
which is no more than 1.25Kb per frame, is then added to
this amount to obtain the new data rate. Such side informa-
tion contains the coarse texture masks (typically about 800
bits), 8 motion parameters (256 bits) which ensure temporal
consistency at the decoder and 1 control flag (1 bit) to indicate
which frame is used as the reference frame (the first or the last
frame of the GOF). In our experiments, we used the following
parameters for the Main Profile H.264/AVC codec: Quantiza-
tion Parameter for intra and inter frames = 16, 20, 24, 32 and
44; 1 reference frame; 3 B frames; CABAC; rate distortion
optimization; no interlace; constant channel; 30 frames per
second.

Figures 6 and 7 shows how the textures are generated in
each frame using the motion model. To reduce the blockiness
effect along the edges, we used a low pass filter on the edge
pixels. A visual artifact may be created if the intensity of the
light in the environment changes over time. This happens in
Coast Guard sequence. To fix this problem, we transmit the
difference between the average intensity of the texture region
in the current frame and the reference frame as additional
side information. At the synthesizer this will be added to the



intensity of the synthesized pixels.

(a) Reference Frame (b) Current Frame

(c) Current Frame with Mask (d) Reconstructed Frame

Fig. 6. Example of motion model applied to Flower Garden se-
quence (a) Frame 61 used as the Reference Frame, (b) Frame 64
used as the Current Frame, (c) Frame 64 with Mask for texture re-
gion and (d) Reconstructed Frame 64 with synthesized texture.

Methods to separate “insignificant” regions from the
frame were investigated and were incorporated into a conven-
tional video codec (e.g. H.264) where the regions modeled by
the global motion model were not coded in an usual manner.
We have shown that we can reduce the data rate by as much
as 15% when compared with more classical approaches such
as H.264.
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