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ABSTRACT specific details could be skipped or encoded at a much lower

o ol . fici b dthe d data rate. In 1959, Synthetic Highs was proposed [2] which
ne way o Increase compression €ficiency beyond the a} roduced the concept of dividing an image into textures an

trﬁ(taes_aglr;levliblzrtt)}é nr;)rdiren .Vo'gs%g%?qeci Ist;oar;g;:r][ﬁg?? %l ges. Two approaches were described to encode each type
PIXEIS. In particuiar, regi ging of structure in the image. This approach, used in image cod-

LT ot e e Specic et 1 1 Se18600 1 s e xtended by using el f e Fuman i
proach can be extended by using a model of the Hurﬁan Visu%ystem (HVS) and a statistical model of the texture pixels in

- : . Yframe [3, 4]. The goal is to determine where “insignificant”
System and a statistical model of the texture pixels in adram texture regions or “detail-irrelevant” regions in the frarre

Tih?\ go::u“\(/jvats itloir?eltevmr]:tqer W?er:e ir'}”;']gng'cr?]m trexﬁgritre'located and then use a texture model for the pixels in these
gr?d fhon cla -t xeter am de?for?h ixel ailn tehare ion Bregions. By “insignificant” pixels we mean regions in a frame

? ther use”a_e ure modet for tne pixels € region. By, ot the observer will not notice what has been changed. The
insignificant” pixels we mean regions in the frame that theencoder fits the model to the image and transmits the model

ggsﬁrﬁ\r/ig’gé ';Zt Egtr:ii a\;\(/ae?/:/fifl(la(rjigc\r,\iltl)tg?ﬁé ?g;i?gﬁt:elparameters to the decoder as side information which uses the
9 4 ) model to reconstruct the pixels. Since a frame is not homoge-

ing approach we use and show that using this approach “ALous one may need to use different types of models for var-

Increase the compression efficiency by more that 15% OV&bus texture regions in a frame An example of texture based
more classical approaches. methods is described in [1, 5, 6], where coding methods are
Index Terms— coding efficiency, texture analysis, video described using the concept that textures such as grass, wat
coding. sand, and flowers can be synthesized with acceptable percep-
tual quality instead of coding them using more classical ap-
proaches. The problem with using this approach in video is

that if each frame is encoded separately the areas that have

In the past two decades, conventional hybrid video codec@een reconstructed with the texture models will be obvious

have been succeeded in increasing the video quality while rgvhen the video is displayed. This then requires that the tex-

ducing the data rate [1]. One interesting approach to reduckre t be modeled both spatially and temporally. An example

the data rate is to use a different coding method for pixels beOf S_UCh f”‘ppmac“* reportec_i by Wiegand and C(_)Ileagues, Is de-
cribed in [1, 7], where a video coder was designed using the

longing to areas with large amount of details that are costl t that text h ¢ d. and i
to encode. In early video coding systems this was achievedc' nat textures such as grass, water, sand, and flowers can

by either reducing the size of the frame and/or a combinatioF?e synthesized with acceptable perceptual quality inspéad

of frame skipping. In MPEG-4, shape coding is used to cod oding them using mean square error. Since the latter has a
' igher data rate in order to represent the details in thertest

shapes in a frame after they are segmented. In many cas ﬁ h tvisually i ant. th h b dt
the shapes in a frame consist of important objects in theescerf 1ICN @re not visually important, the approach can be used to

and poor segmentation of the objects can cause problemsf[i'ﬁccrjeasf? trg)e toverall dcotdmgtefﬂuegcl)_/. Th(:f}s_s ues ther;@ret
the reconstructed video. Further developments introdeee n rade-olls between dala rate, modeling €fliciency, and enag

coding techniques that focus on the semantic meanings of Og_uallty.

jects represented in the video sequence. As a result, one way

to accomplish such a goal beyond the data rates achievable by 2 MODEL OVERVIEW
modern codecs is to not encode all the pixels. In particular,

regions belonging to areas that viewer does not perceive trba_l_ Overview

1. INTRODUCTION
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the Finland Distinguished Professor Program (FiDiPro)drsds all corre-  OUF goal is to not encode all the pixels in the sequence. Par-

spondence to E. J Delp, delp@cs.tut.fi ticularly, those pixels belonging to areas with large antoun



of details that are costly to encode. This approach is a midacteristics of homogeneous regions are chosen as thedextur
level content-based video coding scheme. That is, regiorfeatures such as the co-occurrence matrix or geometriaal fe
with similar homogeneous motion, color and texture propertures such as edges [8]. Model-based methods assume that
ties are processed together. The semantic interpretafion the texture is described by a stochastic model and uses model
these regions is thereby irrelevant. Rather, itis assumttki parameters to segment the texture regions. Examples of such
framework that video content can be divided into perceptual methods are found in [9] where a multiresolution Gaussian
relevant and perceptually irrelevant textures. Consefjyen autoregressive model is described and in [4] where an image
for these perceptually irrelevant textures, the semangiamm  model is formulated using a seasonal autoregressive time se
ing of the displayed texture is more relevant to the viewanth ries. Subband decomposition, especially the use of wayelet
the specific details therein. In the present work it is asslimeis often seen in spatial-frequency methods [10]. Struttura
that for mean square error (MSE) distortion criteriais mitts methods are based on the notion that textures are composed
able for efficient video coding, since irrelevant detailttegs  of primitives that are well-defined and spatially repeétiv
may be reproduced and they are costly to code. A gener§ll, 12]. Boundary detection or segmentation is followed to
group the features into regions with similar texture prtipsr
In our previous work [5], we have concentrated on examining
| Texture | Reconstructe spatial texture models that are based on simple features and
Synthesizgrsequence . e

statistical models, such as color and edges. We have al$o stu
ied statistical and transform models, including gray lee!
occurrence matrix and Gabor filter [6]. The color feature we
examined is a color histogram defined in the Hue-Saturation-
Value color space with fixed color space quantization. We
used the Kirsch edge operator as our edge detector. The Gray

scheme for video coding using texture analysis and Synth‘?_'evel Co-occurrence Matrix describes the spatial rela

sis is illustrated in Figure 1. The texture analyzer idessifi . . .
. . tween pixels and their neighbors by means of the occurrence
homogeneous regions in a frame and labels them as textures, - . . '
. : .Probability of each pair of gray levels of the image. Gaber fil
This step can be done by using several texture segmentation

strateaies that will be introduced later. To ensure the em ers describe various features related to the local powesr-sp
g€ . e ' P trum of a signal. Once we computed the characteristics of the
ral consistency of the identified textures throughout tlilesi . L L . .
image, segmentation is performed to divide the image into

sequence, global motion models are used to warp texture Mitferent regions based on their properties, these metimeds

gions from frame-to-frame. A set of motion parameters for . . . I
L . clude direct segmentation techniques or classificatiorhmet
each texture region is sent to the texture synthesizer at the

decoder as side information. The output of the texture ar%
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Fig. 1. Texture Coding System Overview.

i . . emporal Analysis
alyzer is passed to a conventional video codec, e.g. H.26 . . . .
; : ; . he spatial texture models referred in the previous secyen
with synthesizable regions labeled as skip macroblocks. A . .
. erate on each frame of a given sequence independently of
the decoder, frames are partially reconstructed excephéor

: . . h her fram f th m nce. This yields incon-
synthesizable parts which are inserted later by the testure t_e ot er rames o the same sequence s yields inco
: . S . sistency in the segmentation across the sequence and can be
thesizer using the texture side information.

very noticeable when the video is viewed. One can address
this problem by using spatial-temporal texture models &3]
2.2. Texture Analysis using something similar to motion compensation for the tex-
Spatial Analysis ture models in each frame [l]: In order tp maintain temporgl
The first step in implementing the system described in Figppnmste_ncy of the texture regions, the video sequence_sts fir
ure 1 is to extract regions in a frame that correspond to th lvided into groups O.f frames (GoF). Each GoF consists of
same texture. In texture analysis there are two major issues© ke_y frames (the first and last ”"’“T‘e of the GoF) and sev-
that need to be addressed, namely texture feature extracti ral middie frames .to. b? modeled_ W't.h textures between the
and texture boundary detection or segmentation. Textgre se wo key frames. This is illustrated in Figure 2.

mentation is often a two step process in which features are The key frames will either be | or P frames when they
first obtained, followed by the segmentation step which is are coded. For every texture region in each of the middle
“grouping” operation of the homogeneous regions based oframes we look for similar textures in both key frames. The
the feature properties and a grouping metric [8, 9]. Featureorresponding region (if it can be found in at least one of the
extraction is used to measure local texture properties in akey frames) is then mapped into the segmented texture region
image. Typically, four approaches have been used for texfhere are three possible cases, the texture is only fouretin t
ture feature extraction: statistical or feature-basechors, first key frame, the last key frame, or it is found in both key
model-based methods, transform or spatial-frequency -metlirames. This is illustrated in Figure 3. In most cases, simil
ods and structural methods. In feature-based methods, chaextures can be found in both key frames. In this case, the



1st ref 2nd ref

(a) GOF (b) Key Frames . . . .
Fig. 4. The Motion Model is Used For Warping the Texture

From The Key Frame to Texture Frame.
Fig. 2. lllustration of Group of Frames(GOF). (a) A se-

quences of GOFs, (b) Two key frames within a GOF.
The motion parameterg, a1, . .., as) are estimated us-
ing a simplified implementation of a robust M-estimator for
texture resulting from the smallest error will be considere  global motion estimation [14]. The weighting function igsi
plified to a rectangular function, i.e. a point is either weegl

retd STiEF ref 2 fully or considered as outliers and are discarded:
Case 1: texture in first key frame onl 2
| | yfemeeny w(e):{ Loe <cu @)
0 e€>cu
Y | | ey | o texrein fost key frame only Whgree, the residual, is obtained from the diffe.rence of the
luminance between the actual and the warped pixels. The sum
Case 3 texture in both key frames of squares of all the residuals except the outliers is mirduhi
R | | N | | SN Theny is the average sum of squares of all N points within
regionR,
Fig. 3. Choice of Key Frame. 1
- n=y 2 )
The texture regions are warped from frame-to-frame us- pER

ing a motion model to provide temporal consistency in the
segmentation as illustrated in Fig.4. The mapping is basegn increasing value of, more pixels in both structure and
on a global motion assumption for every texture region in th%nstructured areas are1used for the iteration

frame, i.e. the displacement of the entire region can be de- We estimated the set of parameters using an iterative

scribed by just one set motion parameters. We modified Bauss-Newton method. The process of warping and opti-

8-parameter (i.e. planz_;\r perspecti_v e) motion model to COMhization is done for both key frames, hence two sets of mo-
pensate the global motion [14]. This can be expressed as: tion parameters are estimated (each set corresponds to a key

cis used to adjust the sensitivity of the optimization. With

, a1 + asz + aqy fr_ame) and the_ set that has smallc_ast MSE between the synthe-
e ¥ a7z + asy sized and original texture region is used We used as a “stop-
J as + asT + agy @ ping criterion” the first minimum obtained in the cost furocti

1+ a7z + agy H-

Unstructured image regions can have a bad impact on the
Where , y) is the location of the pixel in the texture frame motion parameter estimates results. The residuals will be
and (I‘/, y/) is the Corresponding mapped coordinates. Théma” in unstructured areas even if the motion parameters es
planar perspective model is suitable to describe arbitigiy ~ timates are poor. However, areas such as edges are likely to
object motion if the camera operation is restricted to fotat result in large areas even if the estimation is good. To ensur
and zoom. Itis also suitable for arbitrary camera operatfon the adequate performance of the estimator, the unstracture
the objects with rigid motion are restricted planar motion.  regions are detected and excluded from the estimation. The
practice these assumptions often hold over a short periad ofPixels in the unstructured regions are obtained by:
GoF [5].

When an identified texture region in one of the texture V= { L L] >dnl] >d 4)
frames is warped toward the key frame of the GoF, only the 0 else
pixels of the warped texture region that lie within the cerre In some cases a better estimate of the motion parameters
sponding texture region of the key frame of the GoF are usethay be obtained by first interpolating pixels and then doing
for synthesis. Although this reduces the texture regiomé t the motion estimation [15]. The interpolation method is the
texture frame, it is more conservative and usually givetebet same as the H.264 sub-pixel interpolator. We used bilinear
results in terms of visual quality. interpolation for half pixels for the Y samples on all frames



Table 1. Data Rate Savings Obtained for Different Sequences. Us-

A a B C A B ing a Quantization Parameter of 24.
a=—+— Sequence | Original Data Rate

2 2 datarate|  Savings

D E F [kb/s] | Texture-based
Tabletennis | 840.49 15.22%
b G Flowergarden| 2399.31 20.23%
G H | b= Q A i) Coastguard | 2593.82 16.02%
2 Football 1962.14 16.45%

H.264/AVC reference software. Hence, all parameters and
Fig. 5. Bilinear Interpolation. variables used for decoding the macroblocks inside the,slic
in decoder order, are set as specified for skipped macrahlock
This includes the reconstructed YUV samples that are
for our motion model. An example of the interpolated Y sam-needed for intra prediction, the motion vectors and therrefe
ples is shown in Figure 5. The set of motion parameters alongnce indices that are used for motion vector predictionerAft
with the flag to indicate the corresponding key frame are serdll macroblocks of a current frame are completely decoded,
to decoder as side information. texture synthesis is performed in which macroblocks belong
ing to a synthesizable texture region are replaced withetkie t

2.3. Texture Synthesis and Integration into H.264/AvC ~ tures identified in the corresponding reference frame.

At the decoder, reference frames and non-synthesizalie par

of other frames are conventionally decoded. The remaining 3. RESULTS AND CONCLUSION

parts labeled as synthesizable regions are skipped by the en

coder and their values remain blank in the conventional codWe used our spatial and temporal texture models to exam-
ing process. The texture synthesizer is then used to recoine several video sequences. We are interested in measuring
struct the corresponding missing pixels. With the assuwnpti the performance of the models we tested in terms of coding
that the frame to frame motion can be described using a plafficiency, for detailed results see table 1. To estimate the
nar perspective model, then given the motion parameter seew data rate for each test sequence, we substract from the
and the control parameter that indicated which frame (first ooriginal data rate (coded with the H.264 test coder) the data
last frame of the GoF) is used as the key frame, the textureate savings for macroblocks that are not coded using H.264
regions can be reconstructed by warping the texture from theodec. The data rate used to construct the side information,
key frame toward each synthesizable texture region idedtifi which is no more than 1.25Kb per frame, is then added to
by the texture analyzer. As for the integration processake t this amount to obtain the new data rate. Such side informa-
ture models described in the previous sections have been ition contains the coarse texture masks (typically about 800
tegrated into the H.264/AVC JM 11.0 reference software. Irbits), 8 motion parameters (256 bits) which ensure temporal
our implementation, the video sequence is first divided inteonsistency at the decoder and 1 control flag (1 bit) to indica
groups of frames (GoF). Each GoF consists of two referencehich frame is used as the reference frame (the first or the las
frames (first and last frame of the considered GoF) and sevyrame of the GOF). In our experiments, we used the following
eral middle frames between the two reference frames. Thearameters for the Main Profile H.264/AVC codec: Quantiza-
reference frames are conventionally coded as | or P frameipn Parameter for intra and inter frames = 16, 20, 24, 32 and
the middle frames are encoded as B frames that are candi4; 1 reference frame; 3 B frames; CABAC; rate distortion
dates for texture synthesis. For every texture region im eacoptimization; no interlace; constant channel; 30 frames pe
of the middle frames, the texture analyzer looked for simila second.

textures in both reference frames. The corresponding drea (  Figures 6 and 7 shows how the textures are generated in
it can be found in at least one of the reference frames) is themach frame using the motion model. To reduce the blockiness
mapped into the segmented texture region based on a globaffect along the edges, we used a low pass filter on the edge
motion model. When a B frame contains identified synthesizpixels. A visual artifact may be created if the intensity lod t
able texture regions, the corresponding segmentationsnaskight in the environment changes over time. This happens in
motion parameters as well as the control flag to indicate lvhic Coast Guard sequence. To fix this problem, we transmit the
reference frame is used are transmitted as side informatiatifference between the average intensity of the texturieneg

to the decoder. All macroblocks belonging to a synthesizin the current frame and the reference frame as additional
able texture region are handled as skipped macroblockgin tlside information. At the synthesizer this will be added te th



intensity of the synthesized pixels.

e

(c) Current Frame with Mask  (d) Reconstructed Frame  (€) Current Frame with Mask  (d) Reconstructed Frame

Fig. 6. Example of motion model applied to Flower Garden se-Fig. 7. Example of motion model applied to Coast Guard sequence
quence (a) Frame 61 used as the Reference Frame, (b) Frame @) Frame 41 used as the Reference Frame, (b) Frame 45 used as the
used as the Current Frame, (c) Frame 64 with Mask for texture récurrent Frame, (c) Frame 45 with Mask for texture region and (d)
gion and (d) Reconstructed Frame 64 with synthesized texture. ~ Reconstructed Frame 45 with synthesized texture.

Methods to separate “insignificant” regions from the
frame were investigated and were incorporated into a cenven
tional video codec (e.g. H.264) where the regions modeled by
the global motion model were not coded in an usual manner.
We have shown that we can reduce the data rate by as much] M. Bosch, F. Zhu, and E. Delp, “Spatial texture mod-
as 15% when compared with more classical approaches such  gs for video compressionProceedings of ICIP, IEEE
as H.264. International Conference on Image ProcessiSgn An-

tonio, Texas, September 2007.

Processing Conferencésan Jose, California, January
2007.
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