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ABSTRACT

Extensive numerical experiments indicate that images, in
general, possess a considerable degree of self-simjlarity
that is, blocks are well approximated (in tdé sense)

by a number of other blocks — at the same or different

scales — when affine greyscale transformations are em-

ployed. This paper outlines a simple model of affine im-
age self-similarity which includes the method of fractal
image coding (cross-scale, affine greyscale similaritg) an
the nonlocal-means denoising method (same-scale, trans
lational similarity) as special cases. Indeed, the general
self-similarity of images accounts for the effectiveneks o
these methods.

A complete metric spacéY, dy ) of measure-valued
image functions is introduced. Associated with each par-
ticular self-similarity model is an operatd? : ¥ — Y.

The representation of image functions in this space may
be useful in self-similar as well as other nonlocal image
processing schemes.

Self-similarity is also shown to exist in the wavelet
domain, where coefficient quadtrees are approximated by
other quadtrees from the same level or higher levels.

Finally, the possibility of going beyonfi? and using
other similarity measures to characterize self-simijaist
also discussed.

1. INTRODUCTION

The term “image self-similarity” is subject to a number
of interpretations which are concerned with how well re-
gions of an image can, in some way, be approximated by
other regions of the same image. Two important image
processing schemes that are based on different notions o
self-similarity are nonlocal-means denoising [6] and frac
tal image coding [4, 24]. Indeed, as we discuss in this
paper, these two methods may be viewed as lying on op-
posite sides of a spectrum of self-similarity approximatio
methods.

In NL-means denoising, self-similarity is understood
in the stricttranslationalsense: Given an image function
u and twon x n pixel blocksR; and R;, two image sub-
blocksu(R;) andu(R;) are considered to be “close” only
if u(R;) ~ u(R;), i.e., the distancéu(R;) — u(R;)|| is
small.

On the other hand, traditional fractal image coding
seeks to approximate a subblogkR;) by a greyscale-
modified and spatially-contracted (i.e., decimated) image
subblocku(D;), i.e., u(R;) ~ au(D,) + 3, whereD,
is larger thanR; and ~ denotes decimation. This may
be viewed as an exploitation @foss-scalemage self-

~
~

similarity.

Both NL-means denoising and fractal image coding
involve nonlocal image processinghe greyscale value of
an imageu(x) is replaced by a transformed valiie: ()
which is determined by one or more valugg;;, ), where
the pointsy, = yi(z) lie elsewhere in the image and not
necessarily close te. This is, of course, in contrast to
standard image processing methods whicHaeal in na-
ture, i.e., the pointg; lie in a neighbourhood of.. In-
deed, the exceptional success of the NL-means denoising
method has been responsible for a surge of interest in non-
local image processsing, as witnessed at this workshop.

In this paper, we outline a simple modellotal affine
image self-similarity introduced in [3, 2], that includes
NL-means denoising and fractal image coding as special
cases. The model islaw-levelone since it is based on
block similarities and not on patterns or context. The orig-
inal motivation came from more recent work in fractal im-
age coding that showed its effectiveness in image denois-
ing [1, 15, 16]. We have also been inspired by the in-
creasing interest in nonlocal methods of image processing
that exploit self-similarity, for example, restoration9[2
denoising [6, 7] and zooming [9, 14] — see also [8].

Our model examines the distributions of erraks;
in approximating image blocks(R;) by affine greyscale
transformations of otherimage block&D ;). Images with
error distributions that are more concentrated near zero er
ror may be viewed as possessing greater degrees of self-
similarity. This, in turn, suggests that relative degregs o
self-similarity can be characterized quantitatively imte
of the means and variances of the error distributions. Our
results provide some explanation of why self-similar-laase
methods, including fractal image coding, work so well in
approximating or denoising images quite effectively.

In the above applications and, indeed, in most practi-
cal schemes, images are represented as real-valued func-
tions,u : X — Ry, whereX denotes thdase spacer
pixel spaceover which the images are defined aRgl C



R is a suitablegreyscale spaceassumed to be compact.
Usually, the space of functios(X ) employed is.?(X),

A;; associated with this approximation is given by

the space of square-integrable functionsnThere are, Ay = Jnin |u(R;) — au(D;) — B]|. 2)
however, situations in which it is useful to consider the ’
greyscale value of an imageat a pointz as a random  Here, | - || denotes the.?(X) norm. In all calculations

variable. As such, it may be more useful to represent reported in this paper, the*-distance between two x n
images bymeasure-valuedunctions, for exampley. : image subblocks (R;) anduv(R;) will be the root-mean-

X — M(Ry), where M(R,) is the set of Borel prob-  square (RMS) distancell ¢ R? denotes the feasible
ability measures supported @),. Such a representation (, 3) parameter space, which is appropriate for the self-
ofimages, to be discussed later in the paper, can be usefukjmilarity scheme being examined (one of the four cases
in our affine self-similarity model for at least a couple of |isted below) and which guarantees that R, — R,.
reasons: We assume thdl is compact.

There are four important cases:

1. Asakind of intermediate step before the final “pro-
jection” of valuesu(y;,) to produce the transformed
valueTu(x).

2. Using the measurg(z) to characterize théocal
self-similarityof the imagel at a pointr € X.

2. A SIMPLE CLASS OF MODELS FOR IMAGE
SELF-SIMILARITY

In the computations presented below, we work with nor-
malized images, i.ey : X — R,, whereR, = [0, 1].
The supporiX of an image functiom is assumed to be an
n1 X no-pixel array. The components of our model are as
follows:

1. A setR of n x n-pixel rangesubblocksR;, 1 <
i < Npg such that ()R, N R; = 0if i # j and
(i) X = U;R;. In other wordsR forms a partition
of X. We letu(R;) denote the portion: that is
supported omR;.

2. A setD of m x m-pixel domainsubblocksD;,
wherem > n. The set of block® should cover
X, i.e,U;D; = X but they need not be nonover-

1. Purelytranslational: The domain and range blocks

have the same size, i.en, = n. As such, thew;;
are translations and;; = 1, ;; = 0. The approxi-
mation error is simply

AL = Ju(R;) —u(Dy)]. 3)

. Translational 4 greyscale shift: Thew;; are again

translations. We set;; = 1 and optimize ovep:

Bij = u(Ri) —a(D;), A =18, (4

where the bars denote mean values of the subblocks.

. Affine, same-scale: The w;; are translations and

we optimize overy, 5. In the unrestricted case, the
expressions fotv and3 are standard regression for-
mulas.

. Affine, two-scale: The w;; are affine spatial con-

tractions (which involve decimations in pixel space).
We optimize overy, (5.

As emphasized in [2], this model has been made as
simple as possible:

lapping.

3. The one-to-one geometric transformatimﬁ,i@) that
map a domain blockD; to range blockR;. For
simplicity, we consider onlaffinetransformations.
The 8 possible mappings (inversions, rotations) are
are accomodated in the indéx< k£ < 8. (For
notational convenience, however, theuperscripts
will be omitted.) In the case that > n, i.e.,D; is
larger thanR;, it is also assumed that tle®ntrac-
tive mapw;; includes an appropriate pixel decima-
tion operation.

1. The use ohonoverlapping, squarblocks: An ef-
fort to standardize the method, with low computa-
tional cost. Generally, the same behaviour is ob-
served for larger numbers of overlapping blocks.

2. The use of range blocks of tleame size Gener-
ally, the smaller a block, the easier it is to approx-
imate it. We are attempting to keep all regions of
an image “on the same playing field.” That being
said, it is certainly possible that different features
will appear at various scales, resulting in different
self-similarity statistics.

4. Affine greyscale maps : R, — R, having the
form ¢(t) = at + 5.

Given an image functiom, we examine how well or 3. The use ofaffinegreyscale maps(t) = at + f.
poorly the subimages(R;) are approximated by subim- Such a family of maps is very simple in form yet,
agesu(D;), to be written symbolically as with two parameters, sufficiently flexible. More im-

portant, the functions amaonotone

u(R;) = ¢ (u(D;)) = ciju(Dy) + Bij, (1) _ _
Of course, there remains the question of how to de-
for1 <i < Nrandl < j < Np, with the understanding  fine, or even characterize, the self-similarity of an image.
that the relation applies at the single pixel level. Theerro In [2], we attempted to to characterize the self-similarity



of images in terms of the the distribution of erraxs; de- Image Collage errors

finedin Eq. (2). In general, as we show below, therror mean stddev entropy
distributions associated with affine greyscale transferma Lena 0.043 0.044 2.26
tions — Cases 3 and 4 — demonstrate significant peaking. San Franciscq 0.046 0.057 2.01
A more concentrated peaking near zero error suggests a Peppers 0.047 0.050 2.32
greater degree of overall self-similarity. Goldhill 0.049 0.034 2.46
3. CASES 1,2 AND 3: SAME-SCALE Boat 0.0520.052 2.58
SELE-SIMILARITY Barbara 0.060 0.049 2.69
Mandrill 0.089 0.048 2.85
Here, the domain and range blocks have the same size. Zelda 0.126  0.055 3.09

We naturally expect that for a given domain-range pairing
(Dj, R;), the approximation errors of Eq. (2) for Cases 1,

2 and 3 will behave as follows: Table 1. Means, standard deviations, and entropies of

Case 3 and 4 collage error distributions for some standard
0< AE?) < AZ(.JQ.) < AE;), (5)  testimages. From [2].

since one optimizes over more parameters as we move

from Case 1 (no parameters) to Case 2 (one parameterkoefficients generally demonstrate a significant peaking at
to Case 3 (two parameters). In the numerical experimentszero, as shown in Fig. 4. As such, the perturbations from
reported below, the domain and range blocks were takenthe o (u(R;)) distributions to the Case &-error distribu-
from the same set of nonoverlappiRgc 8-pixel blocks, tions will be small.

ie.,D; = R;. The above discussion, in particular Eq. (6), suggests

We first examine the translational similarity of some  that the distribution of block variances is the most impor-
test images, i.e., Case 1. In Fig. 1 are plotted histogramtant factor in how well subblocks of an imademay be
distributions of the approximation errorsgjl.), which are approximated by other subblocks, i.e., its degree of “self-
simply the L? distances between subblock$R;) and similarity.” It also explains the significant differences i
u(R;), for the 512 x 512-pixel normalized test images A-error distributions between tHeenaandMandrill im-
LenaandMandrill. At first glance, it would appear that ages, especially for Cases 3 and 4. Fig. 3 shows that
the two images are quite translationally self-similar sinc theLenaimage contains a significantly higher proportion
both distributions have significant peaks at aro0nib, of “flatter” image subblocks, i.e., blocks of low variance.
that of theMandrill image being more pronounced. From Eqg. (6), the Case A-error distribution forLena

In Fig. 2 are presented th&-error distributions for ~ will be more concentrated near zero. The benchmark case
theLenaandMandrill for all three cases. The reductionin of self-similarity is the constant image= C. Here, all
approximation errors as one moves from Case 1 (shaded}hree A(@-error distributions consist of a single peak at
to Cases 2 and 3 is clearly demonstrated, with the lat- A = 0.
ter two distributions exhibiting greater peaking near zero In [2], we examined the Case 3 and¥;; distributions
We observe that enormous improvements are achieved foffor a number of test images. Some results are presented
the Lenaimage in going even from Case 1 to Case 2, in Table 1. The entries have been arranged in a rough or-
where only the greyscale shift parameters employed. der of “decreasing self-similarity” based upon increasing
(Note that the distributions are plotted over the subinter- mean and, to some extent, increasing width. Estimates
val [0,0.5].) From these plots, we would conclude that of the (natural logarithm) entropies of these distribusion
the two images are moadfinelyself-similar than they are  have also been presented in this table (third column) — note
translationallyself-similar, particularly in the case of the that with the exception oddan Franciscpthey increase as
Lenaimage. we proceed down the table. ThenaandMandrill im-

In Fig. 3 are plotted the histogram distributions of the ages can be viewed as lying roughly on opposite sides of
standard deviations(u(R;)) of the8 x 8 range blocks. & spectrum of distributions that vary in their mean value
There is a noteworthy similarity between these distribu- and variances.
tions and the Case 3 distributions of Fig. 1 which canbe  There may well be concern that the images examined
explained as follows. The standard deviation of an im- above do not form a suitably broad sampling of “natural
age blocks(u(R;)), is the RMSE error in approximating images.” For this reason, the experiments have been re-
u(R;) by its mean valuey(R;). This is equivalent to set-  peated on a much larger set of natural images, namely 700
ting the greyscale parameteto zero and optimizingover ~ images from 21 datasets in total taken from the Univer-
£in Eg. (2). Removing the conditiam = 0 will generally sity of Washington ‘Groundtruth Database’. The findings
produce better approximations, i.e., were qualitatively similar to those reported above.

0< AS) < o(u(Ry)). (6) 3.1. The effects of noise or\-error distributions

As such, the Case A-error distributions will be shifted  The presence of noise in an image will generally decrease
perturbations of the block variance distributions. That be the ability of its subblocks to be approximated by other
ing said, we observe that the distributionscofjreyscale  subblocks. As such, we expect that theerror distribu-
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Figure 4. Distributions of Case 3, same-scalegreyscale coefficients for normalizé@naandMandrill images. The
distributions for the Case 4, cross-scale cases are \lirtigi@intical.

tions will be shifted away from zero error and possibly
broadened as well. This was observed in [2] and will be
discussed only briefly here.

In Fig. 5 are shown thé\-error distributions for the
normalized_enaimage for added Gaussian noi§&0, o)
with several variances (right column). In the left column
are shown theA-error distributions for the “pure noise”
imagesu = 0.5 + N(0,0?) for comparision. (In these
cases, the\-distributions of the noiseless images,=
0.5, consist of a single peak & = 0.) In all cases, the
peaks of the distributions move outward @sncreases.
Moreover, the peaks for the noiggenaroughly coincide
with the peaks of their pure noise counterparts. For Case
3, it can be shown [2] that thA-distributions for pure
noise images peak at the standard deviadiolm fact, this

error ||N; — Ny||, are assigned low weights. In essence,
the nonlocal-means algorithm relies on the translational
self-similarity of an image, i.e., Case 1.

It is remarkable that the NL-means denoising method
works so well. Because of the translational symmetry re-
quirement, only a few blocks generally contribute signifi-
cantly to the denoising of a given pixel. In some applica-
tions, it would not seem unreasonable to relax this restric-
tion and allow constant greyscale shifts (Case 2), thereby
increasing significantly the number of blocks that could
contribute to the denoising. As we shall show later in this
paper, such a slight relaxation of the method is observed
to improve denoising. Moreover, the computational cost
is minimal since the optimal greyscale shiftare easily
computed, cf. Eq. (4).

is is the basis of the classical block-based noise variance

estimation method found in textbooks, e.g., [17].

Finally we note that for sufficiently lows, i.e.,oc <
0.1, the A-error distributions of the pure noise images are
sharper than those of the noikgnaimages. For such
low o-values, blocks of pure noise images are quite “flat”,
hence well-approximable by other blocks. On the other
hand, natural images will have blocks with more structure
— these blocks will be less approximable. These observa
tions may provide a partial answer to a question posed by
D. Ruderman [26], namely, “How do natural images differ
from random ones?”

3.2. Application to “nonlocal-means denoising”

As is well known, a standard technique for the reduction
of additive white noise is to average over multiple sam-
ples. This is the basis of the very effective “nonlocal-
means denoising algorithm” [6], where the multiple sam-
ples are provided by the image itself. Very briefly, each
pixel (i) of a noisy image is replaced by a convex com-
bination of other pixel values(j) from the image. The
weights);; of this averaging procedure depend upon the
similarity between neighbourhood$; and N; centered
about pixelsi and j, respectively. Neighbourhoods;
that do not approximaté’; very well, i.e., with highZ?

4. CASE 4: TWO-SCALE, AFFINE
SELF-SIMILARITY

The A-error distributions for Case 4, cross-scale match-
ing are generally quite similar to their Case 3, same-scale
counterparts. In Fig. 6 are presented histogram plots
of the approximation errora\;; for the LenaandMan-

drill test images, once again for range block partitions

R formed by the set of al8 x 8 nonoverlapping pixel
blocks of the images6¢? = 4096 in total). For each
image, the domain podP was formed from the set of
322 = 1024 16 x 16 non-overlapping pixel blocks. In
addition, for each range/domain block pairifg/D;, we
considered all eight square-to-square contractions, for a
total of 33,554,432 collage errors. The histogram distri-
butions are very similar to the Case 3 same-scglerror
distributions shown in Fig. 2.

The effect of additive Gaussian nois&0, 2) on Case
4, cross-scalé\-error distributions is the same as for the
Case 3, same-scale case: As the variartcis increased,
the A-error distributions are pushed away from the zero-
error axis. Moreover, these distributions will peakoat
The Case 4 distributions are virtually identical to those in
the bottom row of Fig. 5 and will not be included here.

Case 4, cross-scale self-similarity forms the basis of
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fractal image coding [11, 24]. Given a “target” image minimizing thecollage error||u — T'u||. From Eq. (7) this
each subblock(R;) is approximated by a geometrically- is generally done as follows: For each range bldgkwe
contracted and affine greyscale-modified copy of a larger search the domain po@? for the blockD; ;) that yields
subblocku(D;). In traditional fractal coding, the range- the lowest approximation errak,; in Eq. (2). (In most
domain assignments, j(4)) and associated greyscale pa- applications, the range of thg; greyscale parameters is
rameters(«;, 3;) define afractal transformoperatorT'. restricted t0—max, ¥max|, Whereamx is typically 1 in
We may write Eq. (1) as follows, value, in order to guarantee contractivity B6f) For this
reason, fractal coding has often been refered teef
u(x) = (Tu)(x) = agu(w; ., (€)) + Bi, =€ Ri. (7)  vector quantization the codebook used to approximate
an image comes from the image itself.

Of course, if the size of the domain po®l is in-
creased, it may be possible to decrease the collage error.
However, an increase in the size Dfimplies a greater
computational cost because of the searching involved. This
is a well known problem in fractal coding [11, 24]. The
procedure outlined above, referred to @dlage coding
in the fractal coding literature, was first proposed by A.
Jacquin [21] and forms the basis of most, if not blck-
based fractal codingrocedures.

Under appropriate conditions [12] involving the and the
contraction factors of the spatial maps ;;), 1" is con-
tractive in L?(X). From Banach’s fixed point theorem,
this implies the existence of a unique fixed point function
u = Tu. Furthermorez may be generated by iteration:
Starting with any seed image), letu,,41 = Tu,. Then

u, — u asn — oo. (In the discrete case, convergence
is achieved after a finite number of iterations.) Unless all
greyscale parametefs are zero, which is never the case
in practice, the fixed point is nonzero. And from Eq.

(7), 4 is an approximation to the targetimageto be dis- [N Fig. 7 (lower left) is shown the fixed point approx-
cussed in more detail below. imationa to the standard12 x 512 pixel Lenaimage (8
The fractal transform operatd¥ in Eq. (7) is anon- bits/pixel) obtained from collage coding, once again using

local operator since blocks of an image function are re- & Partition® of nonoverlappings x 8-pixel blocks and
placed by modified copies of blocks from elsewhere in domain poolD of nonoverlapping 6 x 16-pixel blocks.

the image. Indeed, the fixed poiatof T is affinely self- _(This choice of glomain pool_ is clgarly not op'FimaI.) This
similar since the approximation in Eq. (7) becomes an iMage was obtained by starting with the seed image) =
equality: 255 (plain white image) and iterating,,+1 = 7T'u, to

n = 15. lteratesu;, us andus are also shown in this
a(x) = (Tu)(x) = aiﬂ(w;jl(i) (x)) + Bi, =€ R;. (8) figure.
_ . _ Historically, most fractal image coding research was
The mathematical basis for fractal-based approxima- concerned with compression — obtaining the best possible

tion is provided by the so-calleGollage Theorenf5], accuracy with the smallest domain pool. As such, these
which is a simple consequence of Banach’s Theorem:  jnyestigations were primarily concerned with the accuracy
1 provided by the optimal domain blocks in a given domain

lu—al < o | Tw — |, 9 pool. The fact that most range blocks are well approxi-

mated by a number of range blocks does not seem to have
wherecr is the contraction factor of’. Given a set of ~ been discussed, let alone characterized quanttatively, as
range blocksk and adomain poolD, one tries to to make ~ done above.

the approximation erroffu — u|| as small as possible by Fractal image denoising: As with any lossy compres-



Figure 7. Starting at upper left and moving clockwise: Tleedtes., us andus along with the fixed point of the fractal
transform operatof’ designed to approximate the standai@ x 512 (8 bpp) “Lena” image. The “seed” image was
uo(z) = 255 (plain white). The fractal transfor was obtained by “collage coding” using 4086< 8 nonoverlapping
pixel range blocks. The domain pool consisted of the set 84Tnoverlapping6 x 16 pixel blocks.

sion method, the simple fractal coding of a noisy image R, anddy the Monge-Kantorovich metric on this set:

produces some denoising [15, 16] . There are two prin-

cipgl reasons: (i) the affine greyscale fitt_ing between_ doj (i, v) = sup [/ Fdp — / fdu} . 0)

main and range blocks causes some variance reduction in feLipi(XR) L/X X

the noise, and (ii) the spatial contraction/pixel deciimiati

involved in mapping domain blocks to range blocks pro- Here,Lip:(X,R) denotes the set of functiorfs: X — R

vides further variance reduction. Additional denoisingca such thalf(z1) — f(z2)] < d(z1,22) Va1, 22 € X.

be obtained by using estimates of the noise variance toes- For a givenM > 0, let M; C M be a complete

timate the fractal code of the noiseless image [15]. subspace oM such thatdy (p,v) < M forall pu,v €
The fact that each range block is well approximated M. We now define

by a number of domain blocks can be exploited to per-

form denoising by using multiple copies [1], a cross-scale Y = {u(z) : X — My, pu(x) is measurable  (11)

analog of the nonlocal means denoising method. We shall

return to a discussion of suchnaultiparent fractal trans-

form approach later in the paper.

and consider on this space the following metric,

dy(u.v) = [ dulp(o).v(@)dm(z), (12
5. MEASURE-VALUED IMAGES AND THEIR X
APPLICATIONS wherem denotes Lebesgue measureXnThe metricdy

) . is well defined, since. andr are measurable functions.
We now show how a measure-valued image formulation Moreover, dy; is bounded so that the functicf{z)

may be used in this self-similarity model. Mathematical dr(
details are to be found in [22].

w(x),v(x)) is integrable onX . In [22], it was proved
that the spacé€Y’, dy ) is complete.

5.1. A complete metric space of measure-valued im- 5.2. Application to same-scale self-similarity

ages . .
9 In what follows, we again assume that the image func-

In what follows, X = [0, 1]™ will denote the “base space,” tion u is ann, x ny pixel array with greyscale range
i.e., the support of the imagesk, C R will denote a Ry = [0,1]. We also assume that the range and domain
compact “greyscale space” of values that our images canblocks come from a common po&l. We now consider all
assume at any € X. (The following discussion is easily ~Possible range-domain block paif&;, i;), along with
extended tdR, C R™ to accomodate color images, etc.) theisometricaffine transformationﬁjfj’?), 1 <k <8, that
Let M denote the set of all Borel probability measures on map R; to R;. For simplicity of notation, we omit thé



index. (Indeed, in most of the examples presented in thisintroduced above allows us to keep track of thage of

section, we employ only translations, i.e.= 1.) valuesassumed by these preimages. For this purpose, we
For a given same-scale scheme, i.e., Casehere associate with the image functiar{z) a corresponding

q € {1,2,3}, we first compute all possible appropriate measure-valued image functigriz) € (Y,dy) as fol-

approximation errors{&” , cf. Eq. (2) and Iehﬁl(.;?) (t) de- lows:

note the greyscale maps associated with these errors. (Re- wx) =0y@m)y, v€X. a7

call that the greyscale maps assume different forms in the

three Cases.) For each range-domain paifidg R; ), we

then assign a weighting functign; which is normalized

Here, §; denotes a unit point mass measure at R,.
We now define a measure-valued image: My € Y as
follows: For any measurable sétC R, = [0,1] and an

foll
as foflows, x € R;, we define
Nr
Y piy=1, 1<i<Ng (13) VD (2)(S) = (MDp)( )(S)
j=1

ZPUM u (b l(q)( ))(18)
An obvious question is the choice of the weighting param-
etersp;;. It would seem natural to employ higher weights
for those domain block#; that yield lower approxima-

tion errorsA;;. Here we consider a weighting scheme
that is similar in form to the one used in [6] for NL-means

The measure(?, ¢ € {1,2, 3}, is designed to reflect the
Casegq self-similarity of the image functiom: Given a
range blockR; C X, then at each point € R;, we keep
track of all greyscale values of the image function that are

denoising: ) AP mapped tor by a domain-range mapping;; and modi-
Pij = - exp (— h;j) , (14) fied by the corresponding Cagegreyscale ma@g) (t).
i These values are then weighted and “assembled” to define

whereP > 0, h > 0 andZ; = 3, exp(— A% /hP) is the the probability measure(?) atz, '|.e.,z/(f1> (). .

normalization factor. In practice? is either 1 or 2. As for In Fig. 8 are shown pictorial representations of the

the adjustable parametey note that: measures/ (9 (z), ¢ = 1,2, 3. For each Casg, we have
used three values of the weight paraméten Eq. (14),

1. Inthe limith — 0, thep;;(s) with the smallest error  along with P = 2. In these figures, darker regions have

A;; will be selected. higher associated measures. As expected from the previ-
o ous figure, the measures become more concentrated about
2. Inthe limith — oo, all p;; become equal. the actual greyscale value$256, j), 1 < j < 256 of the

Lenaimage as we move from Case 1 to Case 3. In all
three cases, the weight parameter value- 0.01 effec-
tively concentrates the measures close toltbeaimage
values, even for the Case 1 measure. However,iasn-

For a given Case and a set of prescribed weights
{pi;} we may define an operat®¥?, the action of which
on an image functioni(x) is given as follows: For an

z € R creased td).1, the Case 1 measure becomes quite diffuse
v(z) = (T(q) )(z) and ath = 1.0, quite unrelated to theenaimage values.

For Cases 2 and 3, there is virtually no change between
_ Zpl1¢(Q) ( ). (15) h = 0.1 andh = 1.0 and everm = oo (equal probabili-

ties, not shown in figure).

In other words, the value(z) at anz € R; is replaced by 53 Effects of noise on measures and a simple denois-
a weighted sum of modified pixel values — teimages "9 method
of the valueu(z) — from all other blocksR;. The 7@
operators are therefore nonlocal operators.

The following result [22] establishes that the same-
scale “collage distance| T u — u|| (cf. Eq. (9), reflects
the total Casg self-similarity of the image:

In the top row of Fig. 9 are shown pictorial representations

of the measures'? associated with the pixets256, 5),

1 < j < 256, of the normalized.enaimage with added

noise V' (0, o2), wherec = 0.1. These pictures should

be compared to their noiseless counterparts in the middle

N column of Fig. 8, As expected, the measures for the noisy

||T(q)u —u < ZpijA(q) (16) case are more diffuse, although the Case 3 measure ap-
" pears to be as concentrated for the noisy case as for the

i,j .
noiseless one.

For the special self-similar image= C, A;; = 0 for A natural question is whether the meanf these
all 4, 7, implying that|| 7Y — | = 0. In other words, =~ measures estimate the greyscale values of the noiseless
u = C'is a fixed point of'(%) for ¢ € {1,2,3}. Lenaimage. In the middle row of Fig. 9 are plotted the

The 7@ operators essentially “collapse” all preim- mean values of these measures for the three cases
ages of an image function valuéx) onto a single value  1,2,3. The root-mean-square error with respect to the
T@y(z). The measure-valued image function formalism noiseless (normalized) image value@56, j), 1 < j <
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Figure 8. Pictorial representations of measurés)(?, ¢ = 1,2, 3 for theu(256, j), 1 < j < 256 row of pixels for the

Lenaimage. Three values of the weighting parameétar Eq. (14) have been used, with= 2.
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Figure 9. Top row: Measuregz)(? for normalized_enaimage with added Gaussian noise with= 0.1. In all cases,
h = 0.1. Vertical axis is[0, 1]. Middle row: Mean values: of the v(z)(9) measures. Vertical axi®, 1]. These results
represent denoised values of the ndignaimage and should be compared to the noiseless image vallég.it8(a).

Bottom row: Variances (z) of the corresponsding(z)(? measures. Vertical ax§, 0.15].



256 are given for each case. As expected, the approxima-  And, following the discussion of the previous section,
tions are poorest in regions of high variance/oscillation, we may define an operatdf () on the space of measure-
for example 130 < z < 200. valued functiongY’, dy-) that correponds to the multipar-

In the bottom row of Fig. 9 are plotted the variances ent fractal transforni’(¥). This operator will have the
o(z) of the corresponsding(? (z) measures. In accor- same form as in Eq. (18). In [22], a more general, yet
dance with the plots of the top row, there is a dramatic “blockless” form of theM operator was introduced and
reduction in variance as we move from Case 2 to Case 3. analyzed, namely where the coefficiepts could bez-

Note that, regardless of the comparatively high diffu- dependent, and the greyscale mapswere assumed to
sivity of the Case 1 and Case 2 measures, the accuracy obe Lipschitz. The important pointis that under appropriate
their means —in terms of RMSE — are virtually identical to conditions, the operataY/ is contractive in the complete
that of Case 3. In essence, all three same-scale similaritymetric spaceY’, dy ), implying the existence of a unique
methods — Cases 1, 2 and 3 — appear to perform denoisingneasure-valued functign satisfying the fixed point rela-
almost equally well in this example. This is generally true tion fi(xz) = Mf. There are some very interesting math-
for the case of coarser approximations. The three meth-ematical consequences, including a recursive structudre re
ods perform differently when both the value jofand the lating the (place-dependent) moments of the megsufe
range block size are decreased to produce finer approxi-discussion of these features, however, is beyond the scope
mations. For example, Fig. 10 shows the mean value plotsof this paper.

that result fromh = 0.05 and4 x 4-pixel range blocks. In The TY operator defines a natural Case 4 counter-
this case, there is an improvement in accuracy as we movepart of the Case 1-3 denoising algorithms of the previous
from Case 1 to Case 3. section — essentially a cross-scale, block-based, muitipa

The above analysis, however, involves only a single ent fractal denoising method, which was investigated in
(half) row of pixels in the_enaimage. When we examine  [22]. This method, however, yielded no significant im-
the results of Case 1-3 denoising on a larger portion of provement over the same-scale, Case 3 method, either af-
the image, as shown in Fig. 11, (upper left quarter of the ter one application of th& ) operator after iteration to
Lenaimage), the differences between the methods, at leastts fixed point. The results are virtually identical to those
in terms of RMSE values, become more pronounced. of the third column in Fig. 9.

That being said, these few results are not meant to be  Stepping back a bit in time, the denoising potential
interpreted as a complete analysis of this approximation of the multiparent transform was shown by S. Alexander
problem. A more detailed investigation, which is beyond in his Ph.D. thesis [1]. Noting that a range blogkR;)
the scope of this paper, is clearly needed. of a noisy image is generally well approximated by sev-

The NL-means denoising method [6] may be viewed eral domain subblocka’(D;, (i)) after decimation and
as an individual pixel-based variation of the Case 1, same-greyscale modification, these approximationsutoR;)
scale operatdf'(!) of Eq. (15). Because it operates on in- could be viewed as samples which, when averaged, would
dividual pixels (based on Case 1 similarity between neigh- yield an estimate of the denoised subblagkz;) — es-
bourhoods), the NL-means method will yield better re- sentially a cross-scale and block-based version of the yet-
sults — of course at greater computational expense. In ei-to-appear nonlocal-means denoising method. The use of
ther procedure, an appropriately-defined operatoand several domain blocks for each range block defined a mul-
therefore associated measwer) may be defined as an tiparent fractal transformi”. In general, its fixed point,
intermediate step in the computation of the denoised valuet’, was found to be a good approximation to the noiseless
v(z). imageu. Several averaging schemes were investigated.

Indeed, most fractal denoising methods have focussed
6. AFRACTAL TRANSFORM ON THE SPACE OF on approximating the unknown noiseless counterpat
MEASURE-VALUED IMAGES a noisy imageu’ by the fixed pointa’ of a contractive

; : : .
In the same way as was done for Cases 1-3 in the pre-fr,aCtaI transforml” that is obtained by fractally coding

vious section, a cross-scale operafé?) on image func- In contrast, the Case 4 similarity method, following
tions that is l;ased on Case 4 self-similarity may be de- its Case 1-3 counterparts, relies on the application of the

: i : . transformZ’®), obtained from.’, only onceto v’. A more
fined. Its functional form will be the same as in Eq. (15) . .

e L . thorough comparison of the two methods remains to be
—as such, we forego writing it out explicitly. In this case

however, we must recall that the spatial mapsarecon- done.
tractions mapping larger domain block3; onto smaller 7. SELFE-SIMILARITY VS. “APPROXIMABILITY”
range blocksk;.

Such an operator may be calledraultiparent fractal Earlier, we showed that the distributions of (Case 3 and
transform The use of more than one domain block per 4) A-errors of an image function are virtually identical
range block would certainly be counterproductive from to the distribution of its block variancegu(R;)), a con-
the viewpoint of data compression — one of the original sequence of approximating image blocks by their mean
motivations of fractal image coding research. Here, how- values. In this low-level, block-based picture, the self-
ever, were are concerned with image processing and analsimilarity of an image is essentially determined by the
ysis, not compression. degree of itsflatnessi.e., the percentage of blocks with



(a) Case 1, RMSE= 0.077 (b) Case 2, RMSB.067 (c) Case 3, RMSB.062

Figure 10. Mean values of thev(z)(?) measures obtained from noikgnaimage, where parametér= 0.05.

(c) Case 2, RMSE= 0.054 (d) Case 3, RMSE= 0.040

Figure 11. Results of Case 1-3 denoising of upper quarteen&image. In all caseg;, = 0.05.
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near-zero variance.

In [2], however, we observed that very similar (Case 3
and Case 4)\-error distributions are obtained if we used
blocks fromanotherimage, e.g., using x 8-pixel blocks
of Mandrill to approximate those dfeng andvice versa
In this case, the termpproximabilityis perhaps more ap-
propriate tharself-similarity.

The matter of approximability is of paramount impor-
tance to vector quantization (VQ). Indeed, the connection
between fractal coding and VQ was realized many years
ago, for example, [23, 18, 19, 20]. The use of image sub-
blocks from a collection of images to construct codebooks
for (cross-scale) fractal coders was nicely illustrated in
[23].

Structured vector quantizatiqhO] is a same-scale ver-
sion of this method: using fixed sets of subblocks to ap-
proximate subblocks of the same size, with the help of Figure 12. Wavelet coefficient table, showing some par-
affine greyscale transformations. In none of the above ref-ticular quadtrees.
erences, however, are the statistics of domain-range pair-
ings explicitly compiled or analyzed.

h
T

their 2 nature must be preserved. As such, there are only

8. SELF-SIMILARITY IN THE WAVELET three cases of self-similarity to study:

DOMAIN

1. Translational: We compare quadtrees at the same

The ideas of self-similarity developed in Section 1 have
y P scale, i.e.k = k/, witha = 1.

straightforward counterparts in the wavelet domain. To
date, we have not examined this idea in great detail, and
only preliminary results will be presented below. For sim-
plicity, we consider standard tensor-product wavelet ba-
sis expansions [25], for which the coefficients are conve-
niently arranged in a standard matrix form, as shown in
Fig. 12. Each of the blockA}, A?, A4, 0 < k < K,

fora K > 0, contains2** wavelet coefficientsy, ;, af, ;,
a‘k{ij, respectively. (In the case 612 x 512-pixelimages,

K = 8.) The three collections of blocks comprise tiea-
izontal vertical anddiagonalquadtrees of the coefficient
tree.

For any wavelet coefficienty,;, A € {h, v, d} in this
matrix we definedy,;; to be the unique quaditree widi}, ; _ _ _
as its root. In the Haar wavelet case, as is well known, for In €arlier sections.

a fixed set of indicegk, 1, }, the three quadtreed? In Fig. 13 we have plotted\-error histograms for

3. Affine, same scale:Again, we compare quadtrees
at the same scale, i.é:,= £/, but optimize overv.

4. Affine, two-scale: Here, k > k’, i.e., we approx-

imate higher-scale quadtrees with scaled copies of

coarser scale quadtrees that are situated higher in

the A matrix. In the pixel domain, this corresponds

to decimated domain blocks mapped to range blocks.

We have numbered these cases, omitting the nonexistent
“Case 2", so that they may be considered as counterparts
of the pixel-based self-similarity cases that were studied

kij?
Aj,;; and Agij correspond to the same spatial block o
an image. For generalized wavelets, the correlation r

mains, although the spatial region is diffused. In Fig. 1

¢ Cases 1 and 2 of tHeenaandMandrill test images. Here,
ok =k =06. Aswell, we set\ = \" in Eq. (19), i.e., only
2 quadtrees with the samk value were used to approxi-

\ . o .
are shown two sets of such quadtree triplets, for two con- Mate & quadtredl;;. (This restriction can obviously be

secutive values of, i.e.,k = k7 andk = k3 = k% + 1. relaxed.) The approximation errors are simply tReer-
Given an image functiom, with associated wavelet ~0rs between the finite quadtrees. (In this case, they are
coefficient matrixA, we now examine how well quadtrees comprised ofl + 4 4 16 = 21 coefficients.) The simi-

A}, are approximated by other quadtreéy ., ., to be larity between these distributions and their pixel-domain
written symbolically as o counterparts, cf. Fig. 2, is quite striking. The addition of
Gaussian noise also pushes these distributions away from
A~ (AN ) = ald g, K <k (19)  Zero.

The Case 4 distributions are virtually identical to their
Itis certainly possible to consider rotations of the quaee$r  Case 2 counterparts and are not plotted here. Indeed, the
in the approximation. In what follows, however, we con- Case 4 self-similarity exhibited by wavelet subtrees forms
sider only the rotationless case. the basis of fractal-wavelet image coding [27]. A multi-
Note that only affine scaling transformations of the parent fractal-wavelet denoising scheme was investigated
form o(t) at are used. Thej shift term is omitted in [1]. Itis conceivable that wavelet-based NL-means de-
since, at least theoretically for quadtrees of infinite ang  noising, as well as zooming, could be performed.
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Figure 13. Same-scale RMS self-similarity error distribos for wavelet coefficient subtrees — Cases 1 and 3 — for
normalizedLena and Mandrill images, over interval0, 2]. The same vertical scale was employed in both plots for
comparison. Heré = k&’ = 6 and\ = X in Eq. (19).
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