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ABSTRACT

Extensive numerical experiments indicate that images, in
general, possess a considerable degree of self-similarity,
that is, blocks are well approximated (in theL2 sense)
by a number of other blocks – at the same or different
scales – when affine greyscale transformations are em-
ployed. This paper outlines a simple model of affine im-
age self-similarity which includes the method of fractal
image coding (cross-scale, affine greyscale similarity) and
the nonlocal-means denoising method (same-scale, trans-
lational similarity) as special cases. Indeed, the general
self-similarity of images accounts for the effectiveness of
these methods.

A complete metric space(Y, dY ) of measure-valued
image functions is introduced. Associated with each par-
ticular self-similarity model is an operatorM : Y → Y .
The representation of image functions in this space may
be useful in self-similar as well as other nonlocal image
processing schemes.

Self-similarity is also shown to exist in the wavelet
domain, where coefficient quadtrees are approximated by
other quadtrees from the same level or higher levels.

Finally, the possibility of going beyondL2 and using
other similarity measures to characterize self-similarity is
also discussed.

1. INTRODUCTION

The term “image self-similarity” is subject to a number
of interpretations which are concerned with how well re-
gions of an image can, in some way, be approximated by
other regions of the same image. Two important image
processing schemes that are based on different notions of
self-similarity are nonlocal-means denoising [6] and frac-
tal image coding [4, 24]. Indeed, as we discuss in this
paper, these two methods may be viewed as lying on op-
posite sides of a spectrum of self-similarity approximation
methods.

In NL-means denoising, self-similarity is understood
in the stricttranslationalsense: Given an image function
u and twon × n pixel blocksRi andRj , two image sub-
blocksu(Ri) andu(Rj) are considered to be “close” only
if u(Ri) ≈ u(Rj), i.e., the distance‖u(Ri) − u(Rj)‖ is
small.

On the other hand, traditional fractal image coding
seeks to approximate a subblocku(Ri) by a greyscale-
modified and spatially-contracted (i.e., decimated) image
subblocku(Dj), i.e., u(Ri) ≈ αũ(Dj) + β, whereDj

is larger thanRi and ˜ denotes decimation. This may
be viewed as an exploitation ofcross-scaleimage self-
similarity.

Both NL-means denoising and fractal image coding
involvenonlocal image processing: the greyscale value of
an imageu(x) is replaced by a transformed valueTu(x)
which is determined by one or more valuesu(yk), where
the pointsyk = yk(x) lie elsewhere in the image and not
necessarily close tox. This is, of course, in contrast to
standard image processing methods which arelocal in na-
ture, i.e., the pointsyk lie in a neighbourhood ofx. In-
deed, the exceptional success of the NL-means denoising
method has been responsible for a surge of interest in non-
local image processsing, as witnessed at this workshop.

In this paper, we outline a simple model oflocal affine
image self-similarity, introduced in [3, 2], that includes
NL-means denoising and fractal image coding as special
cases. The model is alow-levelone since it is based on
block similarities and not on patterns or context. The orig-
inal motivation came from more recent work in fractal im-
age coding that showed its effectiveness in image denois-
ing [1, 15, 16]. We have also been inspired by the in-
creasing interest in nonlocal methods of image processing
that exploit self-similarity, for example, restoration [29],
denoising [6, 7] and zooming [9, 14] – see also [8].

Our model examines the distributions of errors∆ij

in approximating image blocksu(Ri) by affine greyscale
transformations of other image blocksu(Dj). Images with
error distributions that are more concentrated near zero er-
ror may be viewed as possessing greater degrees of self-
similarity. This, in turn, suggests that relative degrees of
self-similarity can be characterized quantitatively in terms
of the means and variances of the error distributions. Our
results provide some explanation of why self-similar-based
methods, including fractal image coding, work so well in
approximating or denoising images quite effectively.

In the above applications and, indeed, in most practi-
cal schemes, images are represented as real-valued func-
tions,u : X → Rg, whereX denotes thebase spaceor
pixel spaceover which the images are defined andRg ⊂



R is a suitablegreyscale space, assumed to be compact.
Usually, the space of functionsF(X) employed isL2(X),
the space of square-integrable functions onX . There are,
however, situations in which it is useful to consider the
greyscale value of an imageu at a pointx as a random
variable. As such, it may be more useful to represent
images bymeasure-valuedfunctions, for example,µ :
X → M(Rg), whereM(Rg) is the set of Borel prob-
ability measures supported onRg. Such a representation
of images, to be discussed later in the paper, can be useful
in our affine self-similarity model for at least a couple of
reasons:

1. As a kind of intermediate step before the final “pro-
jection” of valuesu(yk) to produce the transformed
valueTu(x).

2. Using the measureµ(x) to characterize thelocal
self-similarityof the imageI at a pointx ∈ X .

2. A SIMPLE CLASS OF MODELS FOR IMAGE
SELF-SIMILARITY

In the computations presented below, we work with nor-
malized images, i.e.,u : X → Rg, whereRg = [0, 1].
The supportX of an image functionu is assumed to be an
n1 × n2-pixel array. The components of our model are as
follows:

1. A setR of n × n-pixel rangesubblocksRi, 1 ≤
i ≤ NR such that (i)Ri ∩ Rj = 0 if i 6= j and
(ii) X = ∪iRi. In other words,R forms a partition
of X . We let u(Ri) denote the portionu that is
supported onRi.

2. A setD of m × m-pixel domainsubblocksDj ,
wherem ≥ n. The set of blocksD should cover
X , i.e.,∪jDj = X but they need not be nonover-
lapping.

3. The one-to-one geometric transformationsw
(k)
ij that

map a domain blockDj to range blockRi. For
simplicity, we consider onlyaffinetransformations.
The 8 possible mappings (inversions, rotations) are
are accomodated in the index1 ≤ k ≤ 8. (For
notational convenience, however, thek superscripts
will be omitted.) In the case thatm > n, i.e.,Dj is
larger thanRi, it is also assumed that thecontrac-
tive mapwij includes an appropriate pixel decima-
tion operation.

4. Affine greyscale mapsφ : Rg → Rg having the
form φ(t) = αt + β.

Given an image functionu, we examine how well or
poorly the subimagesu(Ri) are approximated by subim-
agesu(Dj), to be written symbolically as

u(Ri) ≈ φij(u(Dj)) = αiju(Dj) + βij , (1)

for 1 ≤ i ≤ NR and1 ≤ j ≤ ND, with the understanding
that the relation applies at the single pixel level. The error

∆ij associated with this approximation is given by

∆ij = min
α,β∈Π

‖u(Ri) − αu(Dj) − β‖. (2)

Here,‖ · ‖ denotes theL2(X) norm. In all calculations
reported in this paper, theL2-distance between twon× n
image subblocksu(Ri) andv(Ri) will be the root-mean-
square (RMS) distance.Π ⊂ R

2 denotes the feasible
(α, β) parameter space, which is appropriate for the self-
similarity scheme being examined (one of the four cases
listed below) and which guarantees thatφ : Rg → Rg.
We assume thatΠ is compact.

There are four important cases:

1. Purely translational: The domain and range blocks
have the same size, i.e.,m = n. As such, thewij

are translations andαij = 1, βij = 0. The approxi-
mation error is simply

∆
(1)
ij = ‖u(Ri) − u(Dj)‖. (3)

2. Translational + greyscale shift:Thewij are again
translations. We setαij = 1 and optimize overβ:

βij = ū(Ri) − ū(Dj), ∆
(2)
ij = |βij |. (4)

where the bars denote mean values of the subblocks.

3. Affine, same-scale:The wij are translations and
we optimize overα, β. In the unrestricted case, the
expressions forα andβ are standard regression for-
mulas.

4. Affine, two-scale: The wij are affine spatial con-
tractions (which involve decimations in pixel space).
We optimize overα, β.

As emphasized in [2], this model has been made as
simple as possible:

1. The use ofnonoverlapping, squareblocks: An ef-
fort to standardize the method, with low computa-
tional cost. Generally, the same behaviour is ob-
served for larger numbers of overlapping blocks.

2. The use of range blocks of thesame size: Gener-
ally, the smaller a block, the easier it is to approx-
imate it. We are attempting to keep all regions of
an image “on the same playing field.” That being
said, it is certainly possible that different features
will appear at various scales, resulting in different
self-similarity statistics.

3. The use ofaffinegreyscale mapsφ(t) = αt + β.
Such a family of maps is very simple in form yet,
with two parameters, sufficiently flexible. More im-
portant, the functions aremonotone.

Of course, there remains the question of how to de-
fine, or even characterize, the self-similarity of an image.
In [2], we attempted to to characterize the self-similarity



of images in terms of the the distribution of errors∆ij de-
fined in Eq. (2). In general, as we show below, the∆-error
distributions associated with affine greyscale transforma-
tions – Cases 3 and 4 – demonstrate significant peaking.
A more concentrated peaking near zero error suggests a
greater degree of overall self-similarity.

3. CASES 1,2 AND 3: SAME-SCALE
SELF-SIMILARITY

Here, the domain and range blocks have the same size.
We naturally expect that for a given domain-range pairing
(Dj , Ri), the approximation errors of Eq. (2) for Cases 1,
2 and 3 will behave as follows:

0 ≤ ∆
(3)
ij ≤ ∆

(2)
ij ≤ ∆

(1)
ij , (5)

since one optimizes over more parameters as we move
from Case 1 (no parameters) to Case 2 (one parameter)
to Case 3 (two parameters). In the numerical experiments
reported below, the domain and range blocks were taken
from the same set of nonoverlapping8 × 8-pixel blocks,
i.e.,Di = Ri.

We first examine the translational similarity of some
test images, i.e., Case 1. In Fig. 1 are plotted histogram
distributions of the approximation errors∆(1)

ij , which are
simply theL2 distances between subblocksu(Rj) and
u(Ri), for the 512 × 512-pixel normalized test images
LenaandMandrill. At first glance, it would appear that
the two images are quite translationally self-similar since
both distributions have significant peaks at around0.15,
that of theMandrill image being more pronounced.

In Fig. 2 are presented the∆-error distributions for
theLenaandMandrill for all three cases. The reduction in
approximation errors as one moves from Case 1 (shaded)
to Cases 2 and 3 is clearly demonstrated, with the lat-
ter two distributions exhibiting greater peaking near zero.
We observe that enormous improvements are achieved for
the Lena image in going even from Case 1 to Case 2,
where only the greyscale shift parameterβ is employed.
(Note that the distributions are plotted over the subinter-
val [0, 0.5].) From these plots, we would conclude that
the two images are moreaffinelyself-similar than they are
translationallyself-similar, particularly in the case of the
Lenaimage.

In Fig. 3 are plotted the histogram distributions of the
standard deviationsσ(u(Ri)) of the 8 × 8 range blocks.
There is a noteworthy similarity between these distribu-
tions and the Case 3 distributions of Fig. 1 which can be
explained as follows. The standard deviation of an im-
age blockσ(u(Ri)), is the RMSE error in approximating
u(Ri) by its mean value,̄u(Ri). This is equivalent to set-
ting the greyscale parameterα to zero and optimizing over
β in Eq. (2). Removing the conditionα = 0 will generally
produce better approximations, i.e.,

0 ≤ ∆
(3)
ij ≤ σ(u(Ri)). (6)

As such, the Case 3∆-error distributions will be shifted
perturbations of the block variance distributions. That be-
ing said, we observe that the distributions ofα greyscale

Image Collage errors
mean stddev entropy

Lena 0.043 0.044 2.26
San Francisco 0.046 0.057 2.01
Peppers 0.047 0.050 2.32
Goldhill 0.049 0.034 2.46
Boat 0.052 0.052 2.58
Barbara 0.060 0.049 2.69
Mandrill 0.089 0.048 2.85
Zelda 0.126 0.055 3.09

Table 1. Means, standard deviations, and entropies of
Case 3 and 4 collage error distributions for some standard
test images. From [2].

coefficients generally demonstrate a significant peaking at
zero, as shown in Fig. 4. As such, the perturbations from
theσ(u(Ri)) distributions to the Case 3∆-error distribu-
tions will be small.

The above discussion, in particular Eq. (6), suggests
that the distribution of block variances is the most impor-
tant factor in how well subblocks of an imageI may be
approximated by other subblocks, i.e., its degree of “self-
similarity.” It also explains the significant differences in
∆-error distributions between theLenaandMandrill im-
ages, especially for Cases 3 and 4. Fig. 3 shows that
theLenaimage contains a significantly higher proportion
of “flatter” image subblocks, i.e., blocks of low variance.
From Eq. (6), the Case 3∆-error distribution forLena
will be more concentrated near zero. The benchmark case
of self-similarity is the constant imageu = C. Here, all
three∆(q)-error distributions consist of a single peak at
∆ = 0.

In [2], we examined the Case 3 and 4∆ij distributions
for a number of test images. Some results are presented
in Table 1. The entries have been arranged in a rough or-
der of “decreasing self-similarity” based upon increasing
mean and, to some extent, increasing width. Estimates
of the (natural logarithm) entropies of these distributions
have also been presented in this table (third column) – note
that with the exception ofSan Francisco, they increase as
we proceed down the table. TheLenaandMandrill im-
ages can be viewed as lying roughly on opposite sides of
a spectrum of distributions that vary in their mean value
and variances.

There may well be concern that the images examined
above do not form a suitably broad sampling of “natural
images.” For this reason, the experiments have been re-
peated on a much larger set of natural images, namely 700
images from 21 datasets in total taken from the Univer-
sity of Washington ‘Groundtruth Database’. The findings
were qualitatively similar to those reported above.

3.1. The effects of noise on∆-error distributions

The presence of noise in an image will generally decrease
the ability of its subblocks to be approximated by other
subblocks. As such, we expect that the∆-error distribu-
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Figure 1. Case 1 error distributions∆(1)
ij = ‖u(Rj) − u(Ri)‖, i 6= j, for 512 × 512-pixel normalizedLenaandMandrill

images, over interval[0, 1]. 8 × 8-pixel blocksRi.
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Figure 2. Same-scale RMS self-similarity error distributions – Cases 1, 2 and 3 – for normalizedLenaandMandrill
images, over interval[0, 0.5]. Case 1 distributions from Fig. 1 are shaded. In all cases,8 × 8-pixel blocksRi were used.
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Figure 3. Distributions ofσ(u(Ri)) of 8 × 8-pixel blocks for normalizedLenaandMandrill images, over the interval
[0, 0.5]. Note the similarity to Case 3 distributions of Fig. 2.
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Figure 4. Distributions of Case 3, same-scale,α greyscale coefficients for normalizedLenaandMandrill images. The
distributions for the Case 4, cross-scale cases are virtually identical.

tions will be shifted away from zero error and possibly
broadened as well. This was observed in [2] and will be
discussed only briefly here.

In Fig. 5 are shown the∆-error distributions for the
normalizedLenaimage for added Gaussian noiseN (0, σ2)
with several variances (right column). In the left column
are shown the∆-error distributions for the “pure noise”
imagesu = 0.5 + N (0, σ2) for comparision. (In these
cases, the∆-distributions of the noiseless images,u =
0.5, consist of a single peak at∆ = 0.) In all cases, the
peaks of the distributions move outward asσ increases.
Moreover, the peaks for the noisyLenaroughly coincide
with the peaks of their pure noise counterparts. For Case
3, it can be shown [2] that the∆-distributions for pure
noise images peak at the standard deviationσ. In fact, this
is is the basis of the classical block-based noise variance
estimation method found in textbooks, e.g., [17].

Finally we note that for sufficiently lowσ, i.e., σ ≤
0.1, the∆-error distributions of the pure noise images are
sharper than those of the noisyLena images. For such
low σ-values, blocks of pure noise images are quite “flat”,
hence well-approximable by other blocks. On the other
hand, natural images will have blocks with more structure
– these blocks will be less approximable. These observa-
tions may provide a partial answer to a question posed by
D. Ruderman [26], namely, “How do natural images differ
from random ones?”

3.2. Application to “nonlocal-means denoising”

As is well known, a standard technique for the reduction
of additive white noise is to average over multiple sam-
ples. This is the basis of the very effective “nonlocal-
means denoising algorithm” [6], where the multiple sam-
ples are provided by the image itself. Very briefly, each
pixel u(i) of a noisy image is replaced by a convex com-
bination of other pixel valuesu(j) from the image. The
weightsλij of this averaging procedure depend upon the
similarity between neighbourhoodsNi andNj centered
about pixelsi and j, respectively. NeighbourhoodsNk

that do not approximateNi very well, i.e., with highL2

error ‖Ni − Nk‖, are assigned low weights. In essence,
the nonlocal-means algorithm relies on the translational
self-similarity of an image, i.e., Case 1.

It is remarkable that the NL-means denoising method
works so well. Because of the translational symmetry re-
quirement, only a few blocks generally contribute signifi-
cantly to the denoising of a given pixel. In some applica-
tions, it would not seem unreasonable to relax this restric-
tion and allow constant greyscale shifts (Case 2), thereby
increasing significantly the number of blocks that could
contribute to the denoising. As we shall show later in this
paper, such a slight relaxation of the method is observed
to improve denoising. Moreover, the computational cost
is minimal since the optimal greyscale shiftsβ are easily
computed, cf. Eq. (4).

4. CASE 4: TWO-SCALE, AFFINE
SELF-SIMILARITY

The ∆-error distributions for Case 4, cross-scale match-
ing are generally quite similar to their Case 3, same-scale
counterparts. In Fig. 6 are presented histogram plots
of the approximation errors∆ij for the Lena andMan-
drill test images, once again for range block partitions
R formed by the set of all8 × 8 nonoverlapping pixel
blocks of the images (642 = 4096 in total). For each
image, the domain poolD was formed from the set of
322 = 1024 16 × 16 non-overlapping pixel blocks. In
addition, for each range/domain block pairingRj/Di, we
considered all eight square-to-square contractions, for a
total of 33,554,432 collage errors. The histogram distri-
butions are very similar to the Case 3 same-scale∆-error
distributions shown in Fig. 2.

The effect of additive Gaussian noiseN (0, σ2) on Case
4, cross-scale∆-error distributions is the same as for the
Case 3, same-scale case: As the varianceσ2 is increased,
the∆-error distributions are pushed away from the zero-
error axis. Moreover, these distributions will peak atσ.
The Case 4 distributions are virtually identical to those in
the bottom row of Fig. 5 and will not be included here.

Case 4, cross-scale self-similarity forms the basis of
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Figure 5. ∆-error distributions for constant imageu = 0.5 (left) and normalizedLena image (right) plus independent
Gaussian noiseN (0, σ2), Cases 1-3. Forσ = 0, the∆-distributions of the imageu = 0.5 (left column) consist of a single
peak at∆ = 0.
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Figure 6. Histogram distributions of two-scale (Case 4) collage errors∆(4)
ijk for all 16 × 16 to 8 × 8 pixel domain-range

block pairings (and 8 square-to-square contractions) forLenaandMandrill images.

fractal image coding [11, 24]. Given a “target” imageu,
each subblocku(Ri) is approximated by a geometrically-
contracted and affine greyscale-modified copy of a larger
subblocku(Dj). In traditional fractal coding, the range-
domain assignments(i, j(i)) and associated greyscale pa-
rameters(αi, βi) define afractal transformoperatorT .
We may write Eq. (1) as follows,

u(x) ≈ (Tu)(x) = αiu(w−1
i,j(i)(x)) + βi, x ∈ Ri. (7)

Under appropriate conditions [12] involving theαi and the
contraction factors of the spatial mapswi,j(i), T is con-
tractive in L2(X). From Banach’s fixed point theorem,
this implies the existence of a unique fixed point function
ū = T ū. Furthermore,̄u may be generated by iteration:
Starting with any seed imageu0, let un+1 = Tun. Then
un → ū asn → ∞. (In the discrete case, convergence
is achieved after a finite number of iterations.) Unless all
greyscale parametersβi are zero, which is never the case
in practice, the fixed point̄u is nonzero. And from Eq.
(7), ū is an approximation to the target imageu, to be dis-
cussed in more detail below.

The fractal transform operatorT in Eq. (7) is anon-
local operator since blocks of an image function are re-
placed by modified copies of blocks from elsewhere in
the image. Indeed, the fixed pointū of T is affinely self-
similar since the approximation in Eq. (7) becomes an
equality:

ū(x) = (T ū)(x) = αiū(w−1
i,j(i)(x)) + βi, x ∈ Ri. (8)

The mathematical basis for fractal-based approxima-
tion is provided by the so-calledCollage Theorem[5],
which is a simple consequence of Banach’s Theorem:

‖u − ū‖ ≤
1

1 − cT

‖Tu − u‖, (9)

wherecT is the contraction factor ofT . Given a set of
range blocksR and adomain poolD, one tries to to make
the approximation error‖u − ū‖ as small as possible by

minimizing thecollage error‖u−Tu‖. From Eq. (7) this
is generally done as follows: For each range blockRi, we
search the domain poolD for the blockDj(i) that yields
the lowest approximation error∆ij in Eq. (2). (In most
applications, the range of theαij greyscale parameters is
restricted to[−αmax, αmax], whereαmax is typically 1 in
value, in order to guarantee contractivity ofT .) For this
reason, fractal coding has often been refered to asself-
vector quantization– the codebook used to approximate
an image comes from the image itself.

Of course, if the size of the domain poolD is in-
creased, it may be possible to decrease the collage error.
However, an increase in the size ofD implies a greater
computational cost because of the searching involved. This
is a well known problem in fractal coding [11, 24]. The
procedure outlined above, referred to ascollage coding
in the fractal coding literature, was first proposed by A.
Jacquin [21] and forms the basis of most, if not all,block-
based fractal codingprocedures.

In Fig. 7 (lower left) is shown the fixed point approx-
imation ū to the standard512 × 512 pixel Lenaimage (8
bits/pixel) obtained from collage coding, once again using
a partitionR of nonoverlapping8 × 8-pixel blocks and
domain poolD of nonoverlapping16 × 16-pixel blocks.
(This choice of domain pool is clearly not optimal.) This
image was obtained by starting with the seed imageu0(x) =
255 (plain white image) and iteratingun+1 = Tun to
n = 15. Iteratesu1, u2 andu3 are also shown in this
figure.

Historically, most fractal image coding research was
concerned with compression – obtaining the best possible
accuracy with the smallest domain pool. As such, these
investigations were primarily concerned with the accuracy
provided by the optimal domain blocks in a given domain
pool. The fact that most range blocks are well approxi-
mated by a number of range blocks does not seem to have
been discussed, let alone characterized quanttatively, as
done above.
Fractal image denoising: As with any lossy compres-



Figure 7. Starting at upper left and moving clockwise: The iteratesu1, u2 andu3 along with the fixed point̄u of the fractal
transform operatorT designed to approximate the standard512 × 512 (8 bpp) “Lena” image. The “seed” image was
u0(x) = 255 (plain white). The fractal transformT was obtained by “collage coding” using 40968 × 8 nonoverlapping
pixel range blocks. The domain pool consisted of the set of 1024 nonoverlapping16 × 16 pixel blocks.

sion method, the simple fractal coding of a noisy image
produces some denoising [15, 16] . There are two prin-
cipal reasons: (i) the affine greyscale fitting between do-
main and range blocks causes some variance reduction in
the noise, and (ii) the spatial contraction/pixel decimation
involved in mapping domain blocks to range blocks pro-
vides further variance reduction. Additional denoising can
be obtained by using estimates of the noise variance to es-
timate the fractal code of the noiseless image [15].

The fact that each range block is well approximated
by a number of domain blocks can be exploited to per-
form denoising by using multiple copies [1], a cross-scale
analog of the nonlocal means denoising method. We shall
return to a discussion of such amultiparent fractal trans-
form approach later in the paper.

5. MEASURE-VALUED IMAGES AND THEIR
APPLICATIONS

We now show how a measure-valued image formulation
may be used in this self-similarity model. Mathematical
details are to be found in [22].

5.1. A complete metric space of measure-valued im-
ages

In what follows,X = [0, 1]n will denote the “base space,”
i.e., the support of the images.Rg ⊂ R will denote a
compact “greyscale space” of values that our images can
assume at anyx ∈ X . (The following discussion is easily
extended toRg ⊂ R

m to accomodate color images, etc.)
LetM denote the set of all Borel probability measures on

Rg anddH the Monge-Kantorovich metric on this set:

dH(µ, ν) = sup
f∈Lip1(X,R)

[
∫

X

fdµ −

∫

X

fdν

]

. (10)

Here,Lip1(X, R) denotes the set of functionsf : X → R

such that|f(x1) − f(x2)| ≤ d(x1, x2) ∀x1, x2 ∈ X .
For a givenM > 0, let M1 ⊂ M be a complete

subspace ofM such thatdH(µ, ν) ≤ M for all µ, ν ∈
M1. We now define

Y = {µ(x) : X → M1, µ(x) is measurable} (11)

and consider on this space the following metric,

dY (µ, ν) =

∫

X

dH(µ(x), ν(x))dm(x), (12)

wherem denotes Lebesgue measure onX . The metricdY

is well defined, sinceµ andν are measurable functions.
Moreover,dH is bounded so that the functionξ(x) =
dH(µ(x), ν(x)) is integrable onX . In [22], it was proved
that the space(Y, dY ) is complete.

5.2. Application to same-scale self-similarity

In what follows, we again assume that the image func-
tion u is an n1 × n2 pixel array with greyscale range
Rg = [0, 1]. We also assume that the range and domain
blocks come from a common poolR. We now consider all
possible range-domain block pairs(Ri, Rj), along with

the isometricaffine transformationsw(k)
ij , 1 ≤ k ≤ 8, that

mapRj to Ri. For simplicity of notation, we omit thek



index. (Indeed, in most of the examples presented in this
section, we employ only translations, i.e.,k = 1.)

For a given same-scale scheme, i.e., Caseq, where
q ∈ {1, 2, 3}, we first compute all possible appropriate

approximation errors∆(q)
ij , cf. Eq. (2) and letφ(q)

ij (t) de-
note the greyscale maps associated with these errors. (Re-
call that the greyscale maps assume different forms in the
three Cases.) For each range-domain pairing(Ri, Rj), we
then assign a weighting functionpij which is normalized
as follows,

NR
∑

j=1

pij = 1, 1 ≤ i ≤ NR. (13)

An obvious question is the choice of the weighting param-
eterspij . It would seem natural to employ higher weights
for those domain blocksRj that yield lower approxima-
tion errors∆ij . Here we consider a weighting scheme
that is similar in form to the one used in [6] for NL-means
denoising:

pij =
1

Zi

exp

(

−
∆P

ij

hP

)

, (14)

whereP > 0, h > 0 andZi =
∑

j exp(−∆P
ij/hP ) is the

normalization factor. In practice,P is either 1 or 2. As for
the adjustable parameterh, note that:

1. In the limith → 0, thepij(s) with the smallest error
∆ij will be selected.

2. In the limith → ∞, all pij become equal.

For a given Caseq and a set of prescribed weights
{pij} we may define an operatorT (q), the action of which
on an image functionu(x) is given as follows: For an
x ∈ Ri,

v(x) = (T (q)u)(x)

=

NR
∑

j=1

pijφ
(q)
ij (u(w−1

ij (x))). (15)

In other words, the valueu(x) at anx ∈ Ri is replaced by
a weighted sum of modified pixel values – thepreimages
of the valueu(x) – from all other blocksRj . TheT (q)

operators are therefore nonlocal operators.
The following result [22] establishes that the same-

scale “collage distance,”‖T (q)u−u‖ (cf. Eq. (9), reflects
the total Caseq self-similarity of the image:

‖T (q)u − u‖ ≤
NR
∑

i,j

pij∆
(q)
ij . (16)

For the special self-similar imageu = C, ∆ij = 0 for
all i, j, implying that‖T (q)u − u‖ = 0. In other words,
u = C is a fixed point ofT (q) for q ∈ {1, 2, 3}.

The T (q) operators essentially “collapse” all preim-
ages of an image function valueu(x) onto a single value
T (q)u(x). The measure-valued image function formalism

introduced above allows us to keep track of therange of
valuesassumed by these preimages. For this purpose, we
associate with the image functionu(x) a corresponding
measure-valued image functionµ(x) ∈ (Y, dY ) as fol-
lows:

µ(x) = δu(x), x ∈ X. (17)

Here, δt denotes a unit point mass measure att ∈ Rg.
We now define a measure-valued imageν = Mµ ∈ Y as
follows: For any measurable setS ⊂ Rg = [0, 1] and an
x ∈ Ri, we define

ν(q)(x)(S) = (M (q)µ)(x)(S)

=
∑

j=1

pijµ(w−1
ij (x))(φ−1

ij
(q)(S)).(18)

The measureν(q), q ∈ {1, 2, 3}, is designed to reflect the
Caseq self-similarity of the image functionu: Given a
range blockRi ⊂ X , then at each pointx ∈ Ri, we keep
track of all greyscale values of the image function that are
mapped tox by a domain-range mappingwij and modi-

fied by the corresponding Caseq greyscale mapφ(q)
ij (t).

These values are then weighted and “assembled” to define
the probability measureν(q) atx, i.e.,ν(q)(x).

In Fig. 8 are shown pictorial representations of the
measuresν(q)(x), q = 1, 2, 3. For each Caseq, we have
used three values of the weight parameterh in Eq. (14),
along withP = 2. In these figures, darker regions have
higher associated measures. As expected from the previ-
ous figure, the measures become more concentrated about
the actual greyscale valuesu(256, j), 1 ≤ j ≤ 256 of the
Lena image as we move from Case 1 to Case 3. In all
three cases, the weight parameter valueh = 0.01 effec-
tively concentrates the measures close to theLena image
values, even for the Case 1 measure. However, ash is in-
creased to0.1, the Case 1 measure becomes quite diffuse
and ath = 1.0, quite unrelated to theLenaimage values.
For Cases 2 and 3, there is virtually no change between
h = 0.1 andh = 1.0 and evenh = ∞ (equal probabili-
ties, not shown in figure).

5.3. Effects of noise on measures and a simple denois-
ing method

In the top row of Fig. 9 are shown pictorial representations
of the measuresν(q) associated with the pixelsu(256, j),
1 ≤ j ≤ 256, of the normalizedLena image with added
noiseN (0, σ2), whereσ = 0.1. These pictures should
be compared to their noiseless counterparts in the middle
column of Fig. 8, As expected, the measures for the noisy
case are more diffuse, although the Case 3 measure ap-
pears to be as concentrated for the noisy case as for the
noiseless one.

A natural question is whether the meansx̄ of these
measures estimate the greyscale values of the noiseless
Lena image. In the middle row of Fig. 9 are plotted the
mean values of these measures for the three casesq =
1, 2, 3. The root-mean-square error with respect to the
noiseless (normalized) image valuesu(256, j), 1 ≤ j ≤



(a) Case 1,h = 0.01 (b) Case 1,h = 0.1 (c) Case 1,h = 1.0

(d) Case 2,h = 0.01 (e) Case 2,h = 0.1 (f) Case 2,h = 1.0

(g) Case 3,h = 0.01 (h) Case 3,h = 0.1 (i) Case 3,h = 1.0

Figure 8. Pictorial representations of measuresν(x)(q), q = 1, 2, 3 for theu(256, j), 1 ≤ j ≤ 256 row of pixels for the
Lenaimage. Three values of the weighting parameterh in Eq. (14) have been used, withP = 2.



(a) ν(x), Case 1 (b) ν(x), Case 2 (c) ν(x), Case 3

(d) x̄, RMSE= 0.107 (e) x̄, RMSE= 0.093 (f) x̄, RMSE= 0.095

(g) σ(x) (h) σ(x) (i) σ(x)

Figure 9. Top row: Measuresν(x)(q) for normalizedLenaimage with added Gaussian noise withσ = 0.1. In all cases,
h = 0.1. Vertical axis is[0, 1]. Middle row: Mean values̄x of theν(x)(q) measures. Vertical axis[0, 1]. These results
represent denoised values of the noisyLena image and should be compared to the noiseless image values inFig. 8(a).
Bottom row: Variancesσ(x) of the corresponsdingν(x)(q) measures. Vertical axis[0, 0.15].



256 are given for each case. As expected, the approxima-
tions are poorest in regions of high variance/oscillation,
for example,130 ≤ x ≤ 200.

In the bottom row of Fig. 9 are plotted the variances
σ(x) of the corresponsdingν(q)(x) measures. In accor-
dance with the plots of the top row, there is a dramatic
reduction in variance as we move from Case 2 to Case 3.

Note that, regardless of the comparatively high diffu-
sivity of the Case 1 and Case 2 measures, the accuracy of
their means – in terms of RMSE – are virtually identical to
that of Case 3. In essence, all three same-scale similarity
methods – Cases 1, 2 and 3 – appear to perform denoising
almost equally well in this example. This is generally true
for the case of coarser approximations. The three meth-
ods perform differently when both the value ofh and the
range block size are decreased to produce finer approxi-
mations. For example, Fig. 10 shows the mean value plots
that result fromh = 0.05 and4× 4-pixel range blocks. In
this case, there is an improvement in accuracy as we move
from Case 1 to Case 3.

The above analysis, however, involves only a single
(half) row of pixels in theLenaimage. When we examine
the results of Case 1-3 denoising on a larger portion of
the image, as shown in Fig. 11, (upper left quarter of the
Lenaimage), the differences between the methods, at least
in terms of RMSE values, become more pronounced.

That being said, these few results are not meant to be
interpreted as a complete analysis of this approximation
problem. A more detailed investigation, which is beyond
the scope of this paper, is clearly needed.

The NL-means denoising method [6] may be viewed
as an individual pixel-based variation of the Case 1, same-
scale operatorT (1) of Eq. (15). Because it operates on in-
dividual pixels (based on Case 1 similarity between neigh-
bourhoods), the NL-means method will yield better re-
sults – of course at greater computational expense. In ei-
ther procedure, an appropriately-defined operatorM and
therefore associated measureν(x) may be defined as an
intermediate step in the computation of the denoised value
v(x).

6. A FRACTAL TRANSFORM ON THE SPACE OF
MEASURE-VALUED IMAGES

In the same way as was done for Cases 1-3 in the pre-
vious section, a cross-scale operatorT (4) on image func-
tions that is based on Case 4 self-similarity may be de-
fined. Its functional form will be the same as in Eq. (15)
– as such, we forego writing it out explicitly. In this case,
however, we must recall that the spatial mapswij arecon-
tractions, mapping larger domain blocksDj onto smaller
range blocksRi.

Such an operator may be called amultiparent fractal
transform. The use of more than one domain block per
range block would certainly be counterproductive from
the viewpoint of data compression – one of the original
motivations of fractal image coding research. Here, how-
ever, were are concerned with image processing and anal-
ysis, not compression.

And, following the discussion of the previous section,
we may define an operatorM (4) on the space of measure-
valued functions(Y, dY ) that correponds to the multipar-
ent fractal transformT (4). This operator will have the
same form as in Eq. (18). In [22], a more general, yet
“blockless” form of theM operator was introduced and
analyzed, namely where the coefficientspij could bex-
dependent, and the greyscale mapsφij were assumed to
be Lipschitz. The important point is that under appropriate
conditions, the operatorM is contractive in the complete
metric space(Y, dY ), implying the existence of a unique
measure-valued function̄µ satisfying the fixed point rela-
tion µ̄(x) = Mµ̄. There are some very interesting math-
ematical consequences, including a recursive structure re-
lating the (place-dependent) moments of the measureµ̄. A
discussion of these features, however, is beyond the scope
of this paper.

The T (4) operator defines a natural Case 4 counter-
part of the Case 1-3 denoising algorithms of the previous
section – essentially a cross-scale, block-based, multipar-
ent fractal denoising method, which was investigated in
[22]. This method, however, yielded no significant im-
provement over the same-scale, Case 3 method, either af-
ter one application of theT (4) operator after iteration to
its fixed point. The results are virtually identical to those
of the third column in Fig. 9.

Stepping back a bit in time, the denoising potential
of the multiparent transform was shown by S. Alexander
in his Ph.D. thesis [1]. Noting that a range blocku′(Ri)
of a noisy image is generally well approximated by sev-
eral domain subblocksu′(Djk

(i)) after decimation and
greyscale modification, these approximations tou′(Ri)
could be viewed as samples which, when averaged, would
yield an estimate of the denoised subblocku(Ri) – es-
sentially a cross-scale and block-based version of the yet-
to-appear nonlocal-means denoising method. The use of
several domain blocks for each range block defined a mul-
tiparent fractal transformT ′. In general, its fixed point,
ū′, was found to be a good approximation to the noiseless
imageu. Several averaging schemes were investigated.

Indeed, most fractal denoising methods have focussed
on approximating the unknown noiseless counterpartu of
a noisy imageu′ by the fixed pointū′ of a contractive
fractal transformT ′ that is obtained by fractally coding
u′. In contrast, the Case 4 similarity method, following
its Case 1-3 counterparts, relies on the application of the
transformT (4), obtained fromu′, only onceto u′. A more
thorough comparison of the two methods remains to be
done.

7. SELF-SIMILARITY VS. “APPROXIMABILITY”

Earlier, we showed that the distributions of (Case 3 and
4) ∆-errors of an image functionu are virtually identical
to the distribution of its block variancesσ(u(Ri)), a con-
sequence of approximating image blocks by their mean
values. In this low-level, block-based picture, the self-
similarity of an image is essentially determined by the
degree of itsflatness, i.e., the percentage of blocks with



(a) Case 1, RMSE= 0.077 (b) Case 2, RMSE0.067 (c) Case 3, RMSE0.062

Figure 10. Mean values̄x of theν(x)(q) measures obtained from noisyLenaimage, where parameterh = 0.05.

(a) noisyLenaRMSE= 0.1 (b) Case 1, RMSE= 0.069

(c) Case 2, RMSE= 0.054 (d) Case 3, RMSE= 0.040

Figure 11. Results of Case 1-3 denoising of upper quarter ofLenaimage. In all cases,h = 0.05.



near-zero variance.
In [2], however, we observed that very similar (Case 3

and Case 4)∆-error distributions are obtained if we used
blocks fromanotherimage, e.g., using8× 8-pixel blocks
of Mandrill to approximate those ofLena, andvice versa.
In this case, the termapproximabilityis perhaps more ap-
propriate thanself-similarity.

The matter of approximability is of paramount impor-
tance to vector quantization (VQ). Indeed, the connection
between fractal coding and VQ was realized many years
ago, for example, [23, 18, 19, 20]. The use of image sub-
blocks from a collection of images to construct codebooks
for (cross-scale) fractal coders was nicely illustrated in
[23].

Structured vector quantization[10] is a same-scale ver-
sion of this method: using fixed sets of subblocks to ap-
proximate subblocks of the same size, with the help of
affine greyscale transformations. In none of the above ref-
erences, however, are the statistics of domain-range pair-
ings explicitly compiled or analyzed.

8. SELF-SIMILARITY IN THE WAVELET
DOMAIN

The ideas of self-similarity developed in Section 1 have
straightforward counterparts in the wavelet domain. To
date, we have not examined this idea in great detail, and
only preliminary results will be presented below. For sim-
plicity, we consider standard tensor-product wavelet ba-
sis expansions [25], for which the coefficients are conve-
niently arranged in a standard matrix form, as shown in
Fig. 12. Each of the blocksAh

k , A
v
k, A

d
k, 0 ≤ k ≤ K,

for a K > 0, contains22k wavelet coefficientsah
kij , av

kij ,
ad

kij , respectively. (In the case of512× 512-pixel images,
K = 8.) The three collections of blocks comprise thehor-
izontal, vertical anddiagonalquadtrees of the coefficient
tree.

For any wavelet coefficientaλ
kij , λ ∈ {h, v, d} in this

matrix we defineAλ
kij to be the unique quadtree withaλ

kij

as its root. In the Haar wavelet case, as is well known, for
a fixed set of indices{k, i, j}, the three quadtreesAh

kij ,
Av

kij and Ad
kij correspond to the same spatial block of

an image. For generalized wavelets, the correlation re-
mains, although the spatial region is diffused. In Fig. 12
are shown two sets of such quadtree triplets, for two con-
secutive values ofk, i.e.,k = k∗

1 andk = k∗

2 = k∗

1 + 1.
Given an image functionu, with associated wavelet

coefficient matrixA, we now examine how well quadtrees
Aλ

kij are approximated by other quadtreesAλ′

k′i′j′ , to be
written symbolically as

Aλ
kij ≈ φ(Aλ′

k′i′j′) = αAλ′

k′i′j′ , k′ ≤ k. (19)

It is certainly possible to consider rotations of the quadtrees
in the approximation. In what follows, however, we con-
sider only the rotationless case.

Note that only affine scaling transformations of the
form φ(t) = αt are used. Theβ shift term is omitted
since, at least theoretically for quadtrees of infinite length,

Ah
k∗

2
,i,j

Ad
k∗

2
,i,j

Av
k∗

2
,i,j

Av
k∗

1
,i,j
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k∗

1
,i,j
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k∗

1
,i,j

A
v
K

A
v
K

A
d
K

A
h
K

k∗

1
k∗

2

Figure 12. Wavelet coefficient table, showing some par-
ticular quadtrees.

their l2 nature must be preserved. As such, there are only
three cases of self-similarity to study:

1. Translational: We compare quadtrees at the same
scale, i.e.,k = k′, with α = 1.

3. Affine, same scale:Again, we compare quadtrees
at the same scale, i.e.,k = k′, but optimize overα.

4. Affine, two-scale: Here,k > k′, i.e., we approx-
imate higher-scale quadtrees with scaled copies of
coarser scale quadtrees that are situated higher in
theA matrix. In the pixel domain, this corresponds
to decimated domain blocks mapped to range blocks.

We have numbered these cases, omitting the nonexistent
“Case 2”, so that they may be considered as counterparts
of the pixel-based self-similarity cases that were studied
in earlier sections.

In Fig. 13 we have plotted∆-error histograms for
Cases 1 and 2 of theLenaandMandrill test images. Here,
k = k′ = 6. As well, we setλ = λ′ in Eq. (19), i.e., only
quadtrees with the sameλ value were used to approxi-
mate a quadtreeAλ

kij . (This restriction can obviously be
relaxed.) The approximation errors are simply thel2 er-
rors between the finite quadtrees. (In this case, they are
comprised of1 + 4 + 16 = 21 coefficients.) The simi-
larity between these distributions and their pixel-domain
counterparts, cf. Fig. 2, is quite striking. The addition of
Gaussian noise also pushes these distributions away from
zero.

The Case 4 distributions are virtually identical to their
Case 2 counterparts and are not plotted here. Indeed, the
Case 4 self-similarity exhibited by wavelet subtrees forms
the basis of fractal-wavelet image coding [27]. A multi-
parent fractal-wavelet denoising scheme was investigated
in [1]. It is conceivable that wavelet-based NL-means de-
noising, as well as zooming, could be performed.
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Figure 13. Same-scale RMS self-similarity error distributions for wavelet coefficient subtrees – Cases 1 and 3 – for
normalizedLena and Mandrill images, over interval[0, 2]. The same vertical scale was employed in both plots for
comparison. Herek = k′ = 6 andλ = λ′ in Eq. (19).

9. GETTING AWAY FROM L2: EXPLORING THE
USE OF SIMILARITY MEASURES

In [3], we explored the use of mutual information (MI) to
characterize self-similarity of image blocks. A motivation
lay in the widespread use of MI for the purpose of register-
ing images from different modalities, since each modal-
ity captures its own unique information. A primary dif-
ference between the usualL2 metric approach and MI is
that the former involves a comparison of greyscalevalues,
whereas the latter involves the comparison of greyscale
distributionsand their correlations. As such, it does not
necessarily follow that there will always bevisual self-
similarity.

Unfortunately, there are several practical difficulties
associated with this approach. The computation of MI re-
lies on an accurate estimation of probability distributions
and their entropies. These estimates naturally suffer when
the number of quantized greyscale values is too large, or
when block sizes are too small. In [3], better results were
obtained with six bit-per-pixel (bpp) images, i.e., 64 quan-
tized greyscale values. In Fig. 14 are presented histogram
distributions of the MI for 6 bppLenaandMandrill test
images. Here,64 × 64-pixel subblocks were used – in-
sufficient differentiation between the images was obtained
with smaller block sizes. This, of course, is unfortunate
since similarities at smaller scales, e.g.,8×8-pixel blocks,
cannot be ascertained.

The qualitative difference between theLenaandMan-
drill distributions is opposite to what was observed in the
L2-error case. Here, it is the MI distribution of theMan-
drill image that is more concentrated toward zero – recall
that lower MI values imply greater independence between
blocks. And as noise is added, the distributions become
sharper, with greater shifting toward zero MI.

We are now in the process of investigating other sim-
ilarity measures/perceptual metrics, for example,struc-
tural similarity [28].
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