
PARALLEL NON-LOCAL DENOISING OF DEPTH MAPS

Timo Schairer, Benjamin Huhle, Philipp Jenke, Wolfgang Straßer

University of Tübingen, WSI/GRIS

Sand 14, 72076 Tübingen, Germany

{schairer, huhle, jenke, strasser}@gris.uni-tuebingen.de

ABSTRACT

We give a brief discussion of denoising algorithms for

depth data and review our unified approach towards non-

local denoising. This algorithm removes outliers from

depth data and accordingly achieves an unbiased smooth-

ing result. Taking into consideration the intra-patch sim-

ilarity and optional color information, strong discontinu-

ities can be handled and fine detail structure in the data can

be preserved. To account for the high computational com-

plexity of the algorithm, we examine a parallel formula-

tion, present different data and task decomposition strate-

gies and investigate their applicability towards a GPU im-

plementation. We demonstrate that this approach scales

very well and that a significant speed-up can be achieved.

1. INTRODUCTION

In recent years, cameras that measure real world distances

based on the time-of-flight (ToF) principle are becoming

increasingly popular. A wide range of applications in scene

acquisition, virtual reality and entertainment in general

rely on data captured with such devices. Cameras that use

an active modulated light source and sensors produced in

standard CMOS technology (e.g., from PMDTec, Canesta

or Mesa Imaging) are prospective low-cost sensors which

could be deployed in standard applications, i.e., mass mar-

kets. Depth data from different scanning devices may

show very different noise characteristics. A common ap-

proach is to classify two different origins: Every measure-

ment given by the sensor is affected by a certain level of

inaccuracy. In some cases, however, the measurements

can completely fail due to the illumination situation or be-

cause of problematic properties of the sampled surfaces

(e.g., strongly non-Lambertian reflectivity). These out-

liers need to be excluded from further processing, not only

because they degrade the model quality, but since they

could also lead to biased reconstructions, e.g., smoothing

results. Measurements performed with a ToF sensor are

no exception to this observation. Therefore, appropriate

postprocessing of the depth data is essential for photo-

realistic models. While systematic errors can in part be

corrected by means of calibration, which reduces the noise

level significantly, the data remains noisy [1, 2].

There are several reasons why it is reasonable to de-

noise the data in sensor space instead of regarding 3D point

clouds: For most sensors we have to deal with (additive)

noise in viewing direction which is implicitly modeled if

we consider the data as a depth map. Furthermore, the fil-

tering is performed earlier in the pipeline and subsequent

steps such as the registration of several frames can rely on

the refined data. In contrast, for common surface recon-

struction techniques in 3D, e.g., multiple merged frames

are necessary – otherwise, occlusions would impede sound

solutions. In practice, we believe that a two-stage data

enhancement is necessary, comprising an early data fil-

tering in sensor space and a subsequent surface recon-

struction computed on a registered model. We review our

denoising algorithm that detects outliers in a first stage

and yields unbiased and feature-preserving smoothing re-

sults [3]. This approach is based on an image restoration

technique, namely the recently presented non-local means

(NL-Means) filter [4] that makes use of self-similarity in

the data. Due to the high complexity of this algorithm

and since programmable graphics hardware (GPUs) and

multi-core CPUs are widely available, it is useful to look

for a scalable and efficient parallel formulation. We present

different data and task decomposition strategies and inves-

tigate their applicability towards a GPU implementation

using the CUDA framework1.

Firstly, we give a brief overview of different smooth-

ing techniques and review our robust non-local smoothing

technique (Section 2). Then, we discuss how this smooth-

ing filter can be used to formulate an iterative outlier de-

tection scheme (Section 3). We look at different parallel

formulations of our algorithm (Section 4) and show results

using data from a system consisting of a time-of-flight and

a color camera (Section 5).

2. SMOOTHING

Denoising in general is a highly ill-posed problem and

demands for some means of regularization. The filter-

ing of 2D data such as digital images has been studied

intensively for several decades now and a variety of tech-

niques have been developed. Standard linear filters such

as the Gaussian are low-pass filters that smooth the data

by averaging over neighboring pixels. Thereby, noise is

removed but the data is blurred and features such as edges

are destroyed. Therefore, low-pass filters are appropriate

if a completely smooth reconstruction is desired, but espe-

1see the NVidia CUDA website: http://www.nvidia.com/

object/cuda home.html

Figure 1. NL-Means Filter at a depth discontinuity: Smoothing in the depicted direction is prevented by a low similarity

of the neighbored patches. Results on synthetic data (two distant surfaces at constant depth) from left to right: Input data

with Gaussian noise, original NL-Means Filter, and our approach with additional weights ξ.

cially on depth data of general scenes these filters are not

applicable.

Yaroslavsky [5] introduced a filter that restores a pixel

by an average of its neighbors weighted by their similar-

ity. The bilateral [6] or SUSAN [7] filter uses the same

concept. However, instead of using a spatial box function

as done in the Yaroslavsky filter, the neighboring pixels

are continuously weighted by their spatial Euclidian dis-

tance. This results in a weight assigned to each neighbor-

ing pixel, that takes into account spatial distance as well

as distance in the range domain. The weighting scheme

renders the filter discontinuity-preserving, since the influ-

ence of the neighboring pixels is limited. A theoretical

derivation of the bilateral filter is given in [8] and the rela-

tion to extended nonlinear diffusion methods is described

in [9]. The bilateral filter is very popular in its original

field but was also successfully applied to a wide variety of

applications (see [10]). The underlying idea of the bilat-

eral filter is easily extended to multi-modal data resulting

in the joint- or cross-bilateral filter (e.g. [11]) where the

filter weights are based on the similarity determined on a

different data source or from the combination of several

data sources, respectively. Kopf et al. [12] use this tech-

nique to enhance depth maps exploiting the dependencies

of discontinuities in the depth and color domain. Bilateral

Filtering was also applied to mesh denoising [13] as well

as to 3D point clouds [14].

2.1. Non-Local Means Filter (NL-Means)

The NL-Means filter was proposed recently by Buades et

al. [4] for image restoration. It follows a similar idea as

the bilateral filtering approach, namely to restore a pixel

by a weighted average of similar pixels

v′(i) =
∑

j∈Wi

w(i, j)v(j), (1)

where Wi is a potentially large search window around i.

The similarity weight w, however, is determined in a dif-

ferent way. Instead of comparing the single pixel values at

positions i and j, patches (with index set N) surrounding

both pixels are taken into account. The weight is deter-

mined as

w(i, j) =
1

Zi

e
− 1

h

∑

k∈N
Ga(‖k‖2)(v(i+k)−v(j+k))2 , (2)

with normalization constant

Zi =
∑

j∈I

e
− 1

h

∑

k∈N
Ga(‖k‖2)(v(i+k)−v(j+k))2 , (3)

and the filtering parameter h . The pixelwise distances are

weighted according to their offset from the central pixel

using a Gaussian kernel Ga with standard deviation a . In

this way the self-similarity of the image is taken into ac-

count and even fine details that occur repeatedly can be

distinguished from noise. A technique based on the same

idea has also proven to be successful in the field of tex-

ture synthesis [15]. The NL-Means filter was also used

for simultaneous denoising and depth reconstruction from

noisy image pairs [16]. Schall et al. [17] were the first

to apply NL-Means for denoising of 3D point data. They

suppose that the data is given on a (not necessarily regu-

lar) 2D grid and compute the similarity weight according

to the Euclidian distance in 3D. Depending on the type of

noise, the point coordinates are corrected in the direction

of the line-of-sight or along an estimated normal.

2.2. A variant of NL-Means for Depth Data

In earlier work, we presented a technique to remove noise

in depth data based on the NL-Means algorithm [3] which

we review briefly in the following.

We experienced that, on depth data, the original NL-

Means algorithm as it is used in the field of image restora-

tion produces undesirable artifacts near strong discontinu-

ities. The filter averages pixels along edges, but in a dis-

tance less than the neighborhood radius, smoothing will

occur in neither direction perpendicular to the edge be-

cause of the strong dissimilarities of the patches. We il-

lustrate this effect in Figure 1.

In order to smooth over similar regions of depth also

in the presence of a near edge, we introduce an additional

term ξij in the computation (Eq. 2) of the patch similarity

w(i, j) =
1

Zi

e
− 1

h

∑

k∈N
ξikGa(‖k‖2)(v(i+k)−v(j+k))2 , (4)

that results in an influence function similar to the one of

the bilateral filter for pixels in other patches of the search

window. The new weighting factor

ξik = e
−

(v(i)−v(i+k))2

h (5)

constrains the similarity comparison to regions of simi-

lar depths, using the same parameter h as in the compu-

tation of the inter-patch distances. This corresponds to

the heuristic of searching self-similarities on the same sur-

face. Note that the differing sampling spacing on surfaces

in different depth regions prevents the patch search from

detecting similar detail structure. This weighting scheme

leads to an effect similar to the adoption of NL-Means

to 3D point data. The authors of [17] consider Euclidian

distances in 3D instead of a Gaussian weighting in pixel

coordinates (Eq. 2) and therefore minimize the influence

of pixels that belong to very distant regions in depth. With

our approach we explicitly distinguish different depth re-

gions in order to achieve the same smoothing effect also

on distant surfaces where the sampling density is lower.

As an additional cue for the estimation of

p (v(i)|{v(i + k)}k∈N) (6)

we consider the use of color information and compute a

weight

w(u)(i, j) =
1

Z
(u)
i

e
− 1

h
(u)

∑

k∈N
ξ
(u)
ik

Ga(‖k‖2)‖u(i+k)−u(j+k)‖2
2 .

(7)

corresponding to Equation 2. Here, u(i) denotes the color

(we use RGB) assigned to pixel i and variables with su-

perscript (u) are analogous to their counterparts in Equa-

tion 4. This yields the combined NL-Means formulation

v′uv(i) =
∑

j∈Wi

w(i, j) w(u)(i, j) v(j), (8)

resulting in an estimate of v′(i) according to

p (v(i)|{v(i + k)}k∈N, {u(i + k)}k∈N) . (9)

3. OUTLIER DETECTION

The NL-Means filter performs as an estimator of a pixel

value given its surrounding. We described in [3] how this

fact can also be employed in order to detect abnormal val-

ues of central pixels in depth patches and classify these as

outliers. A short discussion of this outlier detection tech-

nique is given in the remainder of this section:

When computing the similarity of patches, we rely on

pixel values (in the destination as well as in the source

patch) that are potential outliers. We therefore use an it-

erative algorithm in the manner of expectation maximiza-

tion (EM, [18]). We consider the probability distribution

pinlier

(

v(i)|v(N
∗

i)
)

of a pixel v(i) given its surrounding

v(N
∗

i), where N
∗

i := {i+k}k∈N \ {i}. The central pixel

is not taken into account in order to get unbiased similar-

ity estimates in case pixel i is an outlier. The NL-Means

in its original formulation (Eq. 1) computes the expecta-

tion value E
(

v(i)|v(N
∗

i)
)

:= µi. Assuming that pinlier

follows a normal distribution, we compute the weighted

variance

σ
(

v(i)|v(N
∗

i)
)

=
1

Ci

∑

j∈Wi

w∗(i, j) (v(j) − µi)
2
, (10)

normalized by

1

Ci

=

∑

j∈Wi
w∗(i, j)

(

∑

j∈Wi
w∗(i, j)

)2

−
∑

j∈Wi
w∗(i, j)2

. (11)

To handle outliers, the weights w∗(i, j) denote the patch

similarity (Eq. 2) multiplied by the product of the validity

estimation of pixel i and j. These probabilities are initial-

ized with 1.0 and updated in successive iterations accord-

ing to the mixture model

pmix

(

v(i)|v(N
∗

i)
)

= α pinlier

(

v(i)|v(N
∗

i)
)

+

poutlier

(

v(i)|v(N
∗

i)
)

, (12)

where poutlier follows a uniform distribution, i.e., is con-

stant and α is computed as

α =
1

|Wi|

∑

i∈Wi

pinlier

(

v(i)|v(N
∗

i)
)

. (13)

Summarizing, in each iteration we compute the mean and

variance of the inlier distribution

pinlier

(

v(i)|v(N
∗

i)
)

= N (µi, σi) (14)

for each pixel i, i.e., one NL-Means step, as well as α and

the probability of pixel i being an inlier according to

P (i = inlier) = θ α pinlier

(

v(i)|v(N
∗

i)
)

. (15)

A user-specified parameter θ is used to determine the sen-

sitivity of the detector. Outliers are finally removed based

on the binary decision

P (i = inlier) < 0.5. (16)

Once outliers in the depth map have been detected, the

smoothing algorithm described in Section 2.2 can be ap-

plied. We exclude outlier pixels in the sum of Equation 1,

i.e., we sum over j ∈ Wi \ {k} where v({k}) have been

classified as outlier values. Furthermore, we exclude out-

lier pixels when computing the patch similarity according

to Equation 2.

4. PARALLELIZATION

In this section we discuss the need for a fast implementa-

tion of both the original NL-Means algorithm as well as

our robust non-local denoising algorithm. This is moti-

vated by the complexity of the original algorithm and is of

even higher interest in the context of our algorithm, which

incorporates an iterative application of the core algorithm

for the outlier detection step.

Since programmable graphics hardware (GPUs) and

multi-core CPUs are widely available, we explore differ-

ent methods to efficiently parallelize our denoising scheme.

This is in contrast to the work done by Buades [19], who

focuses on faster versions of the original serial algorithm.

Kharlamov et. al [20] presented a GPU implementa-

tion of the original NL-Means filter for denoising of color

images, as well as an optimized version of the algorithm,

computing only one distance per patch. Especially the lat-

ter algorithm runs very fast and while the approximations

result in artifacts that are noticeable but tolerable on color

data, these effects are very disturbing on depth data.

We present different implementation independent data

and task decomposition strategies in Subsection 4.1 and

investigate their applicability and the resulting speed-ups

that can be achieved by a GPU implementation in Subsec-

tion 4.2.

4.1. General Considerations

Note that when discussing parallel programming princi-

ples, we keep to the nomenclature described by Grama et

al. [21]. As described earlier in Sections 2 and 3, the algo-

rithm can be divided into two separate parts, namely the

iterative outlier detection followed by the final smoothing

step. To simplify the discussion of the different parallel

formulations of the algorithm, each step of the outlier de-

tection can be thought of as a single smoothing step. The

only difference is, that instead of computing a smoothed

depth value per pixel, the outlier probability per pixel is

calculated.

Given this simplification, the complexity of our de-

noising algorithm performing i iterations in the outlier de-

tection step on a depth map of width sx and height sy with

search window (W) radius rW and patch (N) radius rN
is

(

sxsy × (2rW + 1)2 × (2rN + 1)2
)

× (i + 1). (17)

As for practical numbers, when using a straightforward

serial version of the algorithm running on a normal PC

(QuadCore 2.4Ghz) it takes about 14 minutes to denoise a

depth map of size 160 × 120 with parameters rW = 8,

rN = 3 and i = 10. Since it is desirable to expand

the size of the search window radius as much as possi-

ble while striving for better performance, it is useful to

examine possible parallel versions of the algorithm.

It is easy to see, that the parallel computation has to

be synchronized after each iteration, since the following

calculations rely on the results of the previous iteration.

Therefore it is interesting, how to efficiently parallelize

one single iteration of the algorithm. The computation of

the result of one single pixel is independent of all other re-

sults making our algorithm a perfect candidate for a data

decomposition technique and it is reasonable and easy to

perform partitioning on the output data. Dividing the des-

tination image into non-overlapping regular blocks of pix-

els induces a straightforward parallel formulation of the

algorithm, since no communication across tasks has to be

performed: Each task is assigned a block of pixels to com-

pute the corresponding results for each pixel separately.

Branching of the control flow only occurs when the com-

putation has to be performed on pixels which are close to

the boundary such that their corresponding patch contains

pixels that extend beyond the actual image. Since this is

not the general case, a minimal synchronization overhead

can be expected and load balancing will be of no issue.

Depending on the number of available processors or

the type of processor (CPU or GPU), different granulari-

ties of the decomposition can be considered. The coars-

est one is probably most suitable for a CPU multi-core

implementation, where the number of tasks is equal to,

or a multiple of, the total number of physical processors.

This can alleviate the typically large overheads of thread

creation and switching of threads. A more fine-grained

formulation can be obtained by blocks consisting of only

one pixel, leading to a huge number of tasks suitable for a

massively parallel architecture like a GPU, where thread

switching is comparably cheap. When looking at the algo-

rithm itself, we compute for every output pixel the intra-

patch similarity (see Equation 4) of the current patch and

a lot of weighted squared distances between the pixels of

both patches (one is fixed for the current pixel, the other

”slides” over all pixels inside the window radius) and their

sum for normalization. Note here, that one obvious op-

timization is to precompute the intra-patch similarity for

each pixel of the current patch. An even more fine-grained

formulation for potentially large patch sizes can be ob-

tained when the pixel distances between two patches are

computed in parallel followed by a parallel reduction step

to calculate the final weight.

4.2. CUDA Implementation

For an actual implementation of the parallel version of

our non-local denoising algorithm, we employ the CUDA

framework that exposes the GPU as a data-parallel com-

puting device capable of executing a very high number of

threads in parallel. We implemented the algorithm using

the different granularities presented in the previous sub-

section and illustrate the limitations leading to actually

only one feasible version.

A coarse-grained implementation, performing the fil-

tering of multiple pixels per task is limited due to the max-

imum allowed runtime for a single task (the so called ”ker-

nel” in the CUDA jargon) of approximately 10 seconds, so

a more fine-grained data and task decomposition has to be

applied in order to lower the runtime of a single task. The

other extreme (computing the pixel distances between two

patches in parallel) leads to a huge number of kernel in-

vocations. Although a single kernel invocation has very

little overhead, this deteriorates performance by an order

of magnitude compared to the coarse implementation. By

far the most promising variant is to assign each task a sin-

gle pixel to perform the filtering for. The precalculation of

the intra-patch similarity mentioned above is only possible

for small patch sizes, since the available fast local mem-

ory (”shared memory”) for each multiprocessor is rather

limited. This variant of the implementation also benefits

from texture cache usage, since the per-task accesses to

the source image are spatially close to each other.

Figure 2. Denoising results. Raw data (top), joint bilateral

filter (middle) and robust non-local denoising (bottom).

Outliers (except raw) are removed using the iterative non-

local approach prior to smoothing.

5. RESULTS

We apply the robust NL-Means Filter to data acquired

with a PMD [vision] 19k time-of-flight camera. An addi-

tional industrial color camera is mounted ontop resulting

in a 45mm parallax. Both cameras are calibrated later-

ally using a standard tool and a nearest-neighbor lookup

of color values is performed, mapping the depth values

into the color camera frame. No further depth calibration

is applied.

Figures 2 and 3 show results using the robust non-local

denoising filter on a challenging scene that contains fine

structure as well as large differences in depth. For com-

parison the same outlier set is also pruned before apply-

ing the joint bilateral filter where for the reference imple-

mentation the approach of [12] is used, yet working on

the native resolution of the PMD camera. We observe a

better handling of discontinuities and preservation of fine

details using the robust non-local approach. Especially, a

better reconstruction is achieved for the desktop which is

oriented almost parallel to the viewing direction. Results

from a second scene are shown in Figure 5.

1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6. Average squared difference of the outlier proba-

bility per iteration for the scenes shown in Figs. 2, 5.

As mentioned in Section 4, the robust non-local de-

noising algorithm is computationally expensive. Using

the parallelization technique presented earlier, we achieve

computation times comparable to less demanding postpro-

cessing methods. To evaluate the performance and scala-

bility, we focus on one iteration of our algorithm. Looking

at Equation 17 again, it is easy to see that for a single iter-

ation, the runtime is expected to grow quadratically when

increasing the search window radius rW or the patch ra-

dius rN. Doubling the resolution of the source image

should result in a quartic scaling. We conducted experi-

ments where two of the parameters remained fixed while

varying the third one. Figure 4(a) illustrates the effect of

varying the patch radius rN while keeping rW = 8 and

sx = sy = 512 fixed (red curve) and the correspond-

ing results when varying the search window radius rW
with fixed rN = 3 and sx = sy = 512 (blue curve).

The x-axis specifies rN and rW, while on the y-axis the

square root of the runtime in seconds is plotted. We use

the square root of the runtime to account for the quadratic

increase in complexity, so for a good parallel implemen-

tation a linear plot is desirable. It can be seen that this is

the case for both the blue and red curves, the latter one

revealing some stepping artifacts that we account a sub-

optimal texture cache usage for. In Figure 4(b) we show

the results of fixed patch and search window radii while

doubling the image resolution. The y-axis is a function

of the 4th root of the runtime, since a quartic scaling is

expected. Our parallel implementation exhibits a slower

increase in runtime for lower resolutions because a lot of

the patches contain pixels outside the actual image. When

performing filtering on higher resolutions, the kernel in-

vocation overhead mentioned in Subsection 4.2 is becom-

ing increasingly apparent. For comparable results, we use

a patch radius of rN = 3 (implying a Gaussian kernel

with bandwidth a = 1.5), a search window with radius

rW = 8 and the native resolution of the depth image

(sx = 160, sy = 120). On a NVidia GeForce 8800GTX

the algorithm takes 1.9 seconds performing 10 iterations

Figure 3. Detail view of the denoising result using joint bilateral filter (left) and our approach (right).

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

[px]

[s
e

c
]

(a) Plots of the algorithm runtime for varying rN (red, circles) and

varying rW (blue, squares). The x-axis specifies rN and rW respec-

tively, while on the y-axis the square root of the runtime in seconds is

plotted.

8x8 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
0

0.5

1

1.5

2

2.5

3

[px
2
]

[s
e

c
]

(b) Algorithm runtime with varying resolution of the source image. Im-

age resolution is specified by the x-axis, while the y-axis is a function

of the 4th root of the runtime.

Figure 4. Evaluation of one parallelized iteration of of our robust non-local denoising algorithm.

in the outlier detection step, compared to the CPU version

that takes approximately 14 minutes to compute. For per-

formance evaluations we used a fixed number of iterations

in the outlier detection step which was chosen on the basis

of the convergence results illustrated in Figure 6.

6. CONCLUSION

We reviewed our unified non-local denoising technique

that explicitly handles outliers in the input data and is ap-

plicable to depth data with strong discontinuities. While

our approach exhibits a performance in the outlier detec-

tion step comparable to the well-established tensor-voting

framework and is superior to state-of-the-art smoothing

techniques, it is computationally expensive. Since multi-

core CPUs and programmable graphics hardware (GPUs)

are widely available, we examined a parallel formulation,

presented different data and task decomposition strategies

and investigated their applicability towards a GPU imple-

mentation. We demonstrated that our algorithm scales

very well and achieves significant speed-ups compared to

a CPU version.

7. REFERENCES

[1] Marvin Lindner and Andreas Kolb, “Calibration of

the intensity-related distance error of the PMD TOF-

Camera,” in SPIE: Intelligent Robots and Computer

Vision XXV, 2007, vol. 6764, pp. 6764–35.

[2] Sigurjon A. Gudmundsson, Henrik Aanæs, and Ras-

mus Larsen, “Environmental Effects on Measure-

ment Uncertainties of Time-of-Flight Cameras,” in

Proc. International Symposium on Signals Circuits

and Systems (ISSCS), 2007.

[3] Benjamin Huhle, Timo Schairer, Philipp Jenke, and

Wolfgang Straßer, “Robust Non-Local Denoising

of Colored Depth Data,” in IEEE CVPR Workshop

on Time of Flight Camera based Computer Vision,

2008.

[4] Antoni Buades, Bartomeu Coll, and Jean-Michel

Morel, “A Non-Local Algorithm for Image Denois-

ing,” in Proc. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2005.

Figure 5. Input (left) and denoising result using our robust non-local denoising technique (right).

[5] Leonid P. Yaroslavsky, Digital Picture Processing.

An Introduction, Springer Verlag, 1985.

[6] Carlo Tomasi and Roberto Manduchi, “Bilateral Fil-

tering for Gray and Color Images,” in Proc. IEEE In-

ternational Conference on Computer Vision (ICCV),

1998, pp. 839–846.

[7] S. M. Smith and J. M. Brady, “SUSAN – A new

Approach to Low Level Image Processing,” Tech.

Rep., Oxford University, 1995.

[8] Michael Elad, “On the Origin of the Bilateral Fil-

ter and Ways to Improve It,” IEEE Transactions on

Image Processing, vol. 11, no. 10, pp. 1141–1151,

2002.

[9] Danny Barash and Dorin Comaniciu, “A Com-

mon Framework for Nonlinear Diffusion, Adaptive

Smoothing, Bilateral Filtering and Mean Shift,” Im-

age and Video Computing, vol. 22, no. 1, pp. 73–81,

2004.

[10] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and

Fredo Durand, “A Gentle Introduction to Bilateral

Filtering and its Applications,” in ACM SIGGRAPH

Course, 2007.

[11] Georg Petschnigg, Maneesh Agrawala, Hugues

Hoppe, Richard Szeliski, Michael Cohen, and Ken-

taro Toyama, “Digital Photography with Flash and

No-Flash Image Pairs,” in Proc. SIGGRAPH, 2004.

[12] Johannes Kopf, Michael F. Cohen, Dani Lischinski,

and Matt Uyttendaele, “Joint Bilateral Upsampling,”

in Proc. ACM SIGGRAPH, New York, NY, USA,

2007, p. 96.

[13] Shachar Fleishman, Iddo Drori, and Daniel Cohen-

Or, “Bilateral Mesh Denoising,” in Proc. ACM SIG-

GRAPH, 2003.

[14] Michael Wand, Alexander Berner, Martin Bokeloh,

Philipp Jenke, Arno Fleck, Mark Hoffmann, Ben-

jamin Maier, Dirk Stanecker, Andreas Schilling, and

Hans-Peter Seidel, “Processing and Interactive Edit-

ing of Huge Point Clouds from 3D Scanners,” Com-

puters & Graphics, vol. , pp. , 2008, to appear.

[15] Alexei A. Efros and Thomas K. Leung, “Texture

Synthesis by Non-parametric Sampling,” in Proc.

IEEE International Conference on Computer Vision

(ICCV), 1999.

[16] Yong Seok Heo, Kyoung Mu Lee, and Sang Uk Lee,

“Simultaneous depth reconstruction and restoration

of noisy stereo images using Non-local Pixel Distri-

bution,” in Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2007.

[17] Oliver Schall, Alexander Belyaev, and Hans-Peter

Seidel, “Feature-preserving Non-Local Denoising

of Static and Time-Varying Range Data,” in Proc.

ACM Symposium on Solid and Physical Modeling,

2007.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin,

“Maximum Likelihood from Incomplete Data via

the EM Algorithm,” Journal of the Royal Statisti-

cal Society, vol. 39, pp. 1–38, 1977.

[19] Antoni Buades, Image and film denoising by non-

local means, Ph.D. thesis, Universitat de les Illes

Balears, 2005.

[20] Alexander Kharlamov and Victor Podlozhnyuk,

“Image Denoising,” Tech. Rep., NVIDIA, Inc.,

2007.

[21] Ananth Grama, Anshul Gupta, George Karypis, and

Vipin Kumar, Introduction to Parallel Comput-

ing, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, second edition, 2002.

