
PATCH-BASED IMAGE INTERPOLATION: ALGORITHMS AND APPLICATIONS

Xin Li

Lane Dept. of Computer Science and Electrical Engineering
West Virginia University, Morgantown WV26506-6109

ABSTRACT
Motivated by recent advances in adaptive sparse representations
and nonlocal image modeling, we propose a patch-based image
interpolation algorithm under a set theoretic framework. Our
algorithm alternates the projection onto two convex sets: one
is given by the observation data and the other defined by a
sparsity-based nonlocal prior similar to BM3D. In order to
optimize the design of observation constraint set, we propose
to address the issue of sampling pattern and model it by
a spatial point process. A Monte-Carlo based algorithm is
proposed to optimize the randomness of sampling patterns to
better approximate homogeneous Poisson process. Extensive
experimental results in image interpolation and coding applica-
tions are reported to demonstrate the potential of the proposed
algorithms.

Index Terms—image interpolation, patch-based models, spatial
point process, Monte-Carlo method.

I. INTRODUCTION

Image interpolation refers to the reconstruction of a plausible
image from incomplete data (e.g., pixels at a subset of sampling
lattice). Like other inverse problems, image prior plays a critical
role in interpolation algorithms. Existing image interpolation al-
gorithms are mostly local - for example, B-spline interpolation
[1] uses cubic splines to fit local intensity functions; subpixel
edge location was proposed in [2] to render sharper edges; local
covariance structures can also be used to locally guide the linear
interpolation [3]. Most recently, several existing ideas haven
been unified under a kernel regression framework [4].

In recent years, nonlocal image priors have attracted increas-
ingly more attention and found many successful applications
(e.g., texture synthesis [5], image inpainting [6], image denois-
ing [7], [8]). Nonlocal image interpolation has also appeared
in the literature (e.g., [9], [10], [11]). However, there still lacks
a systematic framework for understanding and analyzing the
benefit of nonlocal priors for image interpolation. Given the
nature of interpolation problem (a fundamental task in digital
image processing), it is our belief that a better solution to image
interpolation could shed useful insight to our understanding of
other problems.

In this paper, we present a set theoretic framework for
incorporating patch-based nonlocal prior into image interpo-
lation. Based on previous work [12], we propose to cast image
interpolation under the maximum a posterior (MAP) framework
which admits a set theoretic implementation. The likelihood and
prior terms respectively give rise to observation constraint and
sparsity constraint. In particular, we note that the sparsity con-
straint can be enforced either locally (e.g., overcomplete DCT
[13] or steerable pyramids [14]) or nonlocally (e.g., BM3D-
based [11]). A strategy of progressive decreasing thresholds
proposed in [15] is adopted to find the solution to the fixed-
point equation characterizing the sparsity constraint. Issues of

initial threshold selection and stopping criterion are briefly
addressed as well.

In addition to the prior term, the second contribution of this
work is on the likelihood term related to sampling pattern (the
subset of sampling lattice). We propose to model sampling
pattern by a spatial point process [16], [17]. Based on previous
works of randomness measures [18], we have developed a
Monte-Carlo based algorithm to optimize the randomness of
sampling patterns and their benefits on image interpolation are
justified by experimental results. The flexibility of designing
optimal sampling pattern suggests an interesting application
into compressive imaging which has potential in wireless sensor
networks. A random-sampling protocol is shared by encoder
and decoder, which eliminates the need of transmitting any
bits to resolve location uncertainty. Such distributed image
coding system has achieved highly encouraging performance
when compared with conventional wavelet image coders such
as SPIHT [19].

II. PATCH-BASED IMAGE INTERPOLATION

We usex, y to denote unobservable image (target of reconstruc-
tion) and observation data respectively. For a binary sampling
patternS, we simply havey(m, n) = x(m, n)S(m, n) where
(m, n) are the spatial coordinates. Under a Bayesian frame-
work, the interpolation problem can be formulated as the MAP
estimation, i.e.,

p(x|y,H) =
p(y|x,H)p(x|H)

p(y|H)
(1)

whereH denotes a model we assume (local vs. nonlocal),
p(y|x,H) is the likelihood term (it is an indicator function
1{y(m,n)=x(m,n)}) andp(x|H) is the prior term that plays the
role of regularizing ill-posed problems. One popular choice of
the prior term is so-called sparse constraint [20], [13] - i.e., only
a small fraction of transform coefficients are significant. A great
deal of effort has been spent on constructing good transforms
T with maximal sparsity. If we useX = T x to denote the
transform coefficients, the sparsity constraint can be enforced
by thresholding operatorG[X|δ] = X · 1{|X|>δ}.

An alternative to manuallyselecting a threshold is to use
a collection of progressively decreasing thresholdsδ1 > δ2 >
, ..., > δK = 0 [15]. Such strategy of progressive thresholding
can be interpreted under a set theoretic framework, which
makes it more widely applicable as a sparsity-enforcing tool.
Referring to Fig. 1, we use a two-pixel image to illustrate how
progressive thresholding works. The target imagex is assumed
to at the intersection ofCobs (observation constraint specified
by the likelihood term) and an oracle manifoldMI : {x|x =
B[x]} (prior term unknown to us) whereB = T−1GT is the
nonlinear thresholding operator in the transform domain. With
the knowledge of oracle thresholdδopt, we can approximate
MI is by starting from some region (defined by initial threshold
δ1) and gradually increasing the search range by lowering the



Figure 1. Toy-example illustration of POCS with progressively
decreasing thresholds:Cobs (a line) andCprior (a disk) respec-
tively denote the likelihood and prior constraints for a two-
pixel image; targeted image is located at the intersection which
represents a local approximation of the unknown manifold
MI . a) as thresholdδk approaches zero, the support of prior
constraint setCprior increases, which implies a larger search
space; b) an over-shooting initial thresholdδ1 would not push
x(k) towardsMI because the search space is too large.

threshold. The catch is: ifx ∈ CI is a fixed point onMI

for some thresholdδk, then it will remain a fixed point for
all thresholds larger thanδk (i.e., x(k) will not diverge as the
threshold further decreases).

The contraction mapping property ofB has been established
in [13]. The generality of such fixed-point perspective allows
us to enforce sparsity in both local and nonlocal models.
For example, instead of using overcomplete DCT or wavelet
transforms, we can enforce the sparsity constraint with respect
to packed similar patches as BM3D does [8], [11]. One pitfall
with the progressive thresholding strategy lies in the choice
of initial thresholdδ1. If the initial thresholdδ1 is too small
(i.e., overfitting -Cprior would contain not onlyMI but also
less meaningful images), projection ontoCprior will move
little because the constraint is too weak to dragx(k) toward
MI . On the other hand, if the initial thresholdδ1 is too large
(underfitting -Cprior might not intersect withMI at all), it
will take a long time to converge and alternating projections in
early iterations would be a waste of computations. In practice,
we have found the following heuristic rule to work reasonably
well - δ1 is set to be the average of all local variances calculated
on a block-by-block basis. The complete patch-based image
interpolation algorithm is summarized as follows (note that it
is conceptually similar to [11]).

Algorithm 1. Patch-based Nonlocal Image Interpolation
Input: observation datay and sampling patternS;
Output: reconstructed imagêx
• Initialization: obtainx̂(0) by a local interpolation method
and calculateδ1 = lvavg;
• Main loop: start withk = 1, setδk = lvavg − (k − 1)∆

Projection onto prior constraint set: apply BM3D
filtering to x̂(k) with thresholdδk;

Projection onto observation constraint set:
x̂(k)(m, n) = y(m, n) for {(m, n)|S(m, n) = 1};

If ||x̂(k) − x̂(k−1)|| < ε, stop the iteration; otherwise
k = k + 1.

III. MODELING SAMPLING PATTERN VIA SPATIAL
POINT PROCESS

Now, we turn our attention to the likelihood term - in particular,
the design of sampling patternS. In the literature of spatial
statistics [16], sampling pattern is viewed as the realization of
a spatial point process. Let{si} be the location of events inRd

(we only considerd = 2 here). A spatial point processS on
R2 is a measurable mapping defined byφ(S) =

∑
i 1si∈S (i.e.,

the number of events in the realizationS). The complete spatial
randomness of a point process is characterized by homogeneous
Poisson process [17]. For any infinitesimal regionds ⊂ R2,
the point processS is a homogeneous Poisson process if 1)
lim|ds|→0

1−P (φ(ds)=0)
|ds| = λ; 2) lim|ds|→0

P (φ(ds)=1)
|ds| = λ; 3)

φ(ds1), φ(ds2), ... are statistically independent for any disjoint
sequence of regionsds1, ds2, ...; where|B| denotes the volume
of set B ⊂ Rd and λ is the intensity parameter. It is known
that the superposition of two independent Poisson process with
parametersλ1, λ2 is a Poisson process with parameterλ1 +λ2.

There are several classes of measures for quantifying the
randomness of a spatial point pattern. The simplest class is
quadrat-based - i.e., taking any subsetQ ⊂ R2 of arbitrary
shape at random location, the expected counting measureφ(Q)
should approach its mean valueλ. By repeating such test for
a large number of times (i.e., using{Qi}), we can collect
a sequence of countering measures{φ(Qi)}. Its deviation
from the mean (i.e., the variancev(S) = E[(φ(Q) − λ)2])
can be used as an indicator of randomness. Other measures
(e.g., distance-based) also exist though often involve higher
computational complexity due to the need of finding nearest
neighbors.

With the definition of randomness measure, a systematic
solution is to simulate spatial point processes via Monte-
Carlo method [21], [22]. Starting with any initial configuration
S0, one can randomly choose a pair of pixels with opposite
attributes to flip. If the randomness measurev(S) decreases,
accept the new configuration; otherwise accept the new con-
figuration with a probability ofexp(−(v(Snew) − v(Sold))).
Such Metropolis-like algorithm can be viewed as an iterative
optimization procedure of maximizing the randomness of a spa-
tial point process and guarantees to reach a local optimum. To
speed up the convergence, heuristics-based solution can be used
as the initial configuration. The complete description of Monte-
Carlo based algorithm for sampling pattern randomization is
given below.

Algorithm 2. Sampling Pattern Randomness Maximiza-
tion via Monte-Carlo Method
Input: Arbitrary spatial point processS0;
Output: Randomized spatial point processS∞;
• Initialization: calculate the randomness measure for initial
configurationv(S0);
• Main loop: for k = 0, 1, 2, ...

Randomly pick one location(ri, ci) from Sk and
another(rj , cj) from Sc

k;
Exchange(ri, ci) with (rj , cj) to generate a new

proposal configurationSp;
Generate a random numbera uniformly distributed

over the interval[0, 1];
If v(Sp) < v(Sk) or a > exp(v(Sk) − v(Sp)), let

Sk+1 = Sp; otherwiseSk+1 = Sk.

IV. APPLICATION INTO COMPRESSIVE IMAGING

Conventional wisdom in designing image communication sys-
tems is to divide-and-conquer. For example, image acquisition,



compression and transmission are often handled by three inde-
pendent components namely sensor (analog-digital conversion),
source coding (redundancy reduction) and channel coding (re-
dundancy addition). Such divide-and-conquer strategy is often
suboptimal when other resource constraints (e.g., the cost of
analog-digital conversion, transmission bandwidth, error rate
and delay). There is a new trend of optimizing the system
by jointly designing those components (e.g., joint sensing-
processing, joint source-channel coding). Algorithms 1 and 2
presented in this work open the door to design a new com-
pressive imaging system suitable for wireless sensor network
applications as shown in Fig. 2 (such system can also be viewed
as a distributed coding of image source since complexity has
been shifted from encoder to decoder).

The most significant departure from the current practice is
that only a small percentage of observation data atrandom
locations need to be acquired and transmitted (therefore the
complexity of sensor node is extremely low). Note that here
observation data have a general meaning - e.g., pixel values in
Alg. 1 can be replaced by Gabor filtered samples (accordingly
the definition of observation constraint sets varies). We also
note that the sampling patternS (generated by Alg. 2) is
assumed to be shared by both encoder and decoder. Therefore
there is no need for transmitting any overhead related to
location information (by contrast, conventional image coding
systems strive to achieve the optimal balance between bits spent
on coding location and intensity values). With an appropriately
chosen intensity parameterλ, images are reconstructed from the
quantized samples at the decoder by Alg. 1. In other words, our
guiding principle has evolved from the traditional redundancy
reduction to redundancy exploitation, which has been argued as
a more plausible hypothesis for sensory processing by human
visual cortexes [23].

Figure 2. Compressive imaging system built upon Algorithms
1 and 2.

Our compressive imaging system has good error-resilient
properties On one hand, since the task of redundancy exploita-
tion is located at the decoder, image quality would have a
graceful degradation in the presence of channel errors (damaged
samples and missing samples are both exceptions to sparsity
constraint which Alg. 1 attempts to correct). On the other hand,
superposition property of Poisson process makes it convenient
to generate multiple descriptions of an image [24], which can
support joint reconstruction from an arbitrary collection of
descriptions received by the decoder (thanks to the superpo-
sition property of Poisson process). We note that the diversity
of descriptions can arise from both sampling locations (e.g.,
S1 ∩ S2 = φ) and filter responses (e.g., Gabor filters with dif-
ferent orientation and scale parameters resembling the rod/cone
receptors in human retinas). To simplify the implementation,
we have only considered the location-related diversity in our
experiments (i.e., a delta-function filter is assumed).

Figure 3. PSNR and subjective quality comparison among
different reconstruction schemes for four test images: DT-based
(starting point of Alg. 1), NEDI [3] and Alg. 1 (this work).

V. EXPERIMENTAL RESULTS

V-A. Image Interpolation

The implementation of Algorithm 1 is based on the public avail-
ability of BM3D demo package1. The parameters in Algorithm
1 are fixed in all our experiments:∆ = 0.02, ε = 0.001, B =
16, d = 4, Nmax = 16, Ns = 32 (the last four parameters
are used by BM3D algorithm). Such choice has been found to
achieve good results for a wide class of images. The MATLAB
codes and sample images accompanying this paper can be found
at http://www.csee.wvu.edu/∼xinl/code/patchrecon.zip.

In the first experiment, we apply Alg. 1 to the interpola-
tion of uniformly-sampled images (i.e.,y is a down-sampled
version of x). The starting point is chosen to be bicubic
interpolation and benchmark scheme also includes new edge-
directed interpolation (NEDI) [3]. Fig. 3 shows the performance
comparison among different schemes. It can be seen the benefit
of exploiting nonlocal dependency is apparent for resolution
enhancement of regular edges (due to their scale-invariant
properties). The findings for textures are more interesting -
for example, for the first texture image, spatial aliasing is
less severe and even bicubic interpolation achieved good result
(NEDI is not appropriate for this image due to its abundance
of textures). Although patch-based nonlocal interpolation gives
slightly lower PSNR than bicubic, we note that the gain remains
positive when measured by SSIM metric (bicubic: 0.8803, ours:
0.8860).

For the second texture image, the reconstructed image does
not look like the original (due to severe spatial aliasing) but
still represents a perceptually plausible solution. This suggests
that image manifoldMI could have multiple intersection points
with constraint setCprior - when the likelihood term is not
sufficient to resolve the ambiguity, reconstructed image might
appear drastically different from the original one (refer to
the two solid dots in Fig. 1a). In Fig. 4, we have compared

1The MEX-based demo can be downloaded from http://www.cs.tut.
fi/∼foi/GCF-BM3D/



Figure 5. PSNR and subjective quality comparison among
different reconstruction schemes for four test images: DT-based
(starting point of Algo. 1), KR-based [4] and Algo. 1 (this
work).

the results with three different sampling matrixes with the
same amount of data (75% missing) but increasing amount of
randomness: uniform sampling, Hilbert-scanning and pseudo-
random sampling (no randomness optimization involved). The
benefit of randomness in image reconstruction can already be
clearly seen for this example (more justification comes later).

In our second experiment, we test the performance of Alg.
1 on interpolating nonuniformly-sampled images. Observation
datay is obtained by randomly throwing away75% pixels in
an image. We use Delaunay-triangle (DT) based interpolation
(implemented by MATLAB functiongriddata) to generate the
starting point̂x(0). Three reconstruction schemes are compared:
Delaunay-triangle (DT) based interpolation (starting point of
Algorithm 1), kernel-regression (KR) based interpolation [4]
and Alg. 1. Fig. 5 includes the comparison for four images:
two edge-dominated and the other two texture-abundant. It
can be observed that our work dramatically outperforms other
competing schemes (the average PSNR gain is over4dB)
especially on texture images whose nonlocal dependency can
not be effectively characterized by local models.

Figs. 6 and 7 include the comparison of reconstructed images
for two generic images:house (edge-abundant) andlena
(mixture of regular edges and irregular textures). Similar to the
experimental setup in [4], we have chosen sampling matrixS
to randomly keep15% pixels in the original image. We observe
that the PSNR performance improvement forlena is less
impressive than that forhouse due to the presence of irregular
texture patterns. However, the visual quality of reconstructed
image by patch-based nonlocal interpolation appears to be
the highest (fewer artifacts). When measured by a recently
proposed objective image quality metric named SSIM [25], we
have found the PN scheme achieves the best results and the
gain becomes even more noticeable.

V-B. Compressive Imaging

For compressive imaging application, we first demonstrate how
optimizing the randomness of sampling patternS by Alg. 2

a) b) c) d)

Figure 6. Subjective comparison among a) originalhouse
image and reconstructed images by b) DT-based interpolation
(PSNR = 28.01dB, SSIM = 0.8212), c) kernel-regression
based scheme (PSNR = 29.39dB, SSIM = 0.8343) and d)
this work (PSNR = 30.96dB, SSIM = 0.8787).

a) b) c) d)

Figure 7. Subjective comparison among a) originallena512
image and reconstructed images by b) DT-based interpolation
(PSNR = 28.92dB, SSIM = 0.8443), c) kernel-regression
based scheme (PSNR = 29.74dB, SSIM = 0.8485) and d)
this work (PSNR = 30.14dB, SSIM = 0.8687).

improves the performance of Alg. 1. The starting point of Alg.
2 (S0) is obtained by randomly choosing(100 · λ)% locations
from the sampling lattice of a given image as the location of
events{si}. It is known such strategy is only sufficient for 1D;
for instance, the outcome in 2D often demonstrates structures
(e.g., clumps, constellations as shown in Fig. 9a). Note that
Alg. 2 can work any definition of randomness measure. In our
implementation, we have adopted a combination of quadrat-
based and distance-based measures.

To illustrate the behavior of Alg. 2, we have taken an example
of λ = 0.0625 on a64×64 lattice. Fig. 8 includes the evolution
of randomness measure for the first 2000 iterations. The initial
condition S0 and final resultS2000 are displayed in Fig. 9a.
Even visual inspection can easily verify that the sampling
pattern after optimization appears more random. The PSNR
gain brought by such randomness optimization is dramatic
as can be seen from Fig. 9b. We note that such significant
benefit of randomizing the sampling locations has clearly been
harvested by human eyes as the result of evolution (refer to [26]
for an image of spatially randomly-distributed rod/cone cells).

We have designed a batch of randomness-optimized sampling
patterns with variousλ’s for image coding system of Fig. 2. The
quantization in our system is the simplest uniform quantization
with an adjustable stepsizeQ (intensity values at sampled
locations are simply treated as a 1D signal and fit to a finite
mixture of Gaussian models [27]). In our preliminary study,
we have fixedQ = 8 and compared the R-D performance
with the popular wavelet-based SPIHT scheme [19]. Figs. 10
and 11 include the comparison between our system and SPIHT
for two test images:λ = 0.0625 for the edge image and
λ = 0.25 for the texture image. Both images are compressed at
the same bit rate to have a fair comparison. The superiority of
our system on texture image is apparent (this is not surprising
because it is long known that localized wavelet bases are not
optimal for representing textures). For edge image, our system



a) b) c) d) e) f) g)

Figure 4. Illustration of how more randomness in sampling renders better reconstruction. a) original image; b),d),f) three different
sampling patternsS1, S2, S3; c),e),g) reconstructed images fromS1, S2, S3.
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Figure 8. a) Evolution of randomness measurev(S) in Alg. 2
(2000 iterations are performed); b) PSNR performance compar-
ison between two sampling patterns (’+’ - after optimization;
’o’ - before optimization).

Figure 9. Random sampling pattern generation via Metropolis
algorithm before (left) and after (right) optimization (the pattern
on the right appears more random).

have achieved noticeably better subjective quality (e.g., fewer
artifacts). Note that ours is 1dB worse than SPIHT in terms of
PSNR but more favorable on SSIM metric which has shown to
better correlate with subjective results.

Last, we want to demonstrate the error resilience of our
coding system. To simulate the channel impairments, we as-
sume only a subset of the samples at the locations{si} are
successfully received. If the error ratep ≥ 0 denotes the
percentage of lost samples, Alg. 1 at the decoder simply work
with a Poisson process with intensity parameterλ − p. For
each error rate, we generate 10 independent error patterns and
take the average PSNR value as the final result. Fig. 12 shows
the PSNR profile asp gradually increases and Fig. 13 contains
several examples of decoded images at different error rates. The
graceful degradation of both objective and subjective qualities
justifies the insensitivity of our coding system.

VI. CONCLUSIONS

The contributions of this work are two-fold. First, two new
algorithms related to patch-based image interpolation are pre-

a) b) c)

Figure 10. Performance comparison between ours and SPIHT
on a regular edge image at the same rate of 0.21bpp: a) original;
b) this work (PSNR = 27.85dB, SSIM = 0.8750); c)
SPIHT (PSNR = 28.82dB, SSIM = 0.8637).

a) b) c)

Figure 11. Performance comparison between ours and SPIHT
on a regular texture image at the same rate of 0.81bpp: a)
original; b) this work (PSNR = 28.10dB, SSIM = 0.9182);
c) SPIHT (PSNR = 22.98dB, SSIM = 0.7512).
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Figure 12. PSNR performance degradation of Alg. 1 in the
presence of errors.



Figure 13. Decoded images at different error rates: from left to right,p = 0, 0.02, 0.04, 0.06, 0.08, 0.10.

sented: one improves previous works by enforcing a nonlocal
sparsity-based constraint (prior optimization) and the other
targets at increasing the randomness of sampling patterns
(likelihood optimization). These two algorithms jointly produce
a better solution to the sensing of image signals. Second, a new
compressive imaging system is built on the proposed algorithms
and its coding performance has shown to competitive with
state-of-the-art wavelet coding algorithm SPIHT. The good
error resilience property of this system is demonstrated by our
preliminary experimental results.
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