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ABSTRACT

Change detection between two images is challenging and
needed in a wide variety of imaging applications. Several
approaches have been yet developed, especially methods
based on difference image. In this paper, we propose an
original patch-based Markov modeling framework to de-
tect spatial irregularities in the difference image with low
false alarm rates. Experimental results show that the pro-
posed approach performs well for change detection, espe-
cially for images with low signal-to-noise ratios.

1. INTRODUCTION

Change detection represents an important tool in video
analysis and is used in a large number of applications [1,
2, 3]. It consists in identifying the missing regions in one
image corresponding to appearance or disappearance of
objects, motion of objects or shape changes of objects.

Several methods have been developed for change de-
tection. Traditionally, image difference followed by thresh-
olding is the simplest and the most popular approach for
change detection. When considering this approach, the
most important step is to define the detection threshold.
It can be chosen empirically as almost in specific appli-
cations [2]. Nevertheless, the commonly-used automatic
thresholding methods can be classified into gray-level dis-
tribution based [4] and spatial properties based [5]. A re-
view of image difference followed by thresholding based
methods is proposed in [5, 6, 7]. More sophisticated ap-
proaches have been also developed; i) predictive models
[8] exploit the relationships between nearby pixels both in
space and time (when an image sequence is available); ii)
methods [9] are based on the fact that the decision rule is
casted into a statistical hypothesis test. A recent review of
change detection algorithms can be found in [7].

In our approach, we want to exploit also the difference
image. However, the thresholded difference image detect
mainly the object outlines. Indeed, if the object does not
move enough, pixels representing the object inside in the
first image can still represent the object inside in the sec-
ond image. Moreover, the difference image is also known
to be sensitive to low signal-to-noise ratios, and undesir-
able artifacts are then detected. Therefore, we propose an
original patch-based Markov modeling that detects irregu-
larities and regularizes the difference image. This method

is able to robustly detect moving objects between two im-
ages. The remainder of the paper is organized as follows:
in section 2, we describe the patch-based Markov model;
in section 3, we propose a statistical method to automat-
ically threshold the “potential” map. In section 4, we
demonstrate the performance of the method on real image
sequences.

2. PATCH-BASED MARKOV MODELS FOR
IMAGE REPRESENTATION

The difference image shows high values in regions where
objects move between the two images. However, the dif-
ference image is not robust to low signal-to-noise ratios
and shows low values in the inside moving objects. New
statistical models are then required to improve motion de-
tection for image sequence analysis.

In our approach, we apply a Markov random fields
(MRF) framework [10] to analyse the difference image.
In contrast to the usual pixel-wise MRF methods, a re-
cent line of work consists in modeling non-local interac-
tions from image patches; in [11, 12, 13], the redundancy
property and patch-based representation can be exploited
to detect unusual spatial patterns seen in the scene. In
our study, we propose an original patch-based Gibbs/MRF
modeling to regularize and detect irregularity in the differ-
ence image. In the presence of noise, patch-wise Markov
models produce potential maps which are much more reg-
ular than those obtained with difference image.

More formally, consider a gray-scale imagevt = (v(x)t)x∈Ω

defined over a bounded domainΩ ⊂ R2 at timet. The
difference imageu = (u(x))x∈Ω is defined as:

u(x) = v(x)t+1 − v(x)t. (1)

Then, we consider the following difference image:

u(x) = u0(x) + ε(x), (2)

whereu0 is the true difference image and the errorsε(x)
are assumed to be iid (independent identically distributed)
Gaussian zero-mean random variables with unknown vari-
anceσ2

u.
In order to robustly detect redundancy inu, we fo-

cus on difference image patches as non-local image fea-
tures able to capture spatial regularities. Our idea is to



perform pairwise comparisons ofn-dimensional patches
u(x) within a fixed-size semi-local neighborhood. For the
sake of simplicity, a vectorized image patchu(x) is de-
fined as the

√
n×√

n square neighborhood of pointx and
the pixels are ordered lexicographically. In [11], it has
been confirmed that thel2 distance‖u(x)−u(y)‖2 is able
to express the amount of similarity between image patches
u(x) andu(y). Intuitively, if the distance is large enough,
we can conclude that the patches centered at pixelsx and
y belong to different spatial contexts. Besides, in homo-
geneous regions, the noise being assumed to be Gaussian,
the score

z(x, y)
△
=

‖u(x) − u(y)‖2

2σ2
u

(3)

follows a central chi-squared distribution withn degrees
of freedom, i.e. z(x, y) ∼ χ2

n. Hence, the probability
distribution function (pdf) can be also expressed as

p(z(x, y)) ∝ exp

[

(n

2
− 1

)

log(z(x, y)) − z(x, y)

2

]

.

(4)
The key idea here is to combine the Markov random

fields (MRF) framework with patch-based representation.
Instead of defining the underlying potential function by
hand or training [12], we exploit patch-based score statis-
tics given in (4). LetG = (V, E) be a graph whereV
denotes the nodes andE the edges connecting the nodes.
Moreover, a neighborhoodsystem connecting all the nodes
in the square window (larger than patches) and centered at
pixel x is defined. The Hammersley-Clifford theorem es-
tablishes that the pdf of the proposed graphical model is a
Gibbs distribution of the form:

p(u) ∝ exp−
∑

<x,y>

φ(x, y),

where< x, y > denotes the set of cliques in the neigh-
borhood andφ(x, y) is the homogeneous local interac-
tion potential function. We arbitrarily chooseφ(x, y) =
log(p(z(x, y))) and write the pdf ofu as

p(u) ∝ exp−
∑

<x,y>

log(p(z(x, y)), (5)

∝ exp−
[

∑

<x,y>

(n

2
− 1

)

log
(

‖u(x) − u(y)‖2
)

−‖u(x) − u(y)‖2

4σ2
u

]

. (6)

In what follows, all the pairwise comparisons between
neighboring patches wrt vertical and horizontal directions
will be considered. This Gibbs model is parametrized
by only one parameter, i.e. the noise varianceσ2

u, and
will be directly estimated by Maximum Likelihood (ML)
from data. As explained in [12], the normalization term
involved in the Gibbs model (6) is intractable but is not
required for our purpose, as we shall see later. The pro-
posed Gibbs distribution also includes spatial correlation

in the modeling since neighboring patches overlap in the
neighborhood.

For illustration, the difference image (Fig. 1c)) shows
high values in areas corresponding to the jumping woman,
more precisely in the woman outlines. In Fig. 1d-e), the
logarithm of the local conditional probability:

Φ(x) = − 1

Z(x)
log p(u(x)|u(y), y ∈ ∆(x)) (7)

is computed at pixelx from local interactions specified for
both the pixel-wise and patch-wise MRFs, with∆(x) the
neighborhood centered at pixelx. The normalization term
for this potential is defined as:

Z(x) =
∑

u(x)∈P

exp −





∑

y∈∆(x)

(n

2
− 1

)

log
(

‖u(x) − u(y)‖2
)

−‖u(x) − u(y)‖2

4σ2
u

]

, (8)

with P the set of all possible patches. If we consider
patches3 × 3 for an image coded in8 bits, |P| = 2569,
andZ(x) cannot be computed. But, this term tends to0
when the patches are different. Hence, it makes sense to
only considerPr the set of patches in the whole image.
Then |Pr| = n × m, with n andm the image dimen-
sions (without taking into account the border conditions).
It turns out that the normalization term is nearly constant
in all the image and we adopt the following form:

Φ(x) =
∑

y∈∆(x)

(n

2
− 1

)

log
(

‖u(x) − u(y)‖2
)

−‖u(x) − u(y)‖2

4σ2
u

, (9)

In our experiments, the patch-wise MRF enables to regu-
larize the difference image and the related potential map
is noiseless when compared to the potential map obtained
with the pixel-wise MRF (see Fig. 1).

3. IRREGULARITY DETECTION AND FALSE
ALARM RATE

Given the noise varianceσ2
u, the patch-wise Gibbs model

can be then used to assess the regularity of an input differ-
ence image. Based on semi-local interactions (9), a poten-
tial mapΦ = (Φ(x))x∈Ω is computed as explained above.
As expected, in the presence of irregularities the poten-
tial is high, which means that the proposed model cannot
wholly capture all the spatial image features. To detect
irregularities, we then propose to automatically threshold
the potential map. Since the difference image is relatively
homogeneous, only a few areas correspond to high values.
We want to test the hypothesis for each pixelx that the
potentialΦ(x) is meaningful (hypothesisH0) or not (hy-
pothesisH1). A very convenient way to define this notion
consists in assuming that the potentialΦ(x) are indepen-
dent and distributed according to the following mixture
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Figure 1. a-b) Two consecutive images taken from an image sequence; c) difference image; d) potential map using pixel-
wise MRF modeling; e) potential map using patch-wise MRF modeling (blue regions correspond to low potential values
and red regions to high potential values).

distribution:

f(Φ(x)) = δ(Φ(x) < ǫ)f0(Φ(x))

+(1 − δ(Φ(x) < ǫ))f1(Φ(x)), (10)

whereδ(·) denotes the Kronecker,f0 denotes the pdf of
potential underH0 andf1 is the pdf of potentials under
H1. In the mixture model,f0 is a Dirac function centered
at “0” (ǫ = 0+ subject toǫ > 0) and the tailf1 of the pdf
is approximated by a Pareto distribution of the form:

f1(Φ(x)) =
kǫk

(Φ(x))k+1
, ∀ Φ(x) ≥ ǫ, (11)

with parametersk andǫ > 0. A Maximum Likelihood
estimate fork can be easily derived, i.e.:

k̂ = N





∑

x∈Ω: Φ(x)≥ǫ

log(Φ(x)) − log(ǫ)





−1

,

whereN = #{x ∈ Ω : Φ(x) ≥ ǫ}. The Pareto distribu-
tion is recommended to describe tails of pdfs and performs
well as shown in Fig. 2. Accordingly, the probability that
Φ(x) is larger than a thresholdτ ≥ ǫ is:

P{Φ(x) ≥ τ} = (τ/ǫ)−k. (12)

Therefore, for a given false alarm probabilityPFA :=
P{Φ(x) ≥ τ} selected by the user (and assumed to be
constant in the whole image), one can compute the corre-
sponding thresholdτ as:

τ = exp

(

log(ǫ) − log(PFA)

k

)

. (13)
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Figure 2. Approximation of the observed pdf (blue) of
Φ by a mixture of two distributions (red) for the image
sequence shown in Fig. 1.

In practice, we compute first the ML estimatek̂ and, for a
given false alarm probabilityPFA, we derive the thresh-
old τ which are different for each processed image in the
sequence.

4. EXPERIMENTAL RESULTS

We propose four experiments to illustrate the potential of
our method to detect changes between two images. In
these experiments, we compare the change detection maps
obtained with different patch sizes and neighborhoodsizes.

In the first experiment (Fig. 3), a woman is running
against a non-uniform background. This woman is far



Figure 3. Two consecutive images (180 × 144) taken from an image sequence, and the corresponding thresholded differ-
ence image.

Figure 4. Two consecutive images (160 × 120) taken from an image sequence, and the corresponding thresholded differ-
ence image.
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Figure 5. Change detection maps resulting from the dif-
ference image of Fig. 3 and obtained for different patch
sizes and different neighborhood sizes.
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Figure 6. Change detection maps resulting from the dif-
ference image of Fig. 4 and obtained for different patch
sizes and different neighborhood sizes.



Figure 7. Two consecutive images (180 × 144) perturbed by a Gaussian noise (standard deviation equal to10), and the
corresponding thresholded difference image.

Figure 8. Two consecutive images (180 × 144) perturbed by a Gaussian noise (standard deviation equal to30), and the
corresponding thresholded difference image.
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Figure 9. Change detection maps resulting from the dif-
ference image of Fig. 7 and obtained for different patch
sizes and different neighborhood sizes.
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Figure 10. Change detection maps resulting from the dif-
ference image of Fig. 8 and obtained for different patch
sizes and different neighborhood sizes.



from the video camera and appears as a small object in
the image. As expected, the thresholded difference image
detects only the woman outlines. The change detection
maps obtained with our method are shown in Fig. 5. As
the moving object is small, small patch and neighborhood
sizes are appropriate to detect the whole woman while
larger patch and neighborhood sizes tend to overestimate
the size of the person and to blur the outlines.

In the second experiment (Fig. 4), a man is walking
against a uniform background. He is close to the video
camera and occupies a large space in the image. Once
again, the thresholded difference image detects only the
outlines, and the shoe outlines are not fully detected be-
cause the man does not move enough between the two
images. The change detection maps resulting from our
method are shown in Fig. 6. As the moving object is
large, the patch and/or the neighborhood sizes have to be
larger than in the first experiment to detect the whole ob-
ject. Hence, the patch and neighborhood sizes have to be
chosen following the size and field depth of the objects of
interest in the images.

In the third experiment (Fig. 7), a woman is jump-
ing against a non-uniform background far from the video
camera, and the images are noisy (Gaussian noise with a
standard deviation equal to10). Consequently, the thresh-
olded difference image detects a large number of artifacts
that do not correspond to moving objects. On the contrary,
the change detection maps (Fig. 9) only detect the mov-
ing object. But, even if the woman is far from the video
camera and consequently little in the image, the patch and
neighborhood sizes have to be large enough because of the
noise.

The same successive images than in the previous ex-
periment are used for the fourth experiment (Fig. 8) but
noisier (Gaussian noise with a standard deviation equal
to 30). In that case (Fig. 10), it is impossible to detect
the moving regions with the thresholded difference im-
age. Indeed, in the previous experiment, a large number
of artifacts are detected but the moving object too. In this
experiment, it is impossible to have an idea about the mov-
ing object using the thresholded difference image whereas
the change detection maps manage to detect it. The whole
object is not detected but its localization in the image is
detected. In that case, the patch size must be bigger than
3 × 3 if we do not want to detect artifacts.

5. CONCLUSION

In this paper, we have proposed a general probabilistic
and patch-based framework for irregularity detection in
the difference image in order to detect the moving re-
gions in an image sequence. These detection maps are
more regular than the difference image for detecting the
whole moving objects and are much more robust to low
signal-to-noise ratios. Moreover, no Gibbs model based
on patch interactions was ever developed to our knowl-
edge. In practice, this method only requires the setting of
the false alarm probability.
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