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ABSTRACT

In this paper, we design the second FIR filter bank of a

dual-tree double-density discrete wavelet transform (DWT),

given the first filter bank. We show that a good approxi-

mation of the highpass filters is given by the Hilbert trans-

form of a transfer function involving a half-delay and ex-

press the corresponding H∞ approximation problem in

semidefinite programming (SDP) form. The obtained fil-

ters are then refined by nonlinear optimization, such that

they satisfy perfect reconstruction constraints and the re-

sulting pairs of wavelets have the analyticity property. We

show two examples of design that are significantly better

than those obtained with a previous method.

1. INTRODUCTION

In certain signal processing applications, like denoising,

overcomplete transforms can offer a better tradeoff be-

tween performance and complexity, compared to critically

sampled transforms. A distinguished member of the fam-

ily of overcomplete discrete wavelet transforms (DWT)

is the double density (DD) DWT [1], based on the filter

bank shown in Figure 1. The input signal is split in three

channels, each decimated by a factor of two. The signal

on the first channel is processed by an identical filter bank

etc. The DD-DWT is expansive with a factor of two, com-

pared to the critically sampled DWT.

A dual tree (DT) [2, 3] is formed by two wavelet trans-

forms processing the same input signal and satisfying a

certain relationship: one of the wavelets is an approximate

Hilbert transform of the other. The DT-DWT has several

appealing properties, such as nearly shift invariance and

directional selectivity in higher dimensions. Designed ini-

tially for the critically sampled DWT, the dual tree concept

can be extended to other types of DWTs. The conditions

for two DD-DWTs to form a dual tree are as follows [1].

Let us consider two filter banks with the structure from

Figure 1, one (the primal) defined by filters H0(z), H1(z)
and H2(z), the other (the dual) defined by filters G0(z),
G1(z) and G2(z). Let ψh,i(t) and ψg,i(t), i = 1, 2, be
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Figure 1. Filter bank used for the implementation of the

DD-DWT.

the wavelets generated by the filters H0(z), Hi(z) and

G0(z), Gi(z), respectively. The two DD-DWTs form a

dual-tree if ψg,i(t) is approximately equal to the Hilbert

transform of ψh,i(t). Equivalently, the complex wavelet

ψi(t) = ψh,i(t) + jψg,i(t) is approximately analytic and

so its spectrum Ψi(Ω), Ω ∈ R, is approximately zero for

negative frequencies. A measure for this property is

E2,i =

∫ 0

−∞
|Ψi(Ω)|2dΩ

∫

∞

0
|Ψi(Ω)|2dΩ

. (1)

An algorithm for the design of dual-tree DD-DWT

was presented in [1], using allpass systems that approx-

imate a half-sample delay. Here, we take a different ap-

proach. We assume that the primal DD-DWT is given: the

FIR filters H0(z), H1(z), H2(z) are known. We present

semidefinite programming (SDP) problems which allow

us to compute FIR filters G0(z), G1(z), G2(z) that form

a relatively good dual filter bank. These filters are ∞-

norm approximations of z−1/2H0(z) and of the Hilbert

transforms of z1/2H1(z), z
1/2H2(z), respectively. How-

ever, these filters do not respect exactly the perfect recon-

struction (PR) conditions required for the DD filter bank,

namely
∑2

i=0Gi(z)Gi(z
−1) = 2

∑2
i=0Gi(z)Gi(−z

−1) = 0
(2)

Although these conditions are not convex, we propose to

refine the filters G0(z), G1(z), G2(z) by optimizing the

analyticity criteria (1) subject to (2). The good initial-

izations provided by the SDP problems mentioned above



is crucial in the success of this approach. Moreover, we

present further ways to improve the filters.

The contents of the paper is as follows. In section 2,

we derive the conditions satisfied by the dual highpass fil-

ters, interpret them as a Hilbert transform approximation

problem, and express them in SDP form. In section 3,

we give a complete description of our design algorithm.

In section 4, we present two examples of design that are

clearly better than their counterparts from [1].

2. HILBERT TRANSFORM VIA SDP

As a first step in the discussion of relations between the fil-

ters of a dual-tree structure, let us consider first orthogonal

FIR two-channel filter banks; in Figure 1, we simply re-

move the third channel. It was suggested in [4] and proved

in [5] that the only condition needed to build a dual tree is

G0(z) = z−1/2H0(z). (3)

(This is an ideal condition, impossible to attain with FIR

filters.) In an orthogonal CQF (conjugate quadrature fil-

ter bank), the filter on the second channel is completely

determined by the first channel filter, by

H1(z) = z−NH0(−z
−1), (4)

where N is the order of the filters. Since a similar condi-

tion holds for the dual tree, by using (3) we obtain

G1(z) = z−NG0(−z
−1)

= z−N(−z−1)−1/2H0(−z
−1)

= (−1)−1/2z1/2H1(z)
(5)

In the typical case where the filters have real coefficients,

we have to take a branch of the complex square root that

has an odd (antisymmetric) phase response. So, the rela-

tion between the frequency responses is

G1(ω) =

{

−jejω/2H1(ω), if ω > 0,

jejω/2H1(ω), if ω < 0.
(6)

We conclude thatG1(z) is the Hilbert transform of z1/2H1(z).
(We have not seen this remark and its trivial deduction in

the literature.)

In the case of DD filter banks, the relation (4) is no

longer true. However, it was proved in [1] that the ideal

dual filters have the form

Gi(ω) = Hi(ω)e−jθi(ω), (7)

where θi(ω), i = 0 : 2, are 2π-periodic real functions

defined by

θ0(ω) = ω/2, |ω| < π, (8)

and

θi(ω) = −θ0(ω − π), i = 1, 2. (9)

These relations are equivalent to (3) for the first channel

filters and to (6) (and a similar relation linking G2(ω) to

H2(ω)) for the other two (highpass) channels.

In [6], we have shown how to solve the approximation

problem

|G(ω) − e−jω/2H(ω)| ≤ γ, ∀ω ∈ [0, ω0], (10)

where H(z), G(z) are FIR filters

H(z) =
N

∑

k=0

hkz
−k, G(z) =

N
∑

k=0

gkz
−k, (11)

H(z) is given and G(z) has to be found. In (10), γ is a

positive constant and ω0 ∈ (0, π]; we can take ω0 = π and

thus (10) becomes equivalent to ‖G(z)−z−1/2H(z)‖∞ ≤
γ; in certain cases it is useful to take ω0 < π. It is clear

that a solution of (10), especially in the case where γ is

minimized, provides a good approximation to (3).

We consider here the approximation (6) of the high-

pass filters and the related problem

|G(ω) + jejω/2H(ω)| ≤ γ, ∀ω ∈ [ω0, π], (12)

with ω0 ≥ 0. Note that if the filters have real coefficients

and (12) holds, then, by complex conjugation, the approx-

imation of (6) is good also for ω ∈ [−π,−ω0]. The ap-

proach is based on a Bounded Real Lemma for trigono-

metric polynomials, as in [6], but with some differences

due to the presence of a function with complex coeffi-

cients in (12).

To eliminate the fractional delay, we consider the fol-

lowing equivalent of (12):

|e−jωG(2ω) + jH(2ω)| ≤ γ, ∀ω ∈ [ω0/2, π/2]. (13)

Let us denote

F (z) = z−1G(z2) + jH(z2) (14)

the polynomial appearing in (13) and

f = [jh0 g0 jh1 g1 . . . jhN gN ]T (15)

the vector of its coefficients, of size 2(N + 1).
To put (13) in LMI form, we need a result on trigono-

metric polynomials (with complex coefficients) that are

positive on a given interval. Let

R(z) =

M
∑

−M

rkz
−k, r−k = r∗k, (16)

be a symmetric trigonometric polynomial. This polyno-

mial is nonnegative on the unit circle (z = ejω), on the

interval [ω1, ω2], if and only if (see e.g. [7, Th. 1.15], [8])

there exist globally nonnegative (symmetric) trigonomet-

ric polynomialsA(z) and B(z) of degreesM and M − 1,

respectively, such that

R(z) = A(z) +D(z)B(z), (17)

where

D(z) = d1z
−1 + d0 + d∗1z, (18)



d0 = −ab+1
2 , d1 = 1−ab

4 + j a+b
4 , (19)

a = tan(ω1/2), b = tan(ω2/2). (20)

In our case, since the interval is [ω0/2, π/2], the relation

(20) is replaced with

a = tan(ω0/4), b = 1. (21)

Since the proof follows the same lines as in [6], we

give here only the final result, based on (17) and on the

trace parameterization [9, 10, 11] of positive trigonomet-

ric polynomials.

Theorem. The inequality |F (ω)| ≤ γ holds for all ω ∈
[ω0/2, π/2] if and only if there exist positive semidefinite

matrices Qa ∈ C2(N+1)×2(N+1), Qb ∈ R(2N+1)×(2N+1)

such that

γ2δk = tr[ΘkQa] + tr[d0Θk + d1Θk−1 + d∗1Θk+1)]Qb

(22)

and
[

Qa f

fH 1

]

� 0. (23)

The matrices Θk from (22) are elementary Toeplitz, with

ones on diagonal k and zeros elsewhere, and trX is the

trace of the matrix X .

We note that the best approximantG(z) is obtained by

minimizing γ in (13), i.e. by solving the problem

min
γ2,g,Q

a
,Q

b

γ2

subject to (22), (23)

Qa � 0, Qb � 0

(24)

This is an SDP problem. Moreover, we can impose some

roots of G(z) in predefined positions. Typical to our case

is the presence of roots in z = 1; we can write G(z) =
G̃(z)(1 − z−1)L. The vector g̃ ∈ RN−L+1 is the new

variable and it can be expressed as f = Ag̃ + b; so, the

vector g̃ appears affinely in (23), thus preserving the SDP

character of the problem.

3. DESIGN ALGORITHM

Design data. The design data are the FIR filtersH0(z),
H1(z), H2(z), all of order N , forming a valid DD filter

bank. We have to design FIR filters G0(z), G1(z), G2(z)
of order N , also forming a valid DD filter bank, i.e. satis-

fying relations (2), such that the analyticity criteria E2,1

and E2,2 defined by (1) are minimized; since we have

to work with a single optimization criterion, we choose

to minimize the function E2,1 + λE2,2, where λ > 0
is a constant; we take λ = 1 in the experiments, which

gives equal weight to the analyticity criteria associated

with the two wavelets. (An alternative would be to mini-

mize max(E2,1, E2,2), which tends to provide almost equal

values of E2,1 and E2,2.) Moreover, the filter G0(z) must

have K0 roots in z = −1 and G1(z), G2(z) must have

K1, K2 roots in z = 1, respectively.

Initialization. We compute initial approximations of

the desired filters by solving the SDP problems described

in the previous section. We find G0(z) with K0 roots in

z = −1 by minimizing γ in (12) (where G(z) = G0(z),
H(z) = H0(z)), as described in [6]. Then, we compute

G1(z) with K1 roots in z = 1 by solving (24), where

we take G(z) = G1(z), H(z) = H1(z). Similarly, we

compute G2(z).
Enforcing PR conditions. The obtained filters G0(z),

G1(z), G2(z) satisfy only approximately the perfect re-

construction conditions (2); since the conditions are not

convex, they cannot be added to the SDP problems. So,

we must impose them explicitly. To this purpose, we solve

the optimization problem

min
g
0
,g

1
,g

2

E2,1 + λE2,2

s.t. (2)
(25)

This is a nonconvex problem. We have solved it using

the Matlab function fmincon, initialized with the filters

given by the initialization step. We have noticed that re-

liable results are obtained by replacing the equality con-

straints (2) with inequalities depending on a tolerance ǫ.
For example, the first equality form (2) is implemented in

(25) as

∣

∣

∣

∣

∣

2
∑

i=0

N−ℓ
∑

k=0

gi,kgi,k+ℓ − 2δℓ

∣

∣

∣

∣

∣

≤ ǫ, for ℓ = 0 : N. (26)

Iterative refinement. The solution of (25) may be satis-

factory, but it can be further improved. We simply switch

the roles of the primal and dual filters (consider Gi(z)
known and optimizeHi(z)) and solve (25) again. The op-

timization criterion decreases at each iteration and, usu-

ally in relatively few iterations, a local minimum is at-

tained.

4. EXPERIMENTAL RESULTS

We report here two examples of design. The SDP problem

corresponding to (24) has been solved using the library

SeDuMi [12]. The optimization problem (25) has been

solved with the large scale version of the Matlab function

fmincon, with default parameters, excepting TolCon

(the tolerance for satisfying the constraints), which has

been set to 10−12. The tolerance ǫ from (26) has been

set to 10−11, which means that the PR constraints are sat-

isfied with very good precision. We report here the re-

sults obtained after 10 refinement iterations, although in

the second example fewer iterations give approximately

the same result.

Example 1. We consider first the filters from [1], Ex-

ample 1, where N = 9, K0 = 4, K1 = K2 = 2. The

coefficients of the filters obtained by our method, start-

ing from the filters H0(z), H1(z) and H2(z) from [1], are

shown in Table 1. The values of the analyticity criteria (1)

are E2,1 = 5.19 · 10−5, E2,2 = 4.10 · 10−5. For com-

parison, for the dual tree DD-DWT from [1], the values

are E2,1 = 1.16 · 10−3, E2,2 = 9.12 · 10−4, i.e. about 20

times larger. The wavelets ψh,i(t), ψg,i(t), i = 1, 2, are

shown in Figure 2; the wavelets generated by the dual tree

are delayed with approximately half-sample with respect



Table 1. Coefficients of optimized filters for Example 1.

h0,k h1,k h2,k

0.07172370159505 0.00076076901999 0.00133098703411

0.36230036193850 0.00384289856633 0.00672326075998

0.66494703815050 -0.00043349459069 -0.00568339454318

0.47140309737195 -0.03281690886095 -0.08229185377013

-0.01799895170798 -0.06136454414349 -0.10103370970581

-0.15312080154057 -0.00923768881032 0.21406057417676

-0.01354874233901 0.13102206413624 0.39782529534987

0.02857352887159 0.33787985813471 -0.64575713709268

0.00198373546859 -0.56270662712939 0.21473455499402

-0.00204940547432 0.19305367367758 0.00009142279707

g0,k g1,k g2,k

0.01976798190714 0.00095991650970 0.00203303024798

0.18796630962425 0.00912748189359 0.01933129639730

0.54463516675450 0.02370521240285 0.04519448638570

0.64365432452264 0.00518426608962 -0.03667185824797

0.21767214390247 -0.06791654815954 -0.24127168408985

-0.14706575138756 -0.12444007940910 -0.04034877318920

-0.08852593177102 -0.04960090813396 0.64638211422618

0.02465246521978 0.55291356612824 -0.44847344350248

0.01355742037414 -0.39838253651420 0.05627615891019

-0.00210056681188 0.04844962919279 -0.00245132713785

to those generated by the primal tree. The Fourier trans-

forms of the complex wavelets ψi(t) = ψh,i(t)+jψg,i(t),
i = 1, 2, are shown in Figures 3 and 4, in solid line.

They have very small values for negative frequencies. The

Fourier transforms of the complex wavelets designed in

[1] are represented with dashed lines in the same figures.

The improvement brought by our method is obvious.

It is also interesting to see the quality of the solution of

the approximation problem (24). In Figure 5, we represent

the error

E(ω) = |G1(ω) + jejω/2H1(ω)| (27)

for three pairs of filters. The dashed line corresponds to

the filters from ([1]). The dash-dot line is obtained with

the original H1(z) and the filter G1(z) obtained by solv-

ing (24); the error has the typical equiripple aspect of an

∞-norm solution. The solid line corresponds to the opti-

mized filters from Table 1. It is difficult to draw a conclu-

sion on the optimal shape of the error (27), but it is clear

that the solution (24) is likely to be a good initialization of

the optimization process, thus confirming the validity of

our approach.

Example 2. The second example comes also from the

filters from [1] (Example 2), with N = 14, K0 = 6,

K1 = K2 = 3. The coefficients of our optimized fil-

ters are given in Table 2. We show now only the Fourier

transforms of the complex wavelets, in Figures 6 and 7.

They are nearly analytic and much better than the original

results from [1]. The values of the analyticity criteria are

E2,1 = 1.08 · 10−5, E2,2 = 1.05 · 10−5. For the filters

in [1], the corresponding values are E2,1 = 7.36 · 10−5,

E2,2 = 9.66 · 10−5.
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Figure 5. Values of the error function (27) for three pairs

of filters generated in Example 1.

5. CONCLUSION

The contribution of this paper is twofold. Firstly, we show

that the Hilbert transform FIR approximation problem (12)

can be expressed as an SDP problem and solved reliably.

Secondly, we give a complete algorithm to compute the

second filter bank of a dual-tree double-density DWT. The

algorithm comprises an initialization step based on SDP,

followed by iterative refinement via nonlinear optimiza-

tion. Design examples have shown the viability of this

approach.
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Figure 2. Wavelets generated by the filter banks designed in Example 1.
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Figure 3. Left: Fourier transforms of the complex wavelets ψ1(t) obtained with our method (solid line) and with the

method from [1] (dashed line), for Example 1. Right: detail.
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Figure 4. Left: Fourier transforms of the complex wavelets ψ2(t) obtained with our method (solid line) and with the

method from [1] (dashed line), for Example 1. Right: detail.



Table 2. Coefficients of Hilbert pair filters for Example 2.

h0,k h1,k h2,k

0.01111197186038 -0.00000230838534 -0.00001527139805

0.11039227653418 -0.00002293113414 -0.00015170339866

0.38902610591783 -0.00020620813676 -0.00086760994953

0.63818943401801 -0.00137828440398 -0.00418500279332

0.45228466042635 -0.00417576611217 -0.01014957601479

-0.01607065382050 -0.00413616604876 0.00205699162817

-0.18744972778104 0.00699749931054 0.05632918936109

-0.03718113309396 0.03053724188791 0.07384425497228

0.04879823115348 0.05076771374211 -0.07578365034196

0.01351037057998 -0.01059152902846 -0.23774281447438

-0.00697671262326 -0.21359528408043 -0.04190437042227

-0.00174350123350 -0.13307268309012 0.57504004593315

0.00029934749369 0.61620280114163 -0.40411847724883

0.00000998819012 -0.40324653791717 0.06822210248699

0.00001290472689 0.06592244225515 -0.00057410833988

g0,k g1,k g2,k

0.00036230000097 0.00000036012417 0.00000110557247

0.03874605225675 0.00003851604271 0.00011828315911

0.22984657328096 0.00022020030508 0.00067055918977

0.54869989430634 -0.00034012612936 -0.00165228831777

0.60956733850079 -0.00464753468690 -0.01776242835558

0.21335037705652 -0.01234798520570 -0.03417024815518

-0.15862478971221 -0.01408589446686 0.01994310730092

-0.12472520864020 0.00729500767720 0.13591711596687

0.02875103256991 0.07737044882196 0.09107541313470

0.03585936254907 0.12472670075821 -0.20410731701029

-0.00293286477606 -0.13139025258379 -0.36257983634571

-0.00499159113906 -0.43610256214146 0.57105943976484

0.00014175042169 0.58483856853065 -0.20869330083268

0.00016789479096 -0.20384208784145 0.01137888290925

-0.00000455910566 0.00826664079553 -0.00119848798070
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Figure 6. Left: Fourier transforms of the complex wavelets ψ1(t) obtained with our method (solid line) and with the

method from [1] (dashed line), for Example 2. Right: detail.
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Figure 7. Left: Fourier transforms of the complex wavelets ψ2(t) obtained with our method (solid line) and with the

method from [1] (dashed line), for Example 2. Right: detail.
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