
REAL-TIME ANISOTROPIC FILTERING BASED ON LINE INTEGRAL CONVOLUTION
APPROXIMATIONS

Benoît Vandame1

1Canon Research Center France,
Rue de la touche Lambert, F-35510 Cesson Sévigné, FRANCE, benoit.vandame@crf.canon.fr

ABSTRACT

Regularization of noisy or corrupted data has been suc-
cessfully addressed using Partial Differential Equations
(PDE’s). Many formalisms have been proposed, most of
them define a local smoothing along one or several direc-
tions in order to preserve contours and sharp details. The
drawback of these methods is their very high computation
time.

Our interest is to achieve comparable results in a real-
time context. To do so, the formalism must be drastically
simplified. Starting with a quick review of PDE’s, and
especially about the Line Integral Convolution, we point
out aspects that could be simplified. Then, we defined an
anisotropic local filtering based on a one dimensional ker-
nel, such as its shape has a small crossing intensity versus
the local gradients of the image to restore. This notion al-
lows to define, for a given pixel, an adequate kernel shape
which will not affect contours and corners during filtering
stage.

Our algorithm offers an efficient anisotropic smooth-
ing being one to several magnitudes faster than previous
methods based on PDE’s. Our results show that we can
process video sequence in real-time. Besides the effi-
cient smoothing; this diffusion method preserves contours
and corners even when the anisotropic filtering is applied
many times.

1. INTRODUCTION

Recently, regularization of noisy or corrupted image data
is an important field of image processing. It is useful to re-
store a signal as a pre-processing step before further anal-
ysis. Regularization is a critical step for many complex
processes, and must be achieved in real-time for embed-
ded solutions. In this context, the dedicated computation
time is often very small and is not compatible with so-
phisticated approaches: a huge constraint is imposed to
regularization algorithms. This issue must be addressed
either by using faster computers, or by modifying the al-
gorithm. It is often a combination of both approaches that
conduct to fast and efficient solutions.

Many formalisms have been proposed in the literature.
Since the pioneering work of Perona-Malik[1] in the early
90’s, anisotropic diffusion based on Partial Differential
Equations (PDE’s) has become popular: these equations
define a nonlinear way to smooth images and preserve

discontinuities. Many variants of diffusion PDE’s have
been proposed [1, 2, 3]. The wide variety of PDE regu-
larization share the same basic property: they define local
smoothing along one or several directions for each pixel of
an image. The principal smoothing directions are defined
parallel to image contours. It results an anisotropic reg-
ularization preserving the edges. The drawback of those
methods is their very high computation time.

An interesting approach to anisotropic smoothing have
been introduced by Cabral which defines the Line Integral
Convolution[4, 5] (LIC). The anisotropic smoothing is de-
fined along a streamline which is constraint by a vector
field. This algorithm defines a one dimension convolution
mask. This formalism as been used by Tschumperlé to
obtain faster PDE filtering[6].

In parallel to the PDE’s other methods based on
anisotropic smoothing have been developed. It is worth
mentioning the work around the bilateral filter[7]. Basi-
cally, a convolution kernel is designed for each pixel de-
pending on the value and distance of the surrounding pix-
els. Those approaches offer shorter computation time than
PDE’s, but nevertheless a real-time computation is still not
available. The relationship between PDE’s and bilateral
filtering has been detailed in [8].

Anisotropic filtering is achieved in two steps: First,
local features around a pixel are analyzed; Then, a lo-
cal filtering is applied following the preliminary analysis.
Local features analysis is commonly based on gradients
or similarity computation. Local filtering is made using
elongated Gaussian function, weighted Gaussian, or other
means. The problem of adapting the kernel shape is exten-
sively studied, the following articles [3, 9, 10, 11, 12, 13]
illustrate different approaches comparable to the proposed
method.

In a real-time context, both steps must be optimized.
Therefore, we have defined an anisotropic local filtering
based on a one dimensional warped kernel, such as its
shape has a small crossing intensity versus the local gra-
dients of the image. This notion is defined to compute
how much a streamline (the shape of the filtering kernel)
is crossing the local gradient field. This notion makes the
selection of a kernel shape, versus a family of shapes, very
efficient. We have built a denoising algorithm preserving
local features like contours, corners, which is a magni-
tude faster than existing strategies. Ours results shows that

real-time restoration is feasible for still and video images
with a good quality.

In this article we first make a quick review of regular-
ization methods based on PDE’s, LIC and Bilateral Fil-
ter (section 2) pointing advantages and drawbacks. We
then propose an approximation to the anisotropic smooth-
ing based on LIC which is compatible with real-time pro-
cessing (section 3). Results on simulated and real images
are shown in section 4. Finally, section 5 gives the con-
clusion.

2. BACKGROUND

Typical image restoration based on PDE’s are organized
in three steps: the gradients and/or Laplacians of an im-
age are computed for different orientations and organized
into a tensor; Then, the tensors are filtered to decrease the
level of noise and increase their internal coherence; And
finally, for each pixel a convolution kernel is built and then
applied. The coefficients of the kernel are deduced from
a Gaussian function which is characterized by the tensor
associated to that pixel. For an homogeneous area, the
kernel is made of a large symmetric Gaussian function.
Around a contour, the Gaussian function is very elongated
parallel to that contour. For other areas such as textures,
the kernel is almost symmetric with a small radius. The
diffusion achieved by theses kernels keeps contours intact.
The computation time associated is very high because for
each pixel one needs to compute all coefficient of the two
dimensional kernel.

An interesting approach has been proposed by
Cabral[4]. The filtering is made by a one dimensional ker-
nel which passes through a pixel to filter, and then follows
the vector field. The vector field is defined perpendicular
to the gradient of the image, such as the one dimensional
kernel is designed parallel to contours. This approach has
the great advantage to decrease the size of the kernel com-
pared to two dimensional kernels. The drawback of this
method is the time used to compute the shape of the kernel
which must follow precisely the vector field. A solution
has been proposed by [5] to speed-up the shape computa-
tion.

The Bilateral Filter is another way to build anisotropic
filtering. A convolution kernel is built for each pixel to
filter. Each coefficient of the kernel is computed depend-
ing on: the spatial distance; And, the values of the cen-
tral pixel and the ones covered by the coefficient. For
homogeneous areas, convolution kernels are close to a
Gaussian function. For contours or corner areas, the con-
volution kernel looks like a truncated Gaussian function
which keeps intact the sharp details. The computation
time needed to build the kernel is high, bilateral filters are
not compatible with real-time processing. Nevertheless, a
simpler version has been designed as presented in section
4.

-2

-1

0 1
2

3

Stencil of

6 pixels

Input

Image I

pivot

selected pixels

from I

Output

convolved

image

y

x

y

x

Filtering

Figure 1. Example of a stencil made of 6 pixels, and its
application to convolve one pixel of an input image.

3. LINE INTEGRAL CONVOLUTION
APPROXIMATION

3.1. Motivations and Terminology

The LIC defines, for each pixel to process, a streamline
which corresponds to a 1 dimensional convolution kernel
made of L pixels for instance. This anisotropic smooth-
ing is made using fewer pixels than a classical 2 dimen-
sional convolution kernel of L ·L pixels. This characteris-
tic makes LIC appealing for real-time computation. Obvi-
ously this 1D convolution kernel defines a softer smooth-
ing than 2D convolution mask.

The notions of: Shape of the convolution kernel (the
streamline); And, convolution coefficients, are defined in-
dependently to the streamline. One could use whatever
convolution coefficients, or non-linear filtering (such as
median filtering). As pointed above: the complexity re-
sides in computing, for each pixel of the input image, a
streamline according to a given vector field. Our motiva-
tion is to focus on this step which is the most time con-
suming. In our case the vector field is the gradient of the
image to filter.

The path followed by a streamline must be computed
very precisely especially around contours. If not, sharp
edges will be smoothed by the filtering. On the other hand,
the path followed by a streamline in an homogeneous area
does not need to respect precisely the vector field. Indeed,
the smoothing for those areas should be isotropic anyway.
In other words, the computation of a streamline according
to the vector field for a given pixel can be simplified by
finding one streamline among others which will not cross
any contours. With this new constraint, several stream-
lines are valid for a given pixel.

Let us use the word stencil to characterize a shape
(streamline) including the pixels used for a filtering. A
stencil is a group of L pixels labeled pi with i ∈ Z, such
as a pixel pi is 8-connected with the previous pi−1 and

next pi+1 ones. A stencil defines the selected pixels for a
filtering. The pixel of index zero of the shape is the pivot,
it defines how a stencil is applied to a given pixel of an
input image. The nature of the filtering, the way pixels are
filtered linearly or not, is not defined by the stencil. Figure
1 illustrates a stencil made of 6 pixels with i ∈ [−2, 3], its
pivot (i = 0) is aligned to the the pixel [x, y] of the input
image I . The 6 pixels selected by the stencil are then used
for the filtering, the result is injected back on the output
image at location [x, y]. One stencil is defined for each
pixel of the input image.

The constraint: finding one streamline among others
which will not cross any contours, is reformulated us-
ing the notion of stencil. The filtering of a given pixel
is achieved by one stencil, among others, such that it does
not cross any contours. In Figure 1, the input pixel [x, y] is
properly filtered by any stencil which does not encompass
one of the darker pixels. The one illustrated is therefore
prone to de-noise properly that pixel. One needs to de-
fine a notion of crossing intensity in order to quantify how
much the pixels of a stencil are crossing the contours of
an image.

3.2. Crossing intensity

Using the constraint mentioned above, we characterize a
stencil S which is computed for a pixel X according to a
vector fieldW defined for each pixel of the input image I .
W is the gradient of I: W = ∇I . Let SX(a) be the stencil
starting from X and indexed by a ∈ R:


SX(0) = X

C =
∫ +∞

−∞
g
(
~S⊥(a), ~W (SX(a))

)
· w(a) · da < e

(1)
When a → +∞ the stencil S

X

(a)is traced forward, and

backward when a→ −∞. ~S⊥(a) is the vector orthogonal
to the stencil at the point (a). ~W (SX(a)) is the vector of
W at the point SX(a). The function g is used to compute

an orientation error between vector ~S⊥(a) and the vector
at point ~W (SX(a)). The function w is used to weight the
function g depending on a. C is integral of g · w through
a, and must be inferior to the criteria named e. C is named
the crossing intensity, it quantifies how much a stencil S
is crossing the vector field W .

If e is null, then the stencil S is equal to the integral
curve of W as defined by the LIC. The function g may
have several forms. The simplest one go compares the
orientation of two vectors u and v:

go (u, v) =
∣∣∣∣arccos

(
u · v
‖u‖ ‖v‖

)∣∣∣∣ mod
π

2
(2)

The function g can be defined to be more sensitive to
orientation error for points where the vector field w is
strong:

gN (~u,~v) = go (~u,~v) · ‖~v‖N (3)

Figure 2. Subset of the possible stencils made of 5 8-
connected pixels according to the “Two branches model”.
The two arrows of each stencil represent the orientations
θ1 and θ2 of the model. The darker pixel is the pivot of the
stencil. Stencils with θi ∈ [0, π[are represented, others
are deduced using vertical and horizontal mirror.

With N = 1, 2 . . . The orientation error is almost null
for homogeneous areas whatever is the stencil S. On an-
other hand, for strong gradient of W corresponding to
contours, a small orientation error on S will be maxi-
mized. Experiences show that the choice of N = 2 leads
to the best definition of crossing intensity.

It is also possible to weight the effect of g with the func-
tion of w. If w is chosen constant, the instant crossing in-
tensity at point a is independent of a. Functionw might be
chosen Gaussian, it means that an instant crossing inten-
sity is lowered for points of S far from the starting pixel
X (the pivot of S).

As for LIC, the vector field W is defined as the gradi-
ent of image I: W = ∇I . Following Equation 1 for a
given pixel X , several stencils respect the given criteria.
The goal is to find one which can be computed as quickly
as possible. In order to simplify Equation 1, we define a
model including a finite number of stencils.

3.3. The two branches model

Our “two branches model” defines a stencil made of 2
straight branches of same size centered in pixel X as de-
fined bellow: 

SX(0) = X

∂SX(a>0)

∂a
= ~θ1

∂SX(a<0)

∂a
= ~θ2

(4)

~θ1 is an unitary vector of orientation θ1. The orientation
of ~S⊥(a) becomes either: θ1 + π

2 or θ2 + π
2 depending on

the sign of a. The computation of g is made simpler with
this model. From Equation 1 we can write C = C1 + C2

such as C1 corresponds to the crossing intensity for a < 0
and C2 to crossing intensity for a > 0.

Figure 3. Stencil aligned used for the first guess of the
iterative process. The three last stencils being symmetrical
to the first ones.

In discrete space, the model is defined by the two ori-
entations of the two branches, and the length in pixel of
the stencils. If L is the length of the stencil, the total num-
ber of orientations of a branches is equal to 4(L− 1), the
total number of stencils is equal to 16(L − 1)2. Figure 2
represents 64 of the 256 stencils for length L = 5. We
notice that this family of stencils is able to track precisely
straight contours and corners.

This model gives a finite number of stencils. For each
pixel to filter, one needs to select one stencil, among oth-
ers, according to the Equation 1. The selection is done
iteratively as described in next sub-section.

3.4. Iterative selection of stencils

For a given pixel to filter, one stencil from the model must
be chosen. The crossing intensity C1 and C2 of the two
branches are independent and could be computed indepen-
dently for all possible orientations. This strategy is heavy
and inadequate for real-time processing. Instead an itera-
tive strategy is defined: a first guess of the stencil is cho-
sen, and then improved according to the crossing intensity
of the two branches. The main idea is to find a stencil that
is: oriented perpendicular to the strong gradients being
crossed; and, with a minimum crossing intensity.

As a first guess, one selects the aligned stencil per-
pendicular to the vector field at the given pixel X . In
other words: θ1 = (θ ~W (X) + π

2) mod 2π and θ2 =
(θ1 +π) mod 2π. θ ~W (X) being the orientation of the vec-
tor field at the pixel X .

It is worth mentioning that this approach is defined by
[14], and detailed in [4]. The number of aligned stencils
is equal to 2(L − 1). Figure 3 illustrates the 8 aligned
stencils for L = 5.

This first guess is adequate for straight contours, but has
a large crossing intensity around corners or curved con-
tours. While error C1and C2 are computed, one computes
for each branch the vector V1 and V2 such as:


~V1 =

∑a=0
a=−L/2

~W (Sx(a)) ·
∥∥∥ ~W (Sx(a))

∥∥∥N
~V2 =

∑a=L/2
a=0

~W (Sx(a)) ·
∥∥∥ ~W (Sx(a))

∥∥∥N (5)

In other words, Vi is the weighted sum of the vectors,
from the vector field W , being crossed by the branch i of
the stencil S. N is used to improve the impact of strong
vectors, it is chosen equal to 1 or 2. The stencil is re-
oriented per branch if its corresponding crossing intensity
is higher than e. The stencil is reoriented as follow: if
C1 > e then θ1 = (θ ~V1

+ π
2) mod 2π, and if C2 > e then

θ2 = (θ ~V2
− π

2) mod 2π.

Input

Image I

Vector

Field W

Strong

gradient

Weak

gradient

-2 -1 0 1 2

-2 -1 0 1 2
y

x

Stencil S

first guess

Vector

orthogonal

to each

point of S

Stencil S

second

iteration

Figure 4. Illustration of the re-orientation of a straight
stencil associated to one pixel.

In fact, only the orientations of vectors Vi are consid-
ered, their modules being useless. A vector Vi is com-
puted in order to derive a new orientation prone to de-
crease the crossing intensity of branch i. This strategy al-
lows to pick a good stencil candidate without computing
the crossing intensity of all possible stencils.

This iteration is applied a couple of times. For each
iteration, one keeps the θ1min = θ1 and θ2min = θ2
that provides the smaller crossing intensity respectively
C1min and C2min. After the couple of iterations, the sten-
cil chosen for the filtering is the one oriented by θ1min and
θ2min.

Figure 4 illustrates the computation of the stencil S for
the pixel X at position [x, y] of the image I . The vector
field W is the gradient of I . It is illustrated with arrows.
One notices the strong gradients oriented perpendicular
to the contours of the dark pixels, and the weak gradi-
ents influenced by the noise of I . The first guess of S
is chosen perpendicular to the vector field at position X
(as illustrated by θ1 and θ2). The crossing intensity C2 is
small as the second branch of S is just crossing weak gra-
dients. By opposition, the crossing intensity of C1 is im-
portant as S is crossing the strong gradients and ~S⊥(1) and
~S⊥(2) are almost orthogonal to respectively ~W (SX(1)) and
~W (SX(2)). θ2 is then redefined perpendicular to ~W (SX(1))

and ~W (SX(2)). The second estimate of S is now optimal:
the crossing intensities are small on the two branches. A

good number of iterations is 2 or 3.
This iterative selection of a S does not guaranty to re-

spect Equation 1 (C < e) for two reasons. First: none
of the stencils from the two branches model might respect
the constraint, and second: only few stencils are tested.
Nevertheless, the two branches model and the iterative ap-
proach lead to a robust choice and an efficient filtering
preserving contours and corners (as illustrated in section
4). In practice the parameter e might be omitted and one
looks for the stencil having minimum crossing intensity
between the one tested during the couple of iterations.

3.5. Anisotropic filtering

When a stencil has been selected for each pixel, one can
apply the anisotropic smoothing to the image I . One
chooses a filtering made on the L pixels for each stencil. It
can be a linear smoothing using convolution coefficients,
or non linear such as median filtering. It is also possible
to apply a bilateral filtering. Section 4 illustrates different
type of filters.

It worth mentioning that the vector field W can be fil-
tered by the same principle. One selects a filter able to fil-
ter the L vectors selected by a stencil. Filtering W is use-
ful to enhance its coherence. This is a typical step which
is mentioned by [15, 16]. The advantage of this approach
is that the vector field is smoothed in an anisotropic way
([15, 16] defined a Gaussian smoothing).

3.6. The algorithm

3.6.1. Step by Step

1. Computation of the W the vector field of the input
image I . Let F∇ be the filter chosen to compute the
gradient.

2. Stencil computation.

(a) Section of SX perpendicular to ~W (X).
(b) For each SX , loop Nr times:

i. Computation of crossing intensity C1 and
C2.

ii. Computation of the vector V1 and V2.
iii. Check if C1 and C2 are minimum com-

pared to the previous iterations: keep the
corresponding θ1min = θ1 and θ2min =
θ2.

iv. Re-orientation of branch i if Ci > e such
as ~θi ⊥ ~Vi.

(c) Define SX oriented by θ1min and θ2min.

3. Filtering

(a) If needed the vector fieldW is filtered by FW to
be defined. Stencils must be recomputed: loop
to step 2.

(b) Compute the output image O: the filtered ver-
sion of I according to FI to be defined. The
process can be iterated Nf times by looping on
step 1 with I = O.

The complete algorithm is made of 3 major steps: The
first one is a classical gradient filtering, and is very fast to
compute; The second is the computation of stencils, the
most demanding step; The third is the anisotropic filtering
applied to the input image or the vector field. This last step
is fast because few pixels are used for the computation
despite the various shapes of the stencils.

3.6.2. Parameter choice

Several parameters have to be defined. The following list
gives the typical values for those ones:

F∇ One can use the Sobel or Prewitt filters. Shorter con-
volution kernels can be used such as: [−1 0 1]

and [−1 0 1]T for respectively horizontal and
vertical convolution. Theses masks are faster to ap-
ply, but filtering with Prewitt of Sobel filters provides
W with greater signal to noise.
In case of larger noise, a more extended version
of this filter can be chosen. For instance F∇25 =
[−1,−2, 0, 1, 2]·[1, 2, 4, 2, 1]T includes a smoothing.
This filter is made of 5 by 5 pixels.

L The length of the stencil, typical values are 5, 7, 9, 11,
15.

g This function is used to compute the instant crossing in-
tensity of two vectors (see Equation 1). Experiences
show the function gN with N = 2 (see Equation 3)
gives the best results. By opposition, the function g0
gives to much weight to small gradients.

w This function is used to weight the effect of g depend-
ing on the distance of the pixel of a stencil to the
pivot. For faster computation, this function is not
used. In other word this we choose w = 1.

e This parameter can be omitted as described in sub-
section 3.4.

Nr The number of iteration used to re-orientation the
stencil is typically set to 3. Larger values do not lead
to better re-orientation.

Nf The number of times the filtering is applied to the in-
put image. This parameter correspond to the “tem-
perature” of the heat equation. In practice only one
iteration is used. A larger number of iteration may be
desirable for noisy images.

Fl It corresponds to a filter having as input the L pixels
of a stencil. The resulting value of the filter is the
output pixel. Fl might have many different forms.
One distinguishes: First, the linear filtering where Fl
is defined with L coefficients as for a convolution;
Second non linear filtering where the output pixel is
equal to the median of the L input pixels; And last,
bilateral filtering where each coefficient of the mask
ca with a ∈ [−L/2, L/2] is computed depending on
the value of the pixel ppivot covered by the pivot mi-
nus the value of the pixel pa covered by a. It corre-
sponds to the application of the bilateral filter, except

T=[-2, 1, 1, 1, 1]

T=[-Nx-2, 1, Nx+1, Nx+1, 1]

T=[-2Nx+2, Nx-1, Nx-1, Nx-1, Nx-1]

Image I

(0, 0)

Nx

Ny

0

0

0

-2

-2

-2

-1

-1

-1

1

1

1

2

2

2

Figure 5. Illustration of different tables of indexes, each
one describing a stencil. The indexes in the table of stencil
is function of the width Nxof the input image.

that the support for the convolution kernel is defined
by the stencil.
This last version is certainly the one offering the
best restoration. In order to have an efficient im-
plementation, the coefficient ca of the filter is equal
to 1 if: |ppivot − pa| < R and 0 else. R being the
resolution which is chosen depending on the noise
amplitude. This Equation is simplified taking ad-
vantage of the integer division defined by the CPU:
(ppivot − pa)/R = 0 . If the parameter R is a power
of 2, the division can be optimize further. This filter
Fl,R is a sharp approximation of the bilateral filter.

FW It is the filter applied to the vector field W . It is
used to enhance the coherence ofW in case of strong
noise. The filter has the L vectors covered by a sten-
cil as input. The result is the filtered vector. The im-
plemented version defines a convolution where each
coefficient ca with a ∈ [−L/2, L/2] is equal to

ca =
∥∥∥ ~W (SX(a))

∥∥∥2

.

3.6.3. Implementation details

The implementation is an important issue for real-time al-
gorithm. The computation of anisotropic filters is time
consuming as a filtering kernel must be computed for each
pixel. The present algorithm has been designed to have
a finite number of filtering kernels (following the two
branches model describe in sub-section 3.3). To prevent
computing the shape of a stencil each time it is used, all
stencils are first pre-computed.

The relative position from one point of a stencil to the
next can be seen as one dimensional shift in the input im-
age. One assumes that an image I of size [Nx, Ny] is also
seen as a vector V made ofNx ·Ny contiguous pixels. The
position of a pixel X is characterized by two coordinates

Parameters (simulated case)
F∇ = F∇25

L = 9
w = Cste
g = gN=2

Nr = 3
FI = [1, 2, 4, 8, 16, 8, 4, 2, 1]

Nf = 1, 5, 10, 100

Parameters (real case)
F∇ = F∇25

L = 17
w = Cste
g = gN=2

Nr = 3
FI = Fl,R=64

Nf = 1

Table 1. Parameters set used for the restoration of the syn-
thetic images (left column) and real case (right column).

[x, y], it can also be referred versus V with one coordi-
nate [x+ y ·Nx]. The translation from a pixel X1(x1, y1)
to a pixel X2(x2, y2) can be interpreted as one shift of
x2 − x1 +Nx(y2 − y1) pixels in the referential of V .

Using this property, a stencil of L points can be de-
scribed by a table T of L values indicating the shift from
one point to the next. Figure 5 illustrates several tables for
different stencils. The first value of a table gives the shift
from the pivot p0 to point p−2, the second value gives the
shift between point p−2 to point p−1 and so on. One no-
tices that only the horizontal stencil does not depend on
the width of I . The 16(N − 1)2 stencils are precomputed
once, knowing the width of the input image, and used for
each stencil re-orientation.

Pre-computing all the stencils allows to factorize
the computation on-demand during stencil re-orientation
(typically 3 times) and image filtering (at least 1 time).
Also from a CPU point of view, computing the stencils
on-demand monopolizes CPU resources (such as regis-
ters) which can not be used for other purposes (loops, lo-
cal variables of the filter...). Therefore a pre-computation
is mandatory for a real-time algorithm.

The pre-computation leads to 16(N − 1)2 tables T cor-
responding to all the stencils. The tables are arranged in
a two dimensional array of size 4(N − 1) such as the two
coordinates of a table correspond to the orientation θ1 and
θ2. It results in a direct correspondence between: the in-
dex of a table/stencil in the array, and the two parameters
characterizing that stencil. This relation is used to opti-
mize the code.

4. APPLICATIONS

4.1. Simulation images

In order to test the algorithm, synthetic images with dif-
ferent levels of Gaussian noise have been created. The
noise-free version consists in a disk of amplitude 1, with
a rectangle of amplitude 0.5. Several version with addi-
tive Gaussian noise have been created such as the signal
to noise of the disk is equal to S

N = 16, 8, 4, 2, 1. The pa-
rameters selected to restore the synthetic images are given
in Table 1 (left column).

Figure 6 illustrates the restoration of the different syn-
thetic images depending on the number of filtering it-
erations (Nf). The last row illustrates the Restoration
achieved for the noisiest synthetic image (SN = 1), with

Nf=1 Nf=5 Nf=10 Nf=100

16

1

2

4

8

Input

Image

Restaured Image

Pre-filtering

of W active

S/N

Figure 6. Application of the algorithm applied on syn-
thetic images with different noise amplitudes (on per row),
and number of filtering iterations (one per column).

a filtering stage of the vector field W using the filter FW
defined above. The filter Fl is a linear filtering made of 9
coefficients.The following observations can be made:

The noisy input image with S/N of 2 has a PSNR of 6.
The processed images with the number of iterations equal
to 5, 10 and 100, have respectively a PSNR of 17, 17.9,
18.9.

The Restoration is stable whatever is the number of fil-
tering iteration Nf : the anisotropic diffusion stops and
preserves the sharp contours and corners. Nf is also the
“time” parameter of the heat equation [2, 3, 1]: when the
time is converging to infinite, the solution of the heat equa-
tion is converging to a constant. Existing PDE’s share the
same properties. By opposition the restoration defined in
this paper makes restored images converging to a stable
state where sharp details and corners are kept intact. This
is a major distinction versus prior anisotropic diffusion.

The last row (Figure 6) shows the effect of the pre-
filtering of the vector field W . It is worth pre-filtering
W for poor signal to noise ratio. The stencil which are
re-defined after the pre-filtering are more coherent. The
restored images have sharper contours compared to the
version with no pre-filtering. The gray rectangle is not
properly restored, its S/N is equal to half of the one of
white disk.

The input image has 1MPixel (1024 × 1024). The
computer used for computation is an Intel Core2 CPU run-
ning at 2.4GHz. The implementation of the code is par-
allelized and is therefore twice faster. For this test, the im-
age are processed in float, faster computation is achieved
using integer format (as for the real case test). The com-

putation time organized as follows: 45ms for the com-
putation of the vector field; 180ms for the re-orientation
of the stencils (including the 3 re-orientation steps); and
35ms per cycle of filtering. The computation time for the
complete algorithm with 5 iterations of filtering is equal
to: 451ms which corresponds to a computation rate of
2.2MPixel/sec.

This algorithm is fast because its internal complexity is
small: The re-orientation step relies on a simple criteria;
The filtering steps is made fast because the kernel size is
small; The table of stencils offers an efficient implemen-
tation. This algorithm is by nature fast and designed for
real-time processing.

4.2. Real Cases

The algorithm is applied on a well known image. The
Table 1 (right column) gives the parameters used for this
real case image. The filter Fl used for the filtering is the
one described in sub-section 3.6.2. The parameterR is set
to 64, this value is chosen in comparison to the noise of
the degraded image.

Figure 7 illustrated the restoration on 2 areas of the
same image. For each area is shown in row: First, the in-
put image; Second, the degraded version with an additive
Gaussian noise σ = 20; Third, the restored version; And
last, the difference between the input image and the re-
stored one. The two following observations can be made:

The global quality of the restoration is good, residual
noise are still visible on the restored image. Also, on ho-
mogeneous area smoothing is not strong, this is due to the
constant number of pixels per stencil. The PSNR of the
full restored image is equal to 26.6.

The total computation time is equal to 150ms, the size
of the image is 0.43MPixel. The computation rate is
therefore 2.9Mpixel/sec. This rate is equal to the rate
of a video sequence made of 25 frames per second, each
frame having a size of 400 × 300 pixels. By compari-
son, another algorithm based on PDE filtering on the same
computer offers a processing speed of 0.20Mpixel/sec
for comparable restoration (same restored PSNR).

5. CONCLUSION

We have designed an anisotropic filter taking advantages
of PDE’s and LIC formalism. The method defines an
anisotropic diffusion which preserves sharp details while
decreasing the noise. Also, if the filter is iterated indefi-
nitely to an image, the solution converges to a stable state.
This property contrasts to other filters based on PDE’s.
Finally, the filter is one to several magnitudes faster than
other methods based on PDE’s. The algorithm has a com-
putation rate which is comparable to the rate of standard
resolution video sequences, thus offering a real-time pro-
cessing.

This model is based on few parameters, it establishes a
clear distinction between the shape of a kernel and type of
the filtering itself. This approach is therefore very flexible.
This model can be expanded further to color images by

Input

Image

Degraded

Image

Restored

Image

Comparison

with the

input image

Figure 7. Illustration of the algorithm on 2 images. The
first row represents the input image, the second row shows
the degraded version by a Gaussian noise (σ = 20), the
third row gives the restored version, and finally, the last
row points out the difference between the input image
and the restored one. The PSNR of the complete restored
frame is equal to 26.6.

computing the vector field from the gradients of each color
plan of the image (as suggested in [17]).

6. REFERENCES

[1] P. Perona and J. Malik, “Scale-space and edge de-
tection using anisotropic diffusion,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
vol. 12, no. 7, pp. 629–639, 1990.

[2] G. Sapiro, Geometric partial differential equations
and image analysis, Cambridge University Press,
New York, NY, USA, 2001.

[3] J. Weickert, Anisotropic Diffusion in Image Process-
ing, Teubner-Verlag, 1998.

[4] B. Cabral and L. Leedom, “Imaging vector fields
using line integral convolution,” in Proceedings of
SIGGRAPH. 1993, pp. 263–270, ACM Press.

[5] Detlev Stalling and Hans-Christian Hege, “Fast and
resolution independent line integral convolution,” in
SIGGRAPH ’95: Proceedings of the 22nd annual
conference on Computer graphics and interactive
techniques, New York, NY, USA, 1995, pp. 249–
256, ACM.

[6] D. Tschumperlé, “Fast anisotropic smoothing
of multi-valued images using curvature-preserving
PDE’s,” Int. J. Comput. Vision, vol. 68, no. 1, pp.
65–82, 2006.

[7] C. Tomasi and R. Manduchi, “Bilateral filtering for
gray and color images,” in ICCV ’98: Proceedings
of the Sixth International Conference on Computer
Vision, Washington, DC, USA, 1998, p. 839, IEEE
Computer Society.

[8] Danny Barash, “A fundamental relationship between
bilateral filtering, adaptive smoothing, and the non-
linear diffusion equation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 6, pp. 844–847, 2002.

[9] A. Foi, V. Katkovnik, K. Egiazarian, and J. As-
tola, “A novel anisotropic local polynomial estima-
tor based on directional multiscale optimizations,” in
Proc. of the 6th IMA Int. Conf. Math. in Signal Pro-
cessing, Cirencester (UK), 2004, pp. 79–82.

[10] J. Polzehl and V. G. Spokoiny, “Adaptive weights
smoothing with applications to image restoration,”
Journal Of The Royal Statistical Society Series B,
vol. 62, no. 2, pp. 335–354, 2000.

[11] J. Polzehl and V. Spokoiny, “Image denoising:
Pointwise adaptive approach,” Tech. Rep., 1998.

[12] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Si-
moncelli, “Image denoising using scale mixtures of
gaussians in the wavelet domain,” Image Processing,
IEEE Transactions on, vol. 12, no. 11, pp. 1338–
1351, Nov. 2003.

[13] M.I. Gurelli and L. Onural, “A class of adaptive di-
rectional image smoothing filters,” vol. 29, no. 12,
pp. 1995–2004, December 1996.

[14] J. Bresenham, Algorithm for Computer Control of a
Digital Plotter., 1965.

[15] D. Tschumperle and R. Deriche, “Constrained and
unconstrained pdes for vector image restoration,”
2001, pp. O–M5B.

[16] D. Tschumperle and R. Deriche, “Diffusion pdes on
vector-valued images,” Signal Processing Magazine,
IEEE, vol. 19, no. 5, pp. 16–25, Sep 2002.

[17] Silvano Di Zenzo, “A note on the gradient of a multi-
image,” Comput. Vision Graph. Image Process., vol.
33, no. 1, pp. 116–125, 1986.

