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ABSTRACT

The paper describes the construction of a vector valued
orthonormal basis adapted to an input sequence of video
frames. The construction relies on an optimization step
that singles out common discontinuities present in the in-
put vector. This is achieved by constructing a sequence of
partitions in the common domain of the input sequence.
The resulting approximation is a vector valued martingale
that converges pointwise to the given set of images. Out-
put from a software implementation, based on standard
test suites of video sequences, is described.

1. INTRODUCTION

We introduce an algorithm for the simultaneous approxi-
mation of a given collection of images defined on a com-
mon, arbitrary domain Ω. The set of input images is col-
lected into a single input vector. The algorithm is based on
an optimized construction of vector valued basis functions
adapted to arbitrary geometrical discontinuities of this in-
put vector. The paper introduces the basic algorithm and
concentrates in describing the application to video com-
pression.

The algorithm to be introduced will be called Vector
Greedy Splitting Algorithm (VGS), it constructs a tree
which is associated to a sequence of partitions of Ω. Ele-
ments of a partition of Ω will be called atoms. References
[1], [2] and [3] provide examples of adaptive trees for im-
age compression. In general, the tree construction is as-
sociated to a partition of the base domain which in turn is
dependent on a given single input image. It follows that
it is critical to keep the storage cost of the partition low
as it adds to the total storage cost of the compressed im-
age. Therefore, algorithms which partition a given image
domain, with the purpose of compressing an image, need
to impose strong geometrical constraints on the partition
atoms.

As an alternative to the above described situation, the
approach introduced in this paper allows for arbitrary par-
titioning of a given image domain and, hence, we deal
with arbitrary atoms. In order to offset the relatively high
cost of the resulting adapted partition we consider the case
where we have a collection of d images, defined on a com-
mon domain Ω. This creates a trade-off as, on the one
hand, the relative cost of storing the partition diminishes

when we increase d and, on the other hand, the quality of
the approximation degrades as d is increased.

Mathematical properties of the algorithm for the scalar
case are described in [4], further mathematical develop-
ments for the vector case will be described elsewhere. Our
approach is closely related to restricted non-linear approx-
imations and greedy algorithms, these relationships are
explained in [4].

The paper is organized as follows, Section 2 provides
the basic definitions and computational setup. Section 2.1
briefly describes the optimization that forms the core of
the VGS construction. Section 3 describes formally the
VGS algorithm and it describes how it can be used to ap-
proximate the input vector. Section 4 describes how to
do transform compression with the VGS algorithm. Sec-
tions 5 and 6 describe the data structures needed to bit
encode the VGS approximation. Section 7 illustrates the
performance of the algorithm in several standard data sets.
Section 8 summarizes the paper.

2. GENERAL NOTATION AND DEFINITIONS

Given a set of inputs images, we consider each such a
set as a vector valued random variable in a Hilbert space
L2(Ω, Rd) associated to the probability space (Ω,A, P ).
A is a given σ-algebra. Elements from L2(Ω, Rd) are
vector valued random variables X: Ω → Rd, X(w) =
(X[1](w), . . . , X[d](w)), the components X[i] will be the
given input images.

In the applications of this paper we will consider: the
images X[i] as coming from a sequence of video frames,
hence d represents the number of frames used as input to
our VGS construction. Ω will be the set of pixels, P the
uniform measure on Ω and A the collection of all subsets
of Ω.

The inner product in L2(Ω, Rd), for two vector valued
random variables X and Y , is given by

[X, Y ] ≡
∫

Ω

〈X(w), Y (w)〉 dP (w), (1)

where 〈 , 〉 is the Euclidean inner product in Rd, defined
by, 〈X(w), Y (w)〉 =

∑d
i=1 X[i](w) Y [i](w).

Remark: We will write [ , ]1 (instead of simply [ , ])
whenever we are dealing with the case of d = 1.
Definition: A function ψA: Ω 7→ Rd is called a (vector
valued) Haar function on A if there exists A ∈ A and the



following conditions are satisfied

ψA(w) = a 1A0(w) + b 1A1(w) ∀w ∈ Ω, (2)

where a, b ∈ Rd and

A0, A1 ∈ A, i = 0, 1, A0 ∩A1 = ∅, A0 ∪A1 = A. (3)

We also require
∫

Ω

ψA(w) dP (w) = 0,

∫

Ω

‖ψA(w)‖2 dP (w) = 1. (4)

Whenever A is understood we will avoid the use of the
subscript by writing ψ instead ψA. We denote with CA ⊂
L2 the space of all Haar functions on A.

2.1. INNER PRODUCT MAXIMIZATION USING THE
BATHTUB THEOREM

The VGS algorithm introduced in the next section relies
on the maximization of the inner products [X, ψ]. The
goal of this section is to setup for computation the quantity
[X, ψ] for the case when ψ ∈ CA. To this end we introduce
the following notation u0 = P (A0), u1 = P (A1). Using
(4) it follows that

a =
−b u1

u0
, ‖b‖ =

√
u0

P (A) u1
. (5)

For a given set of input signals X and a given A ∈ A
we would like to compute sup

ψ∈CA

[X, ψ]. Replacing the

definition of ψ in equation (2) we obtain

[X, ψ] = ‖b‖ P (A)(
1

P (A)

∫

A

〈X(w), b′〉 dP (w)−

1
u0

∫

A0

〈X(w), b′〉 dP (w)) where b′ =
b

‖b‖ . (6)

Therefore, b′ ∈ Sd, Sd the d-dimensional sphere, is an
independent variable. We can interpret b′ as the weight of
all input components and 〈X(w), b′〉 the weighted average
signal.

Equations (6) and (5) imply that the inner product de-
pends on the quantities b′, u0 and A0; notice that u0 ∈
(0, P (A)). It follows that the supremum depends only on
the same list of variables and can be written as iterated
suprema as follows

sup
ψ∈CA

[X,ψ] = sup
b′

sup
u0

sup
A0∈A,P (A0)=u0

[X, ψ]. (7)

It can be proven by means of the bathtub theorem [5]
that we can simplify (7) to the following computation

sup
ψ∈CA

[X, ψ] = sup
b′

[
sup
y0

[X, ψ̂]
]

, (8)

where y0 is an independent variable belonging to
Range(〈X, b′〉) and ψ̂(b′, y0) = a1Â0

+ b1Â1

ψ̂(b′, y0) = a1{〈X(w),b′〉<y0} + b1{〈X(w),b′〉≥y0}, (9)

a and b are functions of b′ and u0 given by (5).
It can be seen that the suprema in the right hand side

of (8) is realized for some b̂′ ∈ Sd and a range value ŷ0

(and corresponding optimal values of a and b) under the
sole assumption that X ∈ L2(Ω, Rd). We will use the
notation ψ(0) ≡ ψ̂(b̂′, ŷ0) ∈ CA. Therefore [X, ψ

(0)
A ] =

supψ∈CA
[X,ψ].

Given the above, we will say that A best splits into Â0

and Â1, this splitting is used in the next section to define
the VGS algorithm.

Remark: For simplicity, we will drop the notationˆused
to denote the optimal values of b′, y0 and A0.

3. FORMAL DESCRIPTION OF THE VGS
ALGORITHM

The VGS algorithm, builds a sequence of partitions Πn on
Ω indexed by n = 1, 2, ...; this index will be referred as
the n-th iteration of the VGS algorithm. The partitions are
defined recursively:

• Let Π0 = {Ω, ∅}.

• Given Πn, Πn+1 is generated as follows: Consider
A∗ ∈ Πn such that it satisfies

|[X, ψ
(0)
A∗ ]| ≥ |[X, ψ

(0)
A ]| for all A ∈ Πn. (10)

Now, if [X, ψ
(0)
A∗ ] = 0, the algorithm VGS termi-

nates and Πp ≡ Πn for all p ≥ n. Otherwise, i.e.
[X, ψA∗ ] 6= 0, we set Πn+1 = Πn\{A∗}

⋃1
i=0{A∗i }.

The algorithm builds a tree T where its nodes are atoms
from the partitions Πn. The formal definition is given by:
Tn ≡ ⋃n

i=0 Πi, T ≡ T∞. The parent-children rela-
tionship is given by the best split relationship mentioned
above. The vector valued functions ψ

(0)
A , with A ∈ T∞,

can be collected in an increasing sequence of orthonormal
systems Hn, for n ≥ 0, corresponding to the n-th. itera-
tion of the VGS algorithm, as follows: H0 ≡ {µ0 ≡ ψ∅}
also, assume, recursively that Hn = {µ0, . . . , µn} has
been constructed. We then let, Hn+1 ≡ Hn

⋃{µn+1}
with µn+1 ≡ ψ

(0)
A∗ where A∗ is the set in (10). We also set

H ≡ ⋃
n≥0Hn.

It will be important to introduce scalar valued Haar
functions. If ψA = ψ = a1A0 + b1A1 is a vector valued
Haar function, we will use the following notation for the
associated scalar function

ψA,s = ψs = d01A0 + d11A1 , di ∈ R

we also require
∫
Ω

ψs(w) dP (w) = 0 and∫
Ω

ψ2
s(w) dP (w) = 1. This allows us to write the scalar

basis function as follows

ψs = |d1| u1 d′1

(
1A1

u1
− 1A0

u0

)
, d′1 ≡ d1/|d1| ∈ {−1, 1}.

Notice |d1| = ||b||, therefore

ψ(0)
s = ||b|| u1 d′1

(
1A1

u1
− 1A0

u0

)
. (11)



In short, ψ(0) specifies ψ
(0)
s uniquely. Clearly, we can

define an orthonormal system of scalar valued Haar func-
tions, we will denote this system G = {uk}. We will
assume uk is the element in G naturally associated with
µk, where this association is given by (11).

Conditional on given sets A0, A1 (and hence the value
u0, is fixed) one can find the best b̂′ as the vector in Sd

that maximizes (6). A computation gives:

ĉ ≡ 1
u1

∫

A0

X(w) dP (w)− 1
u0

∫

A0

X(w) dP (w), (12)

then, b̂′ ≡ ĉ
||ĉ|| . Using this expression for b̂′ in ψ(0)(b̂′, ŷ0)

we can prove the following result: given any finite index
set I ⊆ N we have the fundamental identity
∑

k∈I

[X,µk]µk[i] =
∑

k∈I

[X[i], uk]1 uk for all i = 1, . . . , d.

(13)
Given a tree Tn with n ≥ 0, the associated VGS ap-

proximation is defined as follows

XTn
≡

∑

A∈Tn

[X,ψ
(0)
A ] ψ

(0)
A . (14)

Using (13) it can be shown that for any n ≥ 0 and w ∈ A:

XTn(w) =
1

P (A)

∫

A

X(w)dP (w), for all A ∈ Πn.

(15)
Therefore the sequence XTn is a martingale with respect
to the sigma algebra Fn ≡ σ(Πn). Moreover, it can be
seen that limn→∞ XTn(w) = X(w) for almost all w ∈
Ω. In fact, if X takes only a finite number of distinct val-
ues there exists N such that XTN

(w) = X(w) for almost
all w ∈ Ω.

4. TRANSFORM COMPRESSION: SCALAR AND
VECTOR APPROXIMATIONS

In practice, and as a first step, we will run the VGS al-
gorithm on an input vector in order to obtain a “full” tree
TN so that ||X − XTN

|| ≈ 0. The second step is to per-
form a transform compression, this involves pruning the
tree nodes until some stopping criteria is reached. To per-
form this task several different approaches could be used.
We consider two such approaches next.

On the one hand, for a fixed vector error level εv , we
can approximate X up to the error εv . This approximation
is a vector approximation as it uses the norm in the space
L2(Ω, Rd). If Xn denotes the approximation obtained
pruning the full tree, we then will have ||X −Xn|| ≤ εv ,
this vector approximation will provide a certain error level
for the components i.e. ||X[i]−Xn[i]|| (notice that, in this
second instance || || denotes the norm in L2(Ω, R)) . On
the other hand, for a fixed scalar error level εs, it is pos-
sible to generate scalar approximations X[i]n, where now
n = n(i, εs), for each component X[i] in such a way that
||X[i]−X[i]n|| ≤ εs for each i = 1, . . . , d.

These two different points of view will be called the
Vector approximation and the Scalar approximation, they
are explained in more detail below.

The relation (13) is a basic result and shows that one
could use the vector valued orthonormal system H to ap-
proximate X or one could use the scalar valued orthonor-
mal system G to approximate each X[i], i = 1, . . . , d.

The two systems, H and G, are not equivalent (for
compression purposes) when one considers the optimized
expansions as we explain next.

Let h : N → N be a re-ordering function for H in
such a way that |[X, µh(0)]| ≥ |[X, µh(1)]| ≥ . . . . We then
define the n-term VGS optimized vector approximation
by

Xn ≡
n−1∑

k=0

[X, µh(k)] µh(k). (16)

In practice, the integer n is chosen to satisfy some error
criteria, say a vector error level εv is given so we can find
n = n(εv) so that ||X −Xn|| ≤ εv.

One can define the same notions for the orthonormal
system G, let gi : N → N be a re-ordering function for
each i = 1, . . . , d, so that |[X[i], ugi(0)]1| ≥
|[X[i], ugi(1)]1| ≥ . . . . We then define the n-term VGS
optimized scalar approximations by

X[i]n =
n−1∑

k=0

[X[i], ugi(k)]1 ugi(k). (17)

Given an scalar error level εs we can find integers ni such
that ||X[i]−X[i]ni || ≤ εs for all i = 1, . . . , d.

To sum up, there are two possible optimized approxi-
mations, the optimized VGS approximation given by (16)
(which we call the vector approximation) and the d opti-
mized scalar VGS approximations given by (17) (which
we call the scalar approximations). These two approxi-
mations are obtained by pruning the tree and keeping only
the active nodes for further processing. It should be clear
that we call the active nodes are the tree nodes associated
to the inner products appearing in the optimized approx-
imations. In each case, the pruning will give rise to two
different set of active nodes. Given a vector error level εv ,
after pruning the tree we will need to store information re-
lated to n = n(εv) active nodes in the tree. In the scalar
case, given an scalar error level εs, each component X[i]
requires ni = ni(εs) nodes. Of course, many of these
nodes are common to several signals. In any case, the fi-
nal collection of active nodes for the scalar case can be
quite different than for the vector case.
Once the pruning has been completed, we need to store the
relevant information associated to each node. Depending
if we are performing a scalar or a vector approximation
we will need to store different data types so that the re-
construction (by the decoder) of the approximation can
be performed. In the vector case one needs to store the
following information at the active nodes: numbers of
the form [X,ψ

(0)
A ] and a corresponding vector b′A. In the

scalar case one needs to store some (or all) of the follow-
ing numbers: [X[i], ψ(0)

A,s]1, i = 1, . . . , d.
There also exists another related approximation used

in this work, it is called leaves average approximation,



this approach uses the information on the tree leaves after
the tree has been pruned and it is described in Section 6.3.

5. DATA STRUCTURES AND BIT COUNTING

The decoder of the VGS approximations will use the fol-
lowing three data structures: partition map, significance
map and quantization map. Roughly speaking, the parti-
tion map encodes the partition associated to the tree after
it has been pruned; the significance map relates the Haar
functions associated to active nodes with the correspond-
ing partition atoms and stores the children-parent infor-
mation associated to active nodes. The quantization map
stores the quantized information required for reconstruc-
tion at active nodes. When reporting numerical results we
will actually indicate with a single quantity the cost of the
significance map plus the cost of the quantization map.
Moreover, whenever reporting bit costs for encoding the
partition map we will use two different methods: theoret-
ical estimated costs (by means of entropy encoding) and
the cost resulting from Lempel-Ziv lossless encoding.

5.1. Partition Map (MΠ)

Definition: Consider n ≡ |Π(Ω)|, where Π(Ω) is a finite
partition of Ω, a function MΠ: Ω → N is called a Parti-
tion Map if for each Ak ∈ Π(Ω), k = 1, . . . , n, it satis-
fies: MΠ(w) = vk ∀ w ∈ Ak, if k 6= j ⇒ vk 6= vj .
The integers vk will be called symbols.

We describe how the Partition Map is created by means
of an example. Figure 1 displays a full tree obtained after
three iterations, the partition associated to the full tree is
shown in Figure 2 a). Assuming the nodes {1, 3, 6} are

Figure 1. Full tree with active nodes marked.

the only active nodes, the resulting partition is shown in
Figure 2 b).
Notice that node 2 is not active and hence the symbol asso-
ciated to node 1 is not further changed in this case (unless
a descendant of node 2 were actually active.)
Remark: The partition map shares the same domain as
the input images, and the maximum number of atoms is
equal to the number of pixels. In general, an upper bound
for the number of bits needed to store the partition map is
log2 |Ω|.

The entropy encoding is straightforward, the symbols
are the integer values assigned to atoms in Π(Ω). The as-

Figure 2. a) Partition using the full tree, b) Partition using
the compressed tree.

sociated entropy is denoted by HMΠ and if Ns ≡ |Ω|
then the theoretical cost associated to MΠ is CMΠ =
HMΠ ×Ns.

5.2. Significance Map (MS)

The tree structure required to reconstruct the input vector
is encoded by the data structure which we will call the Sig-
nificance Map (SM). Notice that the significance map also
needs to include links from nodes to the partition encoded
by the partition map.

Figure 3. Compressed tree.

As we can see in Figure 3, if a node is active we do
not require the ancestors to be included. The problem to
include a node and not its ancestors can be solved with-
out including much more extra information or introducing
any extra computational cost. The resulting algorithm is
rather complex though and it is best described by means
of an example. We use three different types of symbols to
encode the tree, they are used to create a string which will
be called the significant string and denoted with S . The
symbols are: Q: Active node, V : Link to the partition and
D: Dummy node.

We start visiting tree nodes using a preorder traver-
sal method. Node 2 is not active and its right children is
not active we then label this node with a V . Node 3 has
both children active we then use the symbol D. The al-
gorithm continues until the following string is constructed
S = {Q2, V 2, Q2, V, Q2, V, Q2V V, Q2V V,D2,
Q2V V, Q2, Q2V V,Q2V V }. Figure 4 shows the decoded
tree, for the purpose of reconstruction it is equivalent to
the original tree. The number of symbols proposed is
three, but if we associate the number of children to the
symbol we may check that the sequence of symbols
“{Q2V V }” has the highest probability, we could then in-
troduce another new symbol to code Q2V V . This is the
analogous of the zero tree symbol introduced in [1].



Figure 4. Equivalent decoded tree.

Definition A function MS : S → Z is called a Signif-
icance Map. For a given k ∈ Z define: Sk = {s ∈
S : MS(s) = k }. Also define the symbol set JS by:
JS = {Sk ⊂ S : Sk 6= ∅}.

Using entropy encoding we find that HMS
=

−∑
Sk∈JS pk log2 pk where pk = |Sk|

|S| . The theo-
retical cost associated to the significance map is given by
CMS

= HMS
× |S|. We remark that the cost associated

to the significance map is, relatively speaking, the lowest
cost when compared with cost to encode the partition map
or the quantization map.

5.3. Quantization Map (MQ)

In order to use entropy encoding we need to make use of
a quantization method. The two techniques can be com-
bined and performed simultaneously as in the case of the
arithmetic coding, see [1], [6].

Let us use λk to denote, for the moment, the values of
inner products (scalar or vector) and let P denote a queue
containing the significant inner products. We have veri-
fied that the best quantization technique for our algorithm
is the uniform quantization defined as follows: V(λk) =⌊

λk

c

⌋× c and c > 0. We also set Q ≡ {V(λi) : λi ∈ P},
we can then define the quantization map as follows.
Definition: A function MQ: Q → Z is called a Quan-
tization Map. Also, define the set of al values from Q
which equal k, namely: Qk = {q ∈ Q : MQ(q) =
k and k ∈ Z} and then the symbol set is given by
JQ = {Qk ⊂ Q : Qk 6= ∅}. This allows us to com-
pute the We entropy encoding HMQ

to find the average
bit per symbol. Then the theoretical total cost associated
with the quantization map can be computed as follows
CMQ

= HMQ
×Q.

As an example, let λk = [X[i], ψA,s]1 denote the largest
inner products kept after pruning a full tree by means of
the scalar approximation. Figure 5 shows the values of λk

sorted by |λk| (values taken from a video sequence).

6. ENCODING FOR SCALAR, VECTOR AND
LEAVES AVERAGES APPROXIMATIONS

6.1. Scalar approximation

Here we describe the bit cost associated with the scalar
approximation. The information needed for the recon-
struction includes the scalar inner products [X, ψs]1, the
partition and the tree. A node is considered active if at
least one scalar product λi is required at the node.

Figure 5. Scalar inner products distribution.

Indices information: The indexing information can
be encoded using three different approaches. The first
approach uses d bits to encode whether an inner prod-
uct is included or not. The second approach uses an in-
dex header for each inner product included and the third
approach uses a special null character to identify when
a scalar inner product is not included. Figure 6 shows

Figure 6. a) Binary encode, b) Indexing encode, c) Special
character.

examples of these three approaches for a given sequence
of scalar inner products {λ1, λ2, λ3, λ4, λ5} where only
{λ2, λ4} need to be stored. Therefore, for a given node n
the associated cost of each model is calculated as follows:
a) CIn = d + k HMQ , b) CIn = k log2 d + k HMQ

c) Consider that the special null character has HMQ
bits

then CIn = d HMQ
. Where d is, as usual, the number of

inputs, HMQ
is the average bits per scalar inner product,

and k is the number of inner products being used at node
n. It is possible to evaluate a priori which method is the
best for each node and then add two bits to the header of
the node so the decoder can use the correct method. The
total indexing cost is CI =

∑
n CIn . The total cost CT is

given by CT = CMΠ + CMS + CI . Where CMΠ is the
cost associated with the partition, CMS is the cost asso-
ciated with encoding the tree and CI is the indexing cost.
Notice that the cost associated with the quantized coeffi-
cients CMQ

(see section 5.3), is included in CI . As indi-
cated, when reporting actual values we will report CMΠ

and CMS + CI .

6.2. Vector Approximation

At a given active node A, the vector approximation needs
to store [ψ(0)

A , X] and b̂′A given by (12). This last vector
can be encoded efficiently as we describe next. Notice that

1
P (Ak)

∫
Ak

X[i](w) dP (w) = EAk
(X[i]), which is the

expected value of X[i] relative to the atom Ak, k = 0, 1.



Therefore, the value of the best b̂′i is given by the nor-
malized difference of two expected values EA1(X[i]) −
EA0(X[i]). Define now ∆i = EA1(X[i]) − EA0(X[i]),
so b̂′[i] = ∆[i]/||∆||.
Quantization Map: The quantization technique amounts
to taking the integer part of the difference of the expected
values defined above, V(∆[i]) = b∆[i] + 0.5c Figure 7
shows and example of the relative frequency of the quan-
tized differences ∆[i], a set of 9 images with a PSNR= 40
was used as the input vector. As we have done previously,

Figure 7. Relative frequency of the quantized difference
of the expected values.

if HMQ denotes the average number of bits per symbol,
then the theoretical total cost associated with the quan-
tization map is given by: CMQ = HMQ × |Q|, where
Q was defined in Section 5.3. Finally, the total cost CT is
CT = CMΠ +CMS

+CMQ
, where CMΠ is the cost asso-

ciated with the partition, CMS
is the cost associated with

the tree and CMQ is the cost associated with the quantized
coefficients and b̂′.

6.3. Leaves Average Approximation

Given a finite partition Π, resulting from an application of
the VGS algorithm, we compute the integer part of the
average of each input image over each atom Aj ∈ Π,

λij =
⌊

1
|Aj |

∑
w∈Aj

X[i](w)
⌋

, so λij ∈ Z. Define
Λ ≡ {λij for all i = 1, . . . , d and j = 1, . . . , n}
where n = |Π| and d is the number of input images, then
|Λ| = n× d.

The leaves average approximation XΠ is then defined
by XΠ(w) = (λ1j , λ2j , . . . , λdj) ∀ w ∈ Aj . Therefore,
if CΛ is the cost associated to encoding the set of integers
Λ, the total cost associated to this approximation is CT =
CΛ + CMΠ .

7. VIDEO COMPRESSION RESULTS

This section illustrates the VGS algorithm applied to stan-
dard video sequences considered in the literature; more
information about the video sequences used can be ob-
tained from [7]. Table 1 indicates the videos considered
in this paper.

Table 1. Video sequences used in the paper.
Sequence Format Frames Resolution
Akiyo QCIF 300 176× 144
Foreman QCIF 300 176× 144
Flowers and Garden CIF 250 352× 288
Foreman CIF 300 352× 288

We present results for the following two methods: scalar
approximation and average leaves, these methods will be
denoted Haar VGS (HVGS) and Average VGS (AVGS)
respectively. The AVGS method is considered with or
without lossless compression. In general, we only pro-
vide results in order to illustrate several characteristics of
the VGS algorithm and only briefly comment on how it
compares to other approaches. Comparisons with MPEG
can be found in [8]. Figure 8 displays a comparison be-
tween the cost of the PM (Partition Map) and the QM
(Quantization Map) plus the SM (Significance Map) for
the Foreman video. The method used is HVGS; the graph
corresponds to a specific average distortion.

Figure 8. Foreman Avg.PSNR=45db - bits vs. d.

Figure 9 displays a rate-distortion graph for the video
Flowers and Garden using HVGS .

Figure 9. HVGS Flowers & Garden Rate-distortion graph.

Figures 10 and 11 illustrate several aspects of our meth-
ods applied to Akiyo. Figure 10 plots the bit rate as a
function of increasing values of d for a given target av-
erage PSNR of 35 db; both methods, HVGS and AVGS
are shown in the same graph.



Figure 10. Akiyo Rate vs. d - Avg. PSNR=35db.

Figure 11. Akiyo Avg.PSNR=35db d=20 bit-
rate=186.51Kbps.

Figure 11 displays the total number of bits averaged
over the numbers of frames as the VGS algorithm iter-
ates over the video frames. The value of d = 20 was
used and the bit rate was 186.51 Kbps. The Figure illus-
trates how the number of bits oscillate, as a function of the
frames, for a given bit rate target. The performance results
described so far for the VGS algorithm are not compet-
itive with state of the art video compression algorithms
that make use of motion compensation and inter-frame
prediction. It should be emphasized that we have imple-
mented a rather naive version of the possibilities offered
by VGS, in particular, there exists the possibility to per-
form more thorough optimizations leading to ternary trees
([8]). Notice also that we have used the same value of d
for the whole video sequence, choosing dynamic values
for d will also make the VGS more competitive. In or-
der to enhance the performance of VGS we describe next
several numerical experiments in which we partition the
frames in tiles. For simplicity, we constraint the tiles to
be fixed for the whole video sequence. Moreover, the tiles
are of same size and shape (rectangular). Figure 12 shows
a comparison between the bit-rate vs. d for the Foreman
video sequence, with a target of 28db and using 3×3 tiles.
The same figure also presents the comparison between the
AVGS method with and without applying the Lempel Ziv
algorithm to the stored data (this method is labeled AVGS-
LZIV).

Figure 12. Foreman CIF Avg.PSNR=28db bit-rate vs. d
Tiling=3x3.

Again, for the Foreman video sequence, Table 2 shows
the bit-rate values (in Kbs/sec.) for a given target of 28db
and different values of d and numbers of tiles. Values for
both algorithms, AVGS and AVGS-LZIV, are displayed.

Table 2. Foreman CIF, bit-rate (kbits/sec.) values for dif-
ferent values of d for AVGS-LZIV and AVGS algorithms.
Target PSNR = 28 db.

d Tiles AVGS-LZIV AVGS
8 3x3 1279.20 7607.84
9 1× 1 1452.30 6852.08

1× 3 1329.92 6917.11
2× 3 1453.30 6956.36
3× 1 1353.50 6931.84
3× 3 1341.51 6983.98
4× 4 1271.36 7049.05
6× 6 1427.99 6918.42

12 3x3 3028.24 6443.83

Table 3, for the video sequence Flowers and Garden, shows
a bit-rate comparison between AVGS and AVGS-LZIV
using different number of tiles for a fixed distortion tar-
get of PSNR = 27db.

Table 3. Flowers CIF, bit-rate (kbits/sec.) values for
AVGS-LZIV and AVGS algorithms, PSNR = 27db.

Tiles AVGS-LZIV AVGS
1× 1 5005.67 7093.59
2× 2 5824.99 8721.78
4× 4 6285.36 9390.17
6× 6 6592.69 9753.52
1× 3 6596.06 9172.63

Table 4, for the video sequence Akiyo, shows the bit-
rate for different number of tiles using AVGS-LZIV for a
fixed distortion target of PSNR = 35db.

Table 4. Akiyo QCIF, bit-rate (kbits/sec.) Tiles from 1×1
to 4× 4, PSNR=35db.

1 2 3 4
1 108.8 76.3 106.2 99.0
2 76.1 81.2 107.3 100.7
3 87.0 94.6 124.7 122.1
4 87.3 96.6 123.7 129.9



In order to provide support to the idea that different
tiles require an specific value for d, we describe the vari-
ation of the bit-rate across different tiles for the video
Flowers and Garden. In the first case, CIF, AVGS, d=9,
tiles=4×4 and distortion PSNR=28db, the average bit-rate
per tile (the average cost of a tile in one frame, because it
is the same for the d images) is shown in Figure 13. It is
possible to see the variation of the cost within each con-
secutive group of 16 tiles that conform each frame.

Figure 13. Bit-rate per tile - Flowers CIF Avg.PSNR =
28db, d = 9, 4 × 4 tiles. Average = 13934 Std.dev. =
13617.

Finally, Figure 14 shows the original Akiyo video se-
quence in QCIF format 176 × 144 and Figure 15 shows
a detail of one frame and its reconstruction using AVGS
with a distortion target of PSNR = 38db and d = 9.

Figure 14. Video Sample Akiyo QCIF.

Figure 15. Akiyo reconstruction detail using AVGS -
PSNR = 38db - d = 9. Left: original, right: reconstruc-
tion.

8. CONCLUSION

We have described the construction of an adapted orthonor-
mal basis, the construction provides a simultaneous ap-

proximation to a given collection of video frames. The
adaptivity allows fast decay of the inner products between
the given images and the basis elements. There is the extra
cost of storing the basis elements; this cost is ameliorated
by imposing a tree structure to the construction. Numer-
ical results illustrate the trade off between speed of con-
vergence and the storage costs. We also provide results
indicating the performance of the proposed algorithm on
a set of standard video sequences. Competitive perfor-
mance can be obtained at the expense of introducing more
sophistication in the proposed technique, in particular we
show how the results are improved by introducing tiles
and lossless compression of the data structures.
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