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ABSTRACT

Local adaptive linear and non-linear filters and local
criteria for assessment of image processing quality that
substantiate them date back to mid 1980-th. In this paper
we review the basic ideas, support them with known
facts on properties of human visual system and analyze
contemporary tendencies

1. INTRODUCTION

Local adaptive linear and non-linear filters for image
and signal processing and local criteria of image proc-
essing quality that substantiate their optimality and de-
sign date back to mid 1980-th ([1-7]) and were inten-
sively investigated throughout the subsequent years ([8-
21]). The filters scan signal/image with a sliding window
and, at each window position associated with the run-
ning pixel, generate an estimate of the pixel on the base
of measuring local statistics within window, such as lo-
cal spectra in certain bases, local histograms and their
moments and local order statistics. The local criteria as-
sume assignment of an image quality measure to every
pixel of the image. This is done on the base of evalua-
tion, on average over “random” factors associated with
image formation and intended utilization of the image,
of quality losses over a subset of pixels in a certain
neighborhood of the given pixel. In this paper we reiter-
ate basic formulations of local criteria and illustrate the
validity of basic assumptions using known facts on
properties of human visual system.

2. LOCAL VSGLOBAL PROCESSING

Two approaches to the design and optimization of image
processing algorithm are global and local ones. The
global approach originates from the classical statistical
communication theory and its concept of signal station-
arity. In the global approach, processing algorithms are
designed and optimized for image statistical ensembles
and applied to images as wholes. The local approach
treats images as spatially inhomogeneous and assumes
local adaptivity of the processing algorithms. There is
quite a number of arguments in favor of "local" ap-
proach versus "global" one:

It is well known that, when viewing an image, hu-
man eye’s optical axis permanently hops chaotically
over the field of view ([22]) and that the human vis-
ual acuity is very non-uniform over the field of view.
The field of view of a man is about 30°. Resolving
power of man's vision is about 1. However such a
relatively high resolving power is concentrated only
within a small fraction of the field of view that has
size of about 2° (see, for instance, [23]). Therefore,
the area of the acute vision is about 1/15-th of the
field of view.

Figure 1. Test image (left) and results of record-
ing eye fixation when observing this image
(right) (adopted from [23])

e Visual objects to be recognizable have to con-
tain sufficiently large number of pixels. As an
immediate illustration of this fact one can re-
call that, for the representing printed charac-
ters, one needs a matrix of at least 8x8 pixels.
Even the smallest one pixel size object needs a
neighborhood of 3x3 pixels to be detectable if
not recognizable. The same and even to a
greater degree holds for "texture" images.
Texture identification is also possible only if
texture area contains sufficiently large num-
bers of pixels. This means that image can be
regarded as a composition of object domains



with the linear size from several to several tens
of resolution cells.

e Adaptive filter design assumes empirical
evaluation of signal statistical parameters such
as spectra (for local adaptive linear filters) or
histograms (for rank filters). In global image
statistics, parameter variations due to image
non-homogeneity are hidden and are difficult
if not impossible to detect. Therefore in global
statistical analysis image local information will
be neglected in favor of global one, which
usually contradicts processing goals.

3. LOCAL CRITERIA

A mathematical framework for the optimal design,
analysis and comparison of local adaptive filters is pro-
vided by local criteria of image processing quality ([14-
18)).

Let {b,} be a set of N

(k=0,1,..., N —1) at the output of the imaging system

image samples
and {ak} be a set of the system’s input image samples
that model a perfect, or “ideal” image. For the design of
adaptive filters, the set {bk} is considered as a realiza-
tion taken from a signal statistical ensemble generated
by an ensemble Q of random interferences caused by
) be a
measure of deviation of the observed m-th image sample
from the ideal one. In these denotations, local criteria
assign to every K -th image sample a quality loss meas-
ure:

image acquisition devices. Let also LOSS(a b

m?~m

AVLOSS(k)= AV, {2 Loclk; a(k)]Loss(ak - m),a(k - m))} (1)

where LOC[k; a(k)] is a “locality” weight function that
have positive non-zero weights for those samples that
are to be involved in the spatial averaging of the loss
function over the set of available samples and AVq s

an averaging operator over the ensemble € . Most fre-

quently, the averaging operator assumes arithmetical av-
eraging. However, in general, they might produce any
global estimate of the set values such as median, alpha-
trimmed mean, maximum and alike.

The simplest examples of loss-functions are given in
the Table 1. Obviously, these four examples do not ex-
haustively represent loss functions adequate to wide va-
riety of types possible degradations of image quality.
Images shown in Fig. 2 illustrate how different is visual
evaluation of different types image degradation, that are
all equivalent in terms of the quadratic loss-function
LOSS-2.

Some examples of locality functions that have found
applications in local adaptive linear and rank filters are
given in Table 2. Figs. 3 and 4 illustrate the validity and
importance of the notion of neighborhood on the exam-
ples of “FLAT” and EV-neighborhoods.

Table 1. Examples of loss functions

LOSST [ [a(m)- a(m)
LOSS-2 |a(m)— é(mf
LOSS-2p |a(m)— é(ijp
LOSS-Thr

0,/a(m)- &(m) < ThresholdValue|
1,|a(m)- &(m)> ThresholdValue|

Table 2. Examples of neighborhoods

S-neighborhoods: pixel co-ordinates as attributes

Spatial win-
dow

a rectangular win-

SWNBH (N, , N, J:
dow of (NX,Ny) pixels

Shape- SHWNBH (fw, J,N,,N,): a spatial
E(e)log(?sbor_ window of certain shape defined by weight
coefficients {Wm}

V-neighbor hoods: pixel values as attributes
" Epsilon- iq et o).
V"-neighbor- Eanh(SNNBH yA Ey G E, ) a subset
hood of pixel with values {an} that satisfy ine-

quality: 8, —€, <a, <a +é&; .
"K  nearest | KNVnbh(SWNBH ;a,,K): a subset of
by value"- . ) { }
neighbor- K pixels with values 18,, f closest to that of
hood of | element &, .
element
Range- RNGnbh(SWNBH V0, Viy): a subset of
neighbor- pixels with values {V\} within a specified
hood: range {Vmn<Vi<Viy)

R-neighbor hoods: pixel ranks as attributes
;EE’;}'JSQ;_R”' ERnbh(SNNBH A Em e;): a subset
hood of pixels with ranks {Rn} that satisfy ine-

quality: R —&x <R <R +é&;.
“K-n”ear%? by KNRnbh(SWNBH;a,,K): a subset of K
ll;?)rr]}lioo dnelggi pixels with ranks closest to that of element
clement a, a, over Sw-nbh(N,N y).
Quantil- Qnbh(SWNBH , R4 , Ry )Elements
neighbor-
hood (order statistics) whose ranks {Rr }satisfy

inequality R < R, < Ryjgy

H-neighbor hoods: pixel cardinalities as attributes

"Cluster"
neighborhood

of element

CLnbh(SWNBH; 3, )

Neighborhood elements that belong to the
same cluster of the histogram over the

8- neighborhood as that of element a, .
G-neighborhoods: Geometrical attributes

“Flat”- FLAT(SWNBH) — Neighborhood ele-

neighborhood | ments with values of a certain measure of

local non-uniformity lower than a certain
threshold




"

Moire noise, ErrStdev=20/256

Quantization noise, Q=4, ErrStdev=21/256 Low pass filtered image (energy spectrum
thresholding); ErrStdev=20/256

Figure 2. Different image distortions with the numerically same degradations in terms of the loss-function
LOSS-2



Figure 3. Illustration of how different is visual perception of noise in images within “flat” and “non-flat” pixel
neighborhoods. Images in the top row are a test image (left) and the result of the test image segmentation into “flat”
(black) and “non-flat” (white) components according to whether values of local standard deviation in the spatial
window 5x5 pixels is relatively low or high (standard deviation segmentation threshold 20). In images in the middle
row additive white noise of the same standard deviation of 20 (in the image range 0-255) is added to “flat” (left)
and to “non-flat” areas of the test image. One can see from these images that human vision is effectively not very
sensitive to noise in “non-flat” image areas and is quite sensitive to noise in “flat” areas. Images in the bottom row
shows noise present in images of the middle row.



Figure 4. Illustration of the amount of information content of local histograms over spatial SWNBH - and EV-
neighborhoods. Images in the top row are generated from pseudo-random numbers with the same distribution histo-
gram as that of pixels of the initial test image shown in Fig. 3 in spatial window of 7x7 pixels (left) and of pixels in
EV-neighborhood with &Vplus=&Vminus =10 (right). Images in the bottom row show pixel-wise difference be-

tween the initial test image and corresponding images of the top row (the right image is, for display purposes, 12
times amplified with respect to the left image). One can see that while the left image preserves certain similarity
with the original image thanks to common first order local statistics, the right image is practically indistinguishable
from the original one, though pixel-wise difference between them is a random pattern with uniform distribution in

the range +10 gray values (right bottom image).

4. LOCAL ADAPTIVE FILTERS

Local criteria outlined in Sect. 3 serve for substantiation
of local adaptive filtering for image perfection and en-
hancement. The filtering is performed within a filter
window that scans input image pixel by pixel and, in
each position k of the window, filters generate, from in-

put signal samples {br(]k)} within the window, an esti-
mated output value a, for this position by means of a
certain estimation operation ESTM applied to a certain
subset NBH {br(]k)} of window samples:

bwlsa, :a =estm(nBH{® . 2)

Two families of local adaptive filters have been sug-
gested: local adaptive linear filters and rank filters. A

comprehensive treatment of them can be found in Refs.
[20, 21, 24].

4.1  Local adaptivelinear filters

Local adaptive linear filters minimize variance of dif-
ference between filtered and “ideal” images over spatial
window neighborhoods (L OSS-2 loss function)

AVLOSS(k):AVnN{ 3 |alk - m)- ak - mf} .3
me Spw

They work in sliding window in a domain of a certain
orthogonal transform such as DFT, DCT, Haar and the
like, and have proved their high efficiency in image de-
noising. In case of DFT or DCT domain filtering, they
are capable also of local adaptive image deblurring, in-
cluding blind one, and resolution enhancement. They
can also implemented as 3D filters for denoising and
deblurring of multi-component images such color im-
ages or sequence of video frames, in which case proc-



essing is performed in the domain of the corresponding
3D transform ([12, 15, 21]). It was shown in Ref. 17 (see
also [21]), that local adaptive transform domain filters
can also be treated as implementations of empirical
Wiener filtering of image sub-bands, which creates a
base of their comparison with wavelet denoising meth-
ods (see, for instance, [25]).

4.2 Rank filters

Local rank filters implement methods of robust sta-
tistical estimations. They are optimized in terms of loss
functions other than quadratic and over different types of
neighborhoods exemplified in Table 2.

Typical estimation operations are listed in Table 3.

Table 3. Estimation operations

MAX-filters a, =MAX(SWNBH)

MIN- filters a, =MIN(SWNBH)

Adaptive Mode Quantization filter
a, =MODE(SWNBH)

Local histogram equalization a, = RANK(SNN BH )

Quasi-range: a, = QSRNG(SwWNBH ) =

R_ROS(SWNBH )-L_ROS(SWNBH)

4, = STDEV(SWNBH)

Table 5. Two stage (NBHZbased) filters

General: 8, = MEAN(FUNC(NBH ))

RMSE optimal linear filters
a, =MEAN(MULT_C(SWNBH))

“L-filters”, “Rank Selection filters”; “C-filters”
a, =MEAN(MULT_R(SWNBH))
a, =MEAN(MULT_RC(SWNBH))

REPL-A - neighborhood filters

Denotation | Definition
MEAN(NBH) [ Arithmetic mean of samples of the
neighborhood
PROD(NBH) | Product of samples of the neighborhood
K_ROS(NBH) Order statistics: Value that occupies K-
th place (has rank K) in the variational
row over the neighborhood. Special
cases:
MIN(NBH) Minimum over the neighborhood (the
first term of the variational row)
MEDN(NBH) [ Central element (median) of the varia-
tional row
MAX(NBH) Maximum over the neighborhood (the
last term of the variational row);
MODE(NBH) Histogram mode Value of the neighbor-
hood element with the highest cardinal-
ity:
MODE(NBH)=argmax(H (NBH ))

Weighted me- ék =MEDN(REPL_C(SWNBH));
dian filters
Weighted K- é_k =K_ROS(REPL_C(SwWNBH))
ROS - filters
Morphologi- | Dilation a, = MAX(SHWNBH )
cal filters filter
Erosion fil- a, = MIN(SHWNBH)
ter
Soft Morph. | 3, = ROS(SHnbh)
filters

V-neighborhood filters

RAND(NBH): A random (pseudo-random) number taken
from an ensemble with the same gray level distribution den-
sity as that of elements of the neighborhood

KNN- filter &, = MEAN(KNV (SWNBH ; a, ; K))

STDEV(NBH): Standard deviation over the neighborhood

"Sigma"- filter
4, =MEAN(EVnbh(SWNBH a,; £} ; &7 )

Interquantil distance R_ROS(NBH )— L_ROS(NBH ),
where 1< L < R<SIZE(NBH ).

Range: MAX(NBH )-MIN(NBH )

Modified Trimmed Mean filters
a, =
MEAN(EV (Wnbh; MEDN(SWNBH ) &7 ; £; ))

SIZE(NBH): Number of elements of the neighborhood

R-neighbor hoods

Tables 4 to 6 represent examples of one-, two- and
three- stage rank filters ([20]). Note that above men-
tioned transform domain local adaptive filters are also
included in these table as special cases (RMSE optimal
linear filters in Table 5 and transform domain filters in
Table 6)

Table 4. One stage (Wnbh-based) filters

Alpha-trimmed mean, median

&, = MEAN(Qnbh(SWNBH , R, Ry ));
8, =MEDN(Qnbh(SWNBH , Ry, R i)

Moving average filter

4, = MEAN(SWNBH)

Impulse noise filtering filters:

&4, =MEM B(anh(S’VNBH Rt Rright)’ak)'ak +
|1~ MEMB(Qnbh(SWNBH , Ry, Rign ) 2 ) I

SMTH (Qnbh(SWNBH , Ry, R
where MEM B(NBH )= 1, if the pixel belongs
to NBH ; otherwise MEMB(NBH )=0

"Ranked order" ("percentile") filters

a, =K _ROS(SWNBH)

Median filter | 4, = MEDN(SWNBH )




Table 6. Tree stage (NBH3-based) filters

Transform domain filters

“Soft” thresholding &, = MEAN(H - T(SWNBH )),
H = diag|max(T(SWNBH)|* = 5% /|T(SuNBH )| 0]

“Hard” thresholding
&, = MEAN(STEP{T(SWNBH )| - o} T(SWNBH)),
where O is a filter parameter,

0,x<0
STEP(x)= L o0

LLMMSE- filter

2 2

: =[1_ (STD(;NBH ) ]a“ ¥ (STD(gNNBH )

_MEAN(SWNBH)

2.
where O is a filter parameter

Stack filters
MIN(Subwnbh, ), MIN(Subwnbh,),..
. MIN(Subwnbh, ) '

a, = MAX[

5. CONTEMPORARY TRENDS

From the present author’s perspective, at least three
direction of modern developments of the local approach
to synthesis and evaluation of image processing algo-
rithms can be indicated:

- Adaptive selection of the filter window shape and
size

- Extending notion of pixel neighborhoods to spa-
tially disjoint neighborhoods and multiple window
processing

- Introducing local visual image quality measures.

Appropriate selection of the shape and size of the
primary spatial window of local adaptive filters is of
crucial importance in their application. Obviously, image
restoration capability of sliding window filtering will be
higher, if window size is selected adaptively in each
window position. To this goal, filtering can be carried
out in parallel in windows of multiple sizes and shapes
and, in each window position, the best filtering result
should be taken as the signal estimate in this position.
This can done using methods of statistical tests such as,
for instance, intersection of confidence intervals method
introduced by Katkovnik et al (see, for instance, [26]). A
more general option is computing signal estimates by
means of linear combination of filter outputs or using
statistically robust data smoothing estimation operations
such as those listed in Table 3.

Yet another possibility of improving image resto-
ration capability of local adaptive filters, especially of
their image denoising capability, is associated with ad-
mitting that pixel neighborhoods used for obtaining pixel
gray value estimates must not necessarily be spatially
connected with the pixel under estimation, which was an
assumption implicitly or explicitly assumed in the de-
scribed filters. In many practical applications, informa-

tion needed for estimation of every image pixel can be
collected over all appropriate areas of the entire image
frame and not necessarily only in a spatially connected
neighborhood of the pixel. Fig. 5 illustrates this idea on
an example of a spatially disjoint EV-neighborhood of
the pixel marked by the cross.

This “non-local” approach was suggested and is be-
ing developed by J.M. Morel et all ([27 —29]). An exten-
sion of this approach by means of application of local
adaptive transform domain multi-component image fil-
tering to multiple windows ‘“non-local” image denoising
was recently presented in [30]. Note also that such a
non-local image smoothing can be regarded as a variety
of the method of correlational accumulation ([31]).

Figure 5. An illustration of “non-local” EV-
neighborhood (right, white pattern) for the pixel on left
image marked by the cross and EV, = EV_ =10. One

can see from the figure that the EV-neighborhood of the
marked pixel stretches over areas that are spatially very
far from the pixel. Obviously, averaging by computing
MEAN or MEDN over such an extended EV neighbor-
hood will be much more efficient in terms of noise sup-
pression than the averaging over any smaller spatial
window such as that shown by the black box.

At last, an approach to evaluating image quality,
which is essentially equivalent to the above-defined lo-
cal criteria, is gaining now popularity for evaluation of
image visual quality after recent publications by Zhou
Wang and A. C. Bovik ([32]). It was successfully tested
and confirmed in psycho-physical experiments intended
for the evaluation and comparison of image compression
methods.
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