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ABSTRACT 

Practical cases where a 1-D signal is corrupted by mixed 
Poisson and specific impulsive noise are considered. The 
requirements to the filtering method are discussed. It is 
shown that DCT based filters combined in adaptive manner 
with some robust filter, e.g., a standard median filter, can 
effectively be applied for noise removal in the considered 
case. Different modifications of the DCT based filter are 
analyzed. It is demonstrated that the DCT based filter can 
either be applied together with a pair of Anscombe point-
wise transforms or in a “signal-dependent” manner without 
such transforms. It is shown via numerical simulations that 
the latter way may be preferable.  

 
1. INTRODUCTION 

 
Poisson distribution often describes the statistical charac-
teristics of processes and noise met in the practice [1-6]. 
In particular, this frequently holds when some discrete 
measuring system collects temporal data for which the  
estimate (sample) obtained for each elementary interval of 
fixed duration corresponds to the count of some events, 
for example, the number of registered particles [2, 3]. The 
Poisson noise can also be observed in the X-ray medical 
and tomographic data [4-7]. 

Commonly 1-D Poisson type signals, being the out-
puts of radiation sensors, vary rather slowly and their val-
ues are smaller than 10. A typical fragment is demon-
strated in Fig. 1. 
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Fig. 1. A real life slowly varying fragment of the radiation 

sensor signal  
 

 One more peculiar feature of the considered 1-D sig-
nals is the possible presence of specific impulsive noise. 

This impulsive noise can also be treated as abnormal 
measurements (estimates). There are various reasons for 
the occurrence of such impulsive noise. One of them can 
be the external interferences that influence the sensors. At 
the same time, “information impulses” can be present as 
well. The difference between the “information impulses” 
and the aforementioned abnormal measurements is in 
their duration (widths). Specialists are able to establish in 
advance the duration of the impulses (characterized by 
some number of samples ) that can be considered as 
information whilst the other ones with <  relate 
to the impulsive noise to be removed. An example of the 
real life signal that contains two “information impulses” 
(in the right part) and two abnormal measurements (of 
smaller amplitudes and with smaller indices of the corre-
sponding samples) is represented in Fig. 2.   
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Fig. 2. An example of the signal that contains two “infor-

mation impulses” and two abnormal measurements 
 

Clearly such data are to be processed (filtered) [2, 3, 8] 
in order to solve three tasks: a) to reduce the oscillations 
due to fluctuative noise with Poisson probability density 
function (PDF); b) to remove the abnormal measurements 
(outliers, impulsive noise); and c) to preserve the useful 
information including the “information impulses”.    

There are many different ways to process 1-D signals 
with the properties (features) described above. The sim-
plest way is to apply the standard median filter (SMF). Its 
output for the scanning window size  is shown 
in Figures 1 and 2 by the black lines. The SMF easily 
solves the tasks of preservation of the “information im-
pulses” and rejection of impulsive noise. It also partly 
suppresses fluctuative noise.  
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However, the degree of its suppression is not enough 
[3]. More efficient reduction is required, especially in the 
“background” fragments of the signals where they vary 
slowly and have relatively small values. One solution is to 
apply adaptive nonlinear filters [3]. But this is not the 
only solution. Recently several transform based ap-
proaches to filtering the data corrupted by the Poisson 
noise have been proposed [4, 7]. In this case, two ways to 
follow are possible. The first one is to apply the three-
stage procedure  where 1(.) (.) (.)H F H −→ → (.)H  and 

 denote a pair of direct and inverse pointwise 
transforms, respectively; 

1 (.)H −

(.)F  denotes a filter. A point-
wise transform widely used in the processing of signals 
and images corrupted by the Poisson noise is Anscombe 
transform [9]. When the direct transform is applied, the 
signal-dependent Poisson noise converts to additive noise 
with practically constant variance equal to 0.25 for λ(i)>3 
where λ(i) denotes the true signal value in the i-th sample 
of the 1-D signal. Additive character of the noise simpli-
fies application of the transform based denoising tech-
niques, both wavelet and DCT based [4, 10]. However, 1-
D DCT based filtering has not yet been studied in combi-
nation with the Anscombe transform.    

In turn, there also are DCT based methods for the fil-
tering of data that are corrupted by signal dependent noise 
[10] but they have not been modified and tested for the 
Poisson noise removal. These methods do not require use 
of  any pointwise transform since they exploit locally 
adapting threshold value by taking into account a priori 
known dependence of the local variance on the local 
mean. For the Poisson PDF such dependence is a priori 
known and fixed: the local variance is equal to the local 
mean. However, there are several ways to exploit this 
dependence. Besides, the transform (wavelet and DCT) 
based denoising techniques are, in general, unable to re-
move the impulsive noise.                         

Therefore, this paper has two main goals. The first 
goal is to analyze the efficiency of the DCT based meth-
ods when they are applied to the filtering of 1-D signals 
corrupted by the Poisson noise. The second goal is to de-
sign special methods that are able to perform well enough 
for the removal of the mixed Poisson and impulsive noise. 

 
2. NOISE MODEL  

In this paper, we consider a model of a 1-D signal 
, where I denotes the number of 

our signal samples. We assume that at each i-th moment 
of time  obeys the Poisson distribution  

( ) ( ),  1,...,iS t S i i I= =

( )S i
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where λ(i) is the true value, 0λ ≥ . Note that the values of 
 can differ a lot from λ(i) since the mean ( )S i Pm  and the 

variance 2
Pσ  are both equal to λ and Pσ λ= .  

The model (1) corresponds to the case of impulsive 
noise absence. However, as it has been said earlier, some 
samples of the signal can be corrupted by the impulsive 

noise. One can consider a sample value to be impulsive 
noise (an outlier) if, e.g.,  differs from the corre-
sponding λ(i) by more than 

( )S i
5 Pσ . Then, the model for the 

observed 1-D process could be the following       
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where  defines a “pure” Poisson process with statis-
tics determined by (1), 

( )nS i
( )A i  corresponds to the outliers 

with aforementioned properties, and p denotes the prob-
ability of the impulsive noise occurrence. This model 
takes into account the property of the real life abnormal 
measurements that the impulsive noise is positive, i.e., the 
values for the samples corrupted by outliers are consid-
erably larger than the corresponding true values λ(i).       

One should keep in mind that even if p=0, the accu-
racy of the primary estimate is characterized by the rela-
tive error / 1/P Pmσ λ= . This means that for the small 
λ(i) the accuracy is low. But in many practical situations 
(see the real life signal plots in Figures 1 and 2), radiation 
sensors operate in the so-called background estimation 
mode for which λ(i) is smaller than 10. This confirms the 
necessity to carry out filtering of such signals in order to 
provide better accuracy of the radiation parameter estima-
tion and to avoid false alarms in the detection of emer-
gency situations by the control systems.    

An example of the test signal corrupted by the mixed 
noise (2) is presented in Fig. 3. This test signal has been 
also used in [3]. It models the practical situations of the 
background mode, sharp changes of λ(i) (indices 3200 
and 4700), and slowly varying signal (the fragment from 
the 7100-th sample to the end of the signal). It also con-
tains one “information impulse” in the neighbourhood of 
the 2500-th sample.    
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Fig. 3. A true test signal and the signal corrupted by 

mixed Poisson and impulsive noise (gray line)  
 

3. DCT-BASED FILTERING WITH ANSCOMBE 
TRANSFORMS 

There are several variants of the Anscombe transform 
described in the literature. The most commonly used one 
is [9, 11] 



1/ 2( ) ( ) [ ( ) 3/8]H D AnsS i S i S i= = + .              (3)  

The PDF of the data obtained after the direct Ans-
combe transform (3) (in the case of constant λ(i)) occurs 
to be rather close to the discrete Gaussian with the mean 
equal to . For λ=6, this PDF and its approxi-

mation by the Gaussian PDF with the mean 

1/ 2( 1/ 8)λ +

6.125  and 
the variance 2

Atσ =0.25 are shown in Fig. 4.  
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Fig. 4. The histogram of the Poisson 1-D process with λ=6 

after direct the Anscombe transform (3) and its 
approximation 

 
The dependence of 2

Atσ  on λ is given in Fig. 5. As seen, 
for λ>3 the variance 2

Atσ  is practically constant and equal 
to 0.25. For smaller λ , the variance 2

Atσ  is slightly smaller 
than 0.25. This creates favorable conditions for applying 
transform based filtering to the signal  { .    ( ), 1,..., }HS i i I=
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Fig. 5. Dependence of 2

Atσ  on λ after the direct Anscombe 
transform (3) 

 
The conventional DCT based filtering is performed in 

three steps [13]. First, for each block (window) of fixed 
size , the direct DCT is carried out. At the second 
step, thresholding of the obtained DCT coefficients is 
performed. Third, inverse DCT is applied to the set of 
thresholded DCT coefficients.  

blN

At step 2, either hard or soft thresholding can be used 
where the threshold is commonly set as T βσ=  where 
β  is a factor and σ  denotes the standard deviation of the 
additive noise. After the inverse DCT, the output (filtered) 
values are obtained for the entire block. Moreover, the 
blocks can be non-overlapping, partly overlapping, or 
minimal shift overlapping (spatially invariant). In the lat-
ter two cases, the obtained filtered values are to be aver-
aged for each sample.  

The performance of DCT based denoising described 
above depends upon several parameters of the algorithm, 

namely, the block size, the threshold value defined by β  
and the thresholding type (hard, soft, etc.), and the block 
overlapping. Also, the performance depends upon the 
processed signal. Below we have analyzed hard threshold-
ing (commonly, filtering with hard thresholding preserves 
details better [12]). The considered block size was equal 
to different powers of two to provide the algorithm com-
putational efficiency [12].  

There are also several variants of the inverse Ans-
combe transform. We tested some of them and finally 
decided to apply the inverse Anscombe transform that is 
defined as  where  is the i-
th sample of the filtered signal{ . In fact, 
this is not exact inverse of the forward transform, but it 
produces almost unbiased output for the signal fragments 
where 

2( ) ( ( )) 1/ 8out
out HY i S i= − ( )out

HS i
( ), 1,..., }out

HS i i I=

( )i Constλ = .   
To characterize the efficiency of the filtering, let us 

consider several quantitative parameters. First, we analyze 
the conventional MSE. However, it does not adequately 
characterize the reachable accuracy of the signal estima-
tion. It is often desirable to analyze the relative accuracy 
of the signal estimation for each sample. For this purpose, 
it is reasonable to analyze a relative error function 

( ) ( ( ) ( )) / ( )fS i S i i iλ λΔ = −  and its statistical properties. 
For example, it can be required that one has to minimize 
the number of samples for which ( ) 0.2S iΔ >  [3]. Then a 
reasonable quantitative criterion is the probability  of 
the event 

excP
( ) 0.2S iΔ > .       2

Atσ
 

Table 1. Performance of DCT based filter 
Nbl Overlapping β  MSE Pexc

2.5 3.19 0.076 
3 2.18 0.044 

3.5 2.02 0.036 
4 2.07 0.034 

Full 
(spatial  

invariant) 

4.5 2.19 0.033 
Nbl /2 shift  3.5 2.47 0.047 

16 

Without  
Overlapping 3.5 3.17 0.075 

2.5 2.53 0.048 
3 1.66 0.015 

3.5 1.59 0.01 
4 1.68 0.009 

Full 
(spatial  

invariant) 

4.5 1.87 0.009 
Nbl /2 shift 3.5 2.02 0.018 

32 

Without  
Overlapping 3.5 2.71 0.029 

2.5 2.7 0.035 
3 2.08 0.011 

3.5 2.02 0.008 
4 2.18 0.007 

Full 
(spatial  

invariant) 

4.5 2.31 0.007 
Nbl /2 shift 3.5 2.62 0.016 

64 

Without  
overlapping 3.5 4.86 0.028 

 



Let us now consider numerical simulation results ob-
tained for the test signal presented in Fig. 3 for the case 
p=0. They are presented in Table 1. There and below the 
values of the MSE and Pexc are obtained from 100 realiza-
tions (the MSE for the original signal is about 40). The 
analysis of these data shows the following.  

First, in practically all cases, the smallest values of 
MSE and Pexc are provided for β=3.5 or 4. Thus, for proc-
essing with the shift Nbl /2 and without overlapping we 
present the obtained results only for β=3.5. 

Second, as can be expected, the smallest values of 
MSE and Pexc are observed for the DCT based filtering 
with full overlapping. Note that this method requires a 
considerably larger amount of computations than for the 
two other algorithms of denoising. An example of the 
output signal is demonstrated in Fig. 6. The plot of 

 is presented in Fig. 7. As seen, the requirement { ( )}S iΔ

( ) 0.2S iΔ <  is provided for almost all samples except 
those ones in the neighbourhood of the sharp transitions 
of the test signal.   
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Fig. 6. Output of the three-stage procedure for the DCT 

filter with full overlapping, Nbl=32, β=3.5 
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Fig. 7. { (  for the output signal in Fig. 6   )}S iΔ

 
4. ADAPTIVE DCT-BASED FILTERING  

 

Consider now the DCT-based filtering without the point-
wise (Anscombe) transform of the data. The possibility to 
locally adapt the parameters of the DCT-based filtering 
[7, 10] is one of the main advantages of this approach. 
Such parameters can be the block size and/or shape [7] 
and the threshold value [10]. The basic rule for filtering 
signal dependent noise (Poisson, pure multplicative, film-
grain, etc.) is to locally set th threshold in a block using a 
priori known or pre-estimated relation between the local 
variance and the local mean [7, 10, 12]. For the Poisson 
noise, such dependence is known a priori. For the con-
stant signal fragments, the local variance is approximately 
equal to the local mean.  

 In general, the adaptive DCT based filtering presumes 
setting an individual threshold for each block  

  ˆbl blT βσ=                                   (4) 

where ˆblσ  denotes an estimate of the standard deviation 
of the noise for a given block. If there is a known relation 
between the local standard deviation and the local mean 

( )loc f Iσ = , then it is possible to set the threshold for 
each block as  

ˆ( ( ))bl blT f Iβ= ,                              (5) 

where ˆ
blI  is some estimate of the mean in the block. Both 

conventional and robust estimates can be used.         
 

Table 2. Performance of the adaptive DCT based filter 
that uses   ˆmean

blI
Nbl Overlapping β  MSE Pexc

2.5 3.13 0.073 
3 2.2 0.042 

3.5 2.1 0.034 
4 2.1 0.033 

Full 
(spatial  

invariant) 

4.5 2.21 0.033 
Nbl /2 shift  3.5 2.47 0.046 

16 

Without  
Overlapping 3.5 3.22 0.074 

2.5 2.52 0.046 
3 1.64 0.015 

3.5 1.53 0.01 
4 1.59 0.009 

Full 
(spatial  

invariant) 

4.5 1.75 0.009 
Nbl /2 shift 3.5 1.78 0.018 

32 

Without  
Overlapping 3.5 2.48 0.029 

2.5 2.6 0.035 
3 1.89 0.012 

3.5 1.8 0.009 
4 1.9 0.009 

Full 
(spatial  

invariant) 

4.5 2.04 0.009 
Nbl /2 shift 3.5 2.14 0.018 

64 

Without  
Overlapping 3.5 4.55 0.024 

 



For the Poisson noise one has ( )loc f I Iσ = = . 
Thus, for each block, we propose to obtain some estimate 
ˆ
blI  and to calculate ˆ

bl blT β= I . Below we consider two 

simplest vays to obtain ˆ
blI  – to calculate it as the mean in 

a block ( ) or as the median value ( ). ˆmean
blI ˆmed

blI
As follows from the analysis in the previous section, 

the performance of the described adaptive DCT based 
denoising has to depend upon the block size, how much 
they overlap, and the parameter β. Therefore, we have 
obtained numerical simulation data for the same test sig-
nal with different sets of the filter parameters. They are 
presented in Tables 2 and 3 for the cases of using the es-
timates  and , respectively. ˆmean

blI ˆmed
blI

It is seen by analyzing the data in Tables 2 and 3 that 
the main tendencies observed for the data in Table 1 remain 
the same. Again, the block overlapping produces the best 
results. The best value of β  is equal to 3.5 or 4.0, and the 
best block size is 32. For the same β , Nbl and overlapping, 
the values of  MSE and Pexc in Table 2 are practically the 
same (or even slightly worse) than in Table 1. At the same 
time, the values of  MSE and Pexc given in Table 3 are con-
siderably better than the corresponding values in Tables 1 
and 2 (for convenience of comparison, the smallest values 
of MSE are marked by bold in all tables). 

Table 3. Performance of the adaptive DCT based filter 
that uses   ˆmed

blI
Nbl Overlapping β  MSE Pexc

2.5 3.65 0.085 
3 2.59 0.048 

3.5 2.31 0.037 
4 2.21 0.033 

Full 
(spatial  

invariant) 

4.5 2.21 0.033 
Nbl /2 shift  3.5 2.73 0.049 

16 

Without  
Overlapping 3.5 4.63 0.078 

2.5 2.5 0.055 
3 1.56 0.02 

3.5 1.37 0.011 
4 1.39 0.009 

Full 
(spatial  

invariant) 

4.5 1.41 0.009 
Nbl /2 shift 3.5 1.82 0.022 

32 

Without  
Overlapping 3.5 2.43 0.032 

2.5 2.48 0.045 
3 1.66 0.016 

3.5 1.48 0.012 
4 1.47 0.011 

Full 
(spatial  

invariant) 

4.5 1.42 0.01 
Nbl /2 shift 3.5 2.2 0.022 

64 

Without  
overlapping 3.5 5.02 0.031 

 
 

We have analyzed why the adaptive DCT based filter 
which exploits estimates  performs better than the 
other DCT based filters. For this purpose, we have calcu-
lated local MSE values in the neighborhoods of the in-
formation impulse (

ˆmed
blI

iiMSE ), the first sharp transition 
( 1reMSE ) and the second sharp transition ( 2reMSE ).  

The sizes of the intervals for which these local MSE 
values have been evaluated are 82, 64, and 64 samples, 
respectively. The parameters of the DCT filters were 
close to optimal: block size was 32 with full overlapping 
and β=3.5. The simulation data are given in the first two 
rows of Table 4.     

Table 4. Local MSE for different filters  
Filtering technique 

iiMSE  1reMSE  2reMSE  
DCT with Anscombe 

transforms  8.00 7.15 85.99 

Adaptive DCT using 
  ˆmed

blI 6.32 5.56 57.27 

Adaptive DCT using 
 ˆmean

blI 7.31 6.59 77.61 

With post-processing 
by the median filter, 

15medN =  
5.74 4.94 47.30 
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Fig. 8. A fragment of one realization of outputs for the 
adaptive DCT filter with  (dashed line) and  three-
stage filtering (dotted line). True (noise-free) signal is 

shown by solid (black) line   
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Fig. 9. { (  for the adaptive DCT based filtering  )}S iΔ

that uses   ˆmed
blI

As seen, the local MSE values for the three-stage 
DCT-based filtering with the Anscombe transforms are 
considerably worse (larger) than for the adaptive DCT 
based filtering using . Distortions are especially lar-
ger in the neighborhoods of sharp high contrast transitions 
(see Fig. 8). Fig. 9 presents the relative error { (

ˆmed
blI

)}S iΔ  for 

the adaptive DCT based filter that uses  (full over-
lapping, β≈3.5, N

ˆmed
blI

bl=64). 
The three considered versions of the DCT based filters 

have also been analyzed for another test signal (solid line) 
presented in Fig. 10. This test signal has been obtained of 
the known signal Heavisine [13] by stretching (to 8192 
samples), adding a constant (to make the test signal non-
negative), and rounding-off (to the closest integer). Then, 
realizations of the Poisson noise have been generated. One 
of the noisy signals is shown in Fig. 10 by grey.    
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Fig. 10. The second test signal (solid black line) and its 

noisy realization (grey line)  
 

The simulation data obtained for 100 realizations of 
noise are presented in Table 5 (input MSE=21). Below we 
consider only the case of full overlapping. As seen, for 
this test signal there is practically no difference in the 
values of the MSE and Pexc obtained for all three methods 
for a given set of filter parameters (Nbl, β ). The optimal 
choice of β  is about 4. However, for this test signal the 
best results (minimal MSE and minimal Pexc) have been 
obtained for Nbl=64. Recall, that for the first test signal 
(Fig. 3) the best results were observed for Nbl=32. The 
reason is that the second test signal (Fig.10) is smoother. 
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Fig. 11. The output of the DCT based filter that uses  
for the noisy test signal in Fig. 10  

ˆmed
blI

The output of the DCT based filter that uses  for 
the second test signal is demonstrated in Fig. 11 (N

ˆmed
blI

bl=64, 
β =4 ). As seen, good suppression of the noise is ob-
served simultaneously with the preservation of the infor-
mation features.     

Joint analysis of simulation data for both test signals 
shows that the DCT based filtering method that uses  
provides benefits in comparison to other two techniques if 
a signal contains sharp transitions.     

ˆmed
blI

 
Table 5. Performance of DCT based filters for the test 

signal in Fig. 10 

  DCT with 
Anscombe 

DCT based 
on  ˆmean

blI
DCT based 

on  ˆmed
blI

Nbl β MSE Pexc MSE Pexc MSE Pexc

2.5 1.58 0.019 1.55 0.018 1.60 0.020
3 1.08 0.008 1.07 0.007 1.07 0.009

3.5 0.95 0.006 0.96 0.006 0.96 0.006
4 0.94 0.006 0.93 0.005 0.94 0.006

16

4.5 0.94 0.005 0.93 0.005 0.94 0.006
2.5 1.10 0.011 1.08 0.010 1.11 0.013
3 0.64 0.003 0.63 0.003 0.65 0.004

3.5 0.53 0.002 0.54 0.002 0.53 0.003
4 0.52 0.002 0.52 0.002 0.52 0.003

32

4.5 0.52 0.002 0.51 0.002 0.52 0.003
2.5 0.88 0.007 0.87 0.007 0.90 0.010
3 0.43 0.002 0.42 0.002 0.43 0.004

3.5 0.34 0.002 0.35 0.002 0.34 0.003
4 0.33 0.002 0.32 0.002 0.33 0.003

64

4.5 0.33 0.002 0.33 0.002 0.33 0.003
 

5. ROBUST MODIFICATIONS OF DCT BASED 
FILTERS 

 
Consider now the case of mixed noise. For this pur-

pose, let us at the beginning artificially add only three 
impulses into the test signal corrupted by the Poisson 
noise. These impulses have been added in the 1000-th, 
2000-th and 6000-th samples. All impulses had ( )A i =50. 
The output of the adaptive DCT based filter that uses  

 is presented in Fig. 12. As seen, the impulses practi-
cally remained “untouched”. Moreover, the efficiency of 
the Poisson noise suppression in the neighbourhoods of 
the impulses became poorer than it was in the case of im-
pulse absence.  

ˆmed
blI

As the result, the relative error in the neighborhoods 
of samples corrupted by impulses has radically increased 
(see Fig. 13 and compare with Fig. 8). In comparison to 
the case of p=0, the values 2

outσ  and Pexc have radically 
increased. The MSE has become equal to 1.90 and Pexc 
has reached 0.019, i.e., they have increased by more than 



1.4 times. This example clearly shows that even a few 
impulses present in the observed 1-D signal considerably 
worsen the performance of the adaptive DCT based filter. 
The same takes place if the DCT based denoising is ap-
plied in combination with the Anscombe transforms. 
Thus, some special means to avoid this drawback of the 
DCT based filtering should be used.    
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Fig. 12. Output signal for the adaptive DCT based filter 

that uses   in case of impulsive noise presence   ˆmed
blI
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Fig. 13. { (  for the output signal in Fig. 12   )}S iΔ

 
One option is to apply a two-stage filtering similarly 

to the way it was proposed for the mixed noise removal in 
images [14]. At the first stage, the adaptive DCT based 
denoising is used, then the standard median filter is ap-
plied to its output. For the adaptive DCT based filter the 
full-overlapping processing is recommended. We used the 
block size 32, the estimate  and β≈3.5 (since it pro-
vided the best results). For the standard median filter the 
recommended scanning window size is 15.     

ˆmed
blI

Consider first the results for the case of p=0. The ob-
tained values are: 2

outσ =1.25, Pexc=0.008. They are smaller 
than for the best adaptive DCT based filter (see data in 
Table 3). The local MSE values for this two stage denois-
ing are given in Table 4 (see the row “With post-
processing by the median filter, ”). As seen, the 
local MSE values are slightly better than for the adaptive 
DCT based filter.             

15medN =

Let us now analyze the example of the presence of 
three impulses considered above. For this case, we have 
obtained 2

outσ =1.30, Pexc=0.009. This means that the in-
fluence of impulses has been greatly reduced.  

Finally, consider the case of mixed noise with 
p=0.005. This noisy signal is shown in Fig. 3. After the 
first stage of processing, i.e., for the output of the adaptive 
DCT based filter we have obtained 2

outσ =8.11, Pexc=0.094. 
As seen, these values are several times larger than for the 
case of p=0. The output signal is given in Fig. 14. Almost 
all impulses are kept practically unchanged and there are 
residual fluctuations in their neighborhoods.   
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Fig.14. The output signal after the adaptive DCT based 

filtering of the test signal in Fig. 3  
 

The output signal of the two-stage procedure for 
which the median filter ( ) has been used at the 
second stage is presented in Fig. 15. The impulsive noise 
is removed and the residual fluctuations are suppressed. 
This leads to sufficient reduction of 

15medN =

2
outσ  (it is equal to 

1.52 for the signal in Fig. 15) and Pexc (is equal to 0.026). 
Relative errors also decrease (see the plot in Fig. 16). 
They are smaller than the threshold 0.2 for the majority of 
the samples. 
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Fig. 15. The output signal for the two-stage filtering 

 
Therefore, the proposed two-stage filtering procedure 

provides impulsive noise removal, suppression of the 



Poisson noise and quite good preservation of the sharp 
transitions and other important features. The obtained 
values of 2

outσ  are smaller that for the method in [3]. 
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Fig. 16. { (  for the output signal in Fig. 15 )}S iΔ

     
Finally, Fig. 17 (grey color) presents the initial real 

life signal, the same as in Fig. 1, and the output of the 
DCT based filter that uses  (black solid line). The 
noise is well suppressed, the details are preserved, and 
there are no effects that have been observed for the me-
dian filter output (see Introduction).    
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Fig. 17. Initial real life signal (the same as in Fig. 1) and 

the output of the DCT based filter that uses  ˆmed
blI

  
6. CONCLUSIONS 

 
Two ways of applying the DCT based filtering for the 

removal of the Poisson noise have been considered. It is 
demonstrated that the procedure  
does not provide any benefits in comparison to the adap-
tive DCT based denosing for which the threshold for each 
block is set individually using the estimate . If the 
impulsive noise is present, then it is possible to exploit the 
two stage procedure for which the median filter is applied 
sequentially to the adaptive DCT based filter output.    

1(.) (.) (.)H F H −→ →
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	The PDF of the data obtained after the direct Anscombe transform (3) (in the case of constant ((i)) occurs to be rather close to the discrete Gaussian with the mean equal to  . For λ=6, this PDF and its approximation by the Gaussian PDF with the mean   and the variance  =0.25 are shown in Fig. 4. 
	 
	Fig. 4. The histogram of the Poisson 1-D process with λ=6 after direct the Anscombe transform (3) and its
	approximation
	The dependence of   on λ is given in Fig. 5. As seen, for λ>3 the variance   is practically constant and equal to 0.25. For smaller λ , the variance   is slightly smaller than 0.25. This creates favorable conditions for applying transform based filtering to the signal   .   



