
Abstract—A robust block adaptive blind multiuser receiver 

based on block-Shanno constant modulus algorithm (BSCMA) 

with a Quadratic Inequality (QI) constraint on the weight vector 

norm is developed in this paper. Quadratic constraint has been a 

widespread methodology to improve the robustness of least-mean 

square detectors. The BSCMA is realized using a modified 

Newton’s algorithm without inverse of Hessian matrix 

estimation. The partition linear interference canceller (PLIC) 

structure with multiple constraints is invoked to identify the 

multiple access interference (MAI). The Lagrange multiplier 

methodology is exploited to solve the QI constraint problem. 

Simulations are conducted in rich multipath environment under 

imperfect power control to authenticate the robustness of the 

proposed detector.

Index Terms—DS/CDMA, Block-Shanno, Newton’s algorithm, 

multiuser detection, constrained optimization, quadratic inequality 

constraint  

I. INTRODUCTION

onstant Modulus algorithm (CMA) or Godared is an 

effective technique for blind receiver design in 

communications systems [1]. It has been shown in [2], 

that the CMA can perform analogous to the non-blind 

receivers if capture of desired user minima can be guaranteed. 

The traditional CMA, like the celebrated LMS algorithm, 

involves a constant step-size that controls the speed of 

convergence [3]. The selection of the CMA step-size is case 

sensitive and can affect the algorithm convergence. In 

addition to this, it was explored in [4] that the recursive 

implementation of constant modulus based algorithms need 

more robustness against mismatch and perturbations errors. 

These errors may be caused by imperfect covariance matrix 

estimation, improper initialization of the weight vector, 

signature vector mismatch, etc. Robustness can be added by 

incorporating a quadratic inequality (QI) constraint on the 

weight vector norm. CMA-based detectors with QI constraint 

on the weight vector norm are proposed in [4]. Unfortunately, 

the robust approach proposed in [4] uses RLS-like algorithm 

with 2O M to estimate the blind multiuser receiver. 

Moreover, it was demonstrated there, that the constant 
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modulus LMS-like algorithm with O M  complexity can not 

offer any performance improvement by incorporating the QI 

constraint.   

A modified version from block Shanno’s algorithm with 

O M  complexity has been shown to offer good convergence 

speed at low cost in [5] and [6]. However, the proposed 

BSCMA in [5], [6] is notorious to suffer from sensitivity to 

step-size selection and there is no clear vision was given to 

step-size update. More importantly, the algorithm involves a 

gradient vector norm check step and in this case, if the norm 

starts to increase, the algorithm stops the recursive adaptation 

and start with the initial weight vector and hence this block of 

data will not benefit from previous updates. Moreover, the 

BSCMA is more sensitive to the number of iterations required 

inside every block of data and no clear break point was 

determined to stop iteration inside the block. In this paper, we 

apply the QI constraint on the weight vector norm in an 

attempt to enhance the performance of BSCMA. The QI 

constraint will oversee the weight vector norm as well as the 

gradient vector norm and hence no need to check the gradient 

vector norm increase. Additionally, the iteration inside block 

can continue without affecting algorithm stability due to 

weight vector norm constraint.  

The proposed variable loading (VL) technique in [4], [7] is 

exploited to estimate the optimum diagonal loading value. The 

BSCMA algorithm is used to update the adaptive vector of 

PLIC structure. The PLIC structure with multiple constraints 

is employed to identify the MAI and hence assist in avoiding 

interference capture [8]. In addition, the different forms of 

BSCMA algorithms; block-conjugate gradient CMA 

(BCGCMA) and block gradient descent CMA (BGDCMA), 

are investigated. The resistance of BSCMA-based algorithms 

against near-far effect is investigated and assessed. 

II. SYSTEM MODEL

In the uplink of DS-CDMA system we have k mobile user’s 

transmitting simultaneously to the base station, where each 

user symbols are assumed for simplicity and without loss of 

generality to be BPSK with arbitrary power and timing. Each 

user’s symbol is broaden by a spreading waveform 

(0) ( 1)
T

j j jc c Lc of length L, where chips period 

/cT T L  and T is the symbol period. Each user signal is 

assumed to pass through FIR channel including any 

attenuation, multipath, asynchronism, pulse shaping filter, and 

front end receiver filter. As a consequence, the jth user FIR 

channel ( )j tg is the chip waveform of the jth user that has 
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been filtered at the transmitter and receiver and distorted by 

the multipath channel. Let ja stand for the amplitude of jth 

user signal, jm be the number of multipath components, 

,j m be the amplitude of the user signal scattered in mth 

path, 
,j m

be the multipath delay spread of this path. Then 

( )jg t can be written as follows: 

, ,

0

( ) ( )
jm

j j j m j j m

m

g t a t  (1) 

The received signal is the superposition of all transmitted 

signals plus noise and is sampled at chip rate. As a result, we 

can write the sampled received signal ( )nx as:

1

( ) ( ). ( ) ( )
K

j j j

j l

n l n lL nx s h w  (2) 

The channel noise ( )nw  is assumed to be zero mean 

Gaussian and independent from source symbols. The effective 

signature waveform ( )j nh of jth user represents the 

spreading sequence of that user transmitted through channel 

characterized by impulse response ( )j tg , j  stands for user 

delay, and ( )j ns  denotes transmitted data bits of user j .

( ) ( ). ( )j j j

m

n m n mh c g (3)

Without loss of generality, we will assume that the required 

user is user number one and is used as the timing reference 

( 1 0 ). We can write the effective signature waveform of 

the required user 
1h in matrix form as follows: 

1 1 1.h C g  (4) 

The matrix 
1C  is consisting of shifted versions from signature 

waveform of the involved user. The channel vector 1g is

1gN  vector obtained from (1).  

III. ROBUST BSCMA ALGORITHM

A. Background

A chip-rate linear receiver can be designed by collecting 

fN samples from the received signal vector and the detector 

( )nf is 1
f

N  vector consisting of the weights. The output 

signal of this detector is given by: 

( ) ( ) ( )Hy n n nf x  (5) 

In [1], Godared proposed the CM principle that minimizes the 

dispersion of the receiver output about dispersion constant. 

For BPSK, the dispersion constant is one and hence 
2

2

( ) 1HJ Ef f x  (6) 

We must first extend the CM cost function (6) to permit block 

processing analogous to [5], [6]. Take a block from the 

received vector signal with length
fN M , where M is the 

block length (i.e. number of bits from the received signal), 

thus: 

( 1) ( 1) 1 1 fN M

i i M i M iM RD x x x   (7) 

The block CMA objective function is defined as [6]:  
1 2

2

0

1
( ) ( 1) 1

4

N
H

l

i M l
M

f w x  (8) 

The length of ( 1)i M lx is equal to the detector 

length
fN .

The objective function is amended to fulfill the real 

requirement of Shanno’s algorithm as follows: 
1

2

0

1
( ) 1

4

N
H

n

n
M

f f X f  (9) 

and
1

0

1
( ) 1

N
H

f

n

n n
M

f f X f X f  (10) 

where nX is the current estimate of the covariance data 

matrix and for real data samples ( ) ( )Tn n nX x x whereas

for complex samples data we can adopt the approach proposed 

in [6]. 

The PLIC structure [8] is invoked to identify the MAI 

interference by dividing the weight vector ( )nf as follows 

11 ; af f a a f g
c a NN N N N N N

f f B f (11)

1

1 1 1

H

cf C C C g  (12) 

In order to prevent cancellation of desired source from 

occurring a blocking matrix B  is inserted to ensure the 

orthogonality between upper and lower branches and satisfies: 

1

HB C 0 , H
B B I .

The Newton’s algorithm is exercised to updates the filter 

tap weights as follows [9], [10]: 
1( ) ( 1) ( 1) ( 1)a a newton a aj j j jf f H f g f  (13) 

Where 1 ( 1)newton a jH f is the Hessian of the objective 

function ( )f  and ( 1)a jg f is the gradient of the cost 

function with respect to af  evaluated at the iteration block 

index 1j . Shanno’s approximation is used to approximate 

the inverse of the Hessian matrix using O M  complexity as 

follows   

1
( ) ( 1) ( 1) ( ) ( 1) ( )

( 1)
( 1) ( )

H H H H

a H

j j j c j j j
j

j j

u d d d u
H f I

d u

(14)

where
2

( )
( ) ( 1)

( 1) ( )H

j
c j j

j j

u

d u
(15)

( ) ( ) ( 1)a aj j ju g f g f  (16) 

1( ) ( 1) ( 1)a aj j jd H f g f  (17) 

and ( 1)j is the step size at 1j  block iteration .  



Therefore, the adaptive weight vector can be updated as 

follows: 

( ) ( 1) ( ) ( )a aj j j jf f d  (18)

The step size must satisfy the following constraints to 

guarantee convergence [6] 

( ) ( 1) ( ) ( 1) ( )H

a a aj j j j jf f g f d  (19) 

( ) ( ) ( 1) ( )
T T

a aj j j jg f d g f d  (20) 

A procedure for selecting the step-size according to the above 

constraints is reported in [5].  

Substituting from (14)-(16) into (17) and after some 

manipulations with real-valued form, the following update 

equation of ( )jd , is attained: 

( ) ( 1) ( ) ( ) 1 ( 1)aj j e j a j jd d g f  (21)

where

( ) ( 1)
( )

( 1) ( )

T

T

j j
a j

j j

u d

d u
(22)

( ) ( ) ( 1) ( 1)
( )

( 1) ( )

T T

a

T

j c j j j
e j

j j

u d g f

d u
(23)

If we set ( ) 0a j , the BCGCMA algorithm is obtained, and 

if we set ( ) ( ) 0a j e j , we get the BGDCMA algorithm.  

B. Quadratically Constraint BSCMA Receiver

The QI constraint can be applied on the block adaptive 

weight portion ( )a jf . Consequently, the robust weight vector 

( )a jf can be acquired from the solution of the following 

constrained optimization problem:  
1

2

0

1
( ) ( ) ( ) 1

4

N
T

a a

n

j n j
M

f f Z f

Subject to 2( ) ( )T

a aj jf f  (24) 

The constrained value is 2 2 H

c cf f  where 22 . ct f

and t is set to a suitable value and 

( ) ( ) ( )T Tn n n nZ B X B z z  is the sample blocked 

covariance data matrix of the lower branch from PLIC 

structure and ( )nz is the output of the blocking matrix. 

Unfortunately, no closed form solution can be obtained for 

the above optimization problem. Alternatively, the BSCMA is 

invoked to update the weight vector and the Lagrange 

methodology is employed to solve the QI constraint.  The new 

cost function and the gradient vector will be represented, 

respectively, as follows: 
1

2

0

2

1
( ) ( 1) ( 1) 1

4

1
. ( 1) ( 1)

2

N
T

a a a

n

T

a a

j n j
M

t j j

f f Z f

f f

 (25) 

1

0

1
( 1) ( 1) ( 1) 1

( 1) ( ) ( 1)

N
T

a a a

n

a a

j j n j
M

n j j j

g f f Z f

Z f f

(26)

Therefore,
1( ) ( 1) ( 1) ( ) ( 1)a a aj j j j jd H f g f f  (27) 

Using (27) into the primary update equation (18), we get: 
1( ) ( ) ( ) ( ) ( 1) ( 1)a a a aj j j j j jf f H f f  (28) 

In order to simplify the computation of diagonal loading term 

(i.e. avoid the computation of Hessian matrix), the QI 

constraint term in (25) is updated using the steepest descent 

algorithm instead of Newton’s algorithm with the same step-

size ( )j . Therefore, the update equation (28) is simplified as 

( ) ( ) ( ) ( ) ( 1)a a aj j j j jf f f                    (29) 

The constraint 2( ) ( )T

a aj jf f should be met, therefore using 

(29), we solve for ( )j as follows [7]: 

2( ) 4 2j b b ac a  (30)  

where

2
2

2 2

( ) ( 1)

2 ( ) ( ) ( 1)

( )

a

T

a a

a j j

b j j j

c ja

f

f f

f

 (31) 

By substituting from (31) and (18) into
2 4 0b ac , the 

following inequality is obtained  
2 2

2

( ( 1) ( ) ( )) ( 1) ( 1) .

( ( 1) ( ) ( )) ( ( 1) ( ) ( ))

T

T

j j j j j

j j j j j j

a a a

a a

f d f f

f d f d

 (32) 

After some manipulations to (32), we get the following 

inequality [4],    

2 2

( 1)
( )

( 1) ( ) ( ) ( 1) ( 1) ( )T T

a a

j
j

j j j j j j

a

a

f

f d d f f d

   (33) 

Therefore, this upper bound on ( )j  guarantees real positive 

roots in (30) and consequently the optimal loading level can 

be obtained. Additionally, the two constraints (19) and (20) 

should be considered as well to guarantee BSCMA 

convergence.

C. Block Processing and Adaptive implementation 

The proposed adaptive algorithm based on the block 

Shanno’s algorithm and the VL technique is summarized in 

Table I. There are two main loops in the algorithm. The outer 

loop is for each block of data and the inner loop is repeated 

over the same block of data until certain number of iterations 

or the norm of the gradient vector is sufficiently small. A 

block of data with length f
N M is selected and the sample 

covariance matrix of the lower branch from the PLIC structure 

( )nZ is commuted. The adaptive vector (1,1)
a

f is initialized 

with the required user signature waveform multiplied by the 

blocking matrix (
1

T cB ). On the other hand, the final weight 

vector ( , )i j
a

f  of each block is used as the initial vector to the 

next block (i.e. ( 1,1) ( , )i i ja af f ). There is no need to but 

constraint on the gradient vector whereas the quadratic 

constraint on 
af will oversee the gradient vector norm 

increase. The gradient vector is estimated, taken into 

consideration the previous diagonal loading 

term ( 1) ( , 1)aj i jf . The vector ( )jd  is computed 



according to (17) and then the initial adaptive vector is 

updated using (18). If the norm constraint on ( , )i j
a

f is not 

met, therefore the VL technique is invoked to fulfill the 

quadratic inequality constraint. Unfortunately, we will not be 

able to find an optimum step-size value due to the cost 

function (25) is not a quadratic equation and hence no global 

minimum for it with the step-size. Alternatively, the procedure 

provided in [5] is used in addition to (33) is added to 

guarantee positive diagonal loading. After convergence of 

certain bock of data the output of this block is calculated.  

As shown in Table I, the total amount of the required 

computations for the proposed robust diagonal loading 

technique is about (4 )aO N  for each block-iteration. Therefore, 

the added complexity due to the robust technique is of 

order ( )aO N . As the complexity of the BSCMA is about 

(28.6 11 / )a aO N N M [6], hence the total complexity of the 

proposed robust BSCMA is of order (28.6 15 / )a aO N N M

per output point from every block of data with length M .

IV. SIMULATIONS RESULTS

In this section the performance of the block Shanno’s 

algorithm and its two subsidiaries algorithms (i.e. BCGCMA 

and BGDCMA) will be compared with the corresponding 

developed robust algorithms. The robust techniques are 

referred, respectively, as BSCMA w. VL, BCGCMA w. VL 

and BGDCMA w. VL. Five asynchronous users in a multipath 

Rayleigh fading channel with 5 multipath components are 

simulated. Gold codes are exercised. Code length is 31 chips 

and detector length 
fN  is assumed to span one bit duration 

(i.e. 31 samples). The channel length (max delay spread) is 

assumed to be 10 delayed components and multipath delays 

are randomly distributed. The block length is 100 bits and the 

max iterations inside the block are 25 iterations.  

Two scenarios are simulated; the first scenario assumes 

perfect power control (i.e. equal user powers). In the second 

scenario, users have equal power except that the required user 

is 10 dB less than other users to model the near-far effect. The 

performance of the six detectors is assessed in terms of output 

signal-to-interference plus noise ratio (SINR) and bit error rate 

(BER) versus block iterations. Figures 1-4 show the SINR and 

BER for the two scenarios, respectively. The figures show that 

the quadratically constraint BSCMA w. VL algorithm and its 

variants: BCGCMA w. VL and BGDCMA w. VL exhibit a 

considerable improvement over corresponding non-robust 

algorithms. At perfect power control the three robust 

algorithms perform almost the same in terms of BER. The 

BGDCMA present the worst convergence speed. For both 

scenarios, the convergence of the robust algorithms are almost 

attained after about 50 block iterations which means 2 block 

of data are required for convergence. On the other hand, the 

non-robust algorithms require at least 150 block iterations to 

attain the same convergence point of the corresponding robust 

algorithms. Finally, in the second scenario, the steady state 

behavior of the proposed robust algorithms is superior over 

the corresponding non-robust algorithms in terms of BER and 

SINR.

TABLE I

SUMMARY OF THE ROBUST BSCMA RECEIVER

Initialization:

o
22 .t cf ,

22 2

cf , 0.1

o (0) 0 ; (0) (0)afd g , 0.25 , 0.5

For 1,2, , /i N M  outer loop on block basis 

o ( 1) ( 1) 1 1iD i M i M iMx x x

o

1

( 1)

( ) ( ) ( )
iM

T

n i M

i n nZ z z , ( ) ( )Tn nz B x

if 1i 1(1,1) T c
a

f B

Else ( ,1) ( , )i i j
a a

f f

o 0j

o For 1,2, ,j until converge or max number of iterations reach 

1

0

1
( , 1) ( , 1) ( , 1) 1

( , 1) ( 1) ( , 1)

N
T

a a a

n

a a

f i j f i j n f i j
M

n i j j i j

g Z

Z f f

If 1j

o ( ) ( , 1)aj i jd g f

Else

o ( ) ( 1) ( ) ( ) 1 ( , 1)aj j e j a j i jd d g f

( , ) ( , 1) ( ) ( )a ai j i j j jf f d

2 2( , )aif i jf

o
2 2( , )ac i jf ,

aN

o 2 ( ) ( , ) ( , 1)T

a ab j i j i jf f , 2 aN

o

22 ( ) ( , 1)aa j i jf ,
aN

o 2( ) 4 2j b b ac a

o ( , ) ( , ) ( ) ( ) ( , 1)a a ai j i j j j i jf f f

else

o ( , ) ( , )ai j i j
a

f f ; ( ) 0j

End if 

If 
( , ) ( , 1) ( ) ( , 1) ( )

T

a a ai j i j j i j jf f g f d

( 1) ( ) ( )j j j

Else If ( ) ( ) ( 1) ( )
T T

a aj j j jg f d g f d

( 1) ( ) ( )j j j

else  if  

2 2

( , )
( ) ( 1)

( , ) ( ) ( ) ( , ) ( , ) ( )T T

a a

i j
j j

i j j j i j i j j

a

a

f

f d d f f d

otherwise 

( 1) ( )j j

End if 

o End for j loop

( , ) ( , )c ai j i jf f Bf

( 1) : 1 ( 1) : 1 ( , )i M iM i M iM i jy x f

End for i loop



V. CONCLUSIONS

In this paper, we have proposed a new robust block 

adaptive blind multiuser detector based on the BSCMA with a 

QI constraint on the weight vector norm. The weight vector is 

updated using the BSCMA algorithm and concurrently a QI 

constraint is imposed on weight vector norm. The required 

amount of diagonal loading is precisely computed using a VL 

technique with low computational complexity. The 

complexity of the robust proposed receiver is still of order 

( )O M complexity. It is shown from the simulations that the 

new proposed detector outperforms the BSCMA algorithm in 

both robustness, and steady state performance. Moreover, we 

have incorporated the robust technique with both BCGCMA 

and BGDCMA algorithms and a performance improvement 

over corresponding non-robust algorithms is reported as well. 

Future work may include practical application in 3G systems.    
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