
 
Abstract— This work explores the possibility to adapt the pilot

location in an OFDM frame, by choosing the more appropriate

pilot pattern, rectangular or hexagonal. Based on the prediction

of some channel parameters and for a given pilot density, the

transmitter seeks the most appropriate time-frequency pilot space 

that minimize the mean square error of the channel estimate

obtained by the use of a general interpolator. A comparative

analysis with conventional pilot patterns over different channel

environments are developed and analyzed1.

Index Terms— OFDM, pilot pattern.

I. INTRODUCTION

N an orthogonal frequency division multiplexing (OFDM)

system, channel estimation is usually performed by sending

training pilot aided channel estimation (PACE) symbols on

sub-carriers known at the receiver [1] [5]. The quality of the

channel estimation depends on the pilot arrangement (i.e., on

the density of pilots in an OFDM frame, or on their time-

frequency collocation).

 Several investigations have been undertaken with the

objective to develop appropriate distributions of the pilots

symbols in both time and frequency domain [1][2]. Results

obtained by Tufvensson et. al. in [1] have demonstrated the

direct influence of the pilot location within the OFDM on the

system performance of channel estimation process.

The hexagonal pilot pattern has appeared as the most efficient

strategy for pilot distribution in [4][2]. Since it requires lower

samples, and lower pilot density than the rectangular pattern to 

represent the same signal. Evaluations upon different scenarios 

have demonstrated it good performance compared with other

pilot patterns [3].

Usually, a simple interpolator such as linear, or Spline

interpolation is often used in the practice. Note that when these 

interpolators are used, the performance of the channel

estimation is affected by the pilot pattern. Almost of the

previous researches on the design of pilot patterns for channel

1 Part of this work is supported by the Spanish Government CYCIT

program under the contract TIC-2002-04594-C02-02

estimation in OFDM systems have been obtained based on the 

computer simulation results [1][2][3]. It is more than desirable 

to design the PACE pattern in an analytical form without a

need of exhaustive computer simulation.

In this paper, we analytically derive the optimum time-

frequency spacing by minimising the MSE of the estimated

channel impulse response with the use of Wiener filter. Based

on the two-dimensional sampling and the time-frequency pilot

location in the OFDM frames, we have developed an algorithm 

which consist in optimising the time-frequency spaces of the

pilots within the proper OFDM frames based on the maximum

frequency Doppler and the delay profiles of the channel.

Following Introduction, the system description and the channel 

model are described in Section II. In Section III, the method

for seeking the optimum time-frequency location is derived.

The use of optimum pilot pattern and its performance is

verified in Section IV. Finally, concluding remarks are

summarized in Section V.

II. SYSTEM DESCRIPTION

The system used in this proposal, is based on an OFDM

scheme, where different data informations are transmitted over 

a set of Nc sub-carriers in the frequency domain, and

modulated using the inverse fast Fourier transform (IFFT). A

detailed description of the OFDM system can be found in [4].

We consider the transmission of the OFDM signal over a

wireless channel with the impulse response

( ) ( ) ( )p

P

p

p thth τ−τδ=τ ∑
=0

, (1)

where P is total the number of multi-paths, δ(.) is the

Kronecker delta function, τp and hp (t) denote the delay and the 

complex –valued of the channel impulse response. A cyclic

prefix (CP) is inserted to prevent the orthogonality loss

between the sub-carriers.

At the receiver side, the CP is removed before applying the

FFT process. Assuming a perfect synchronization at the

receiver, the k-th sub-carrier of the l-th symbol time is given

by,

, , , ,k l k l k l k lR H S N= +    (2)
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where Hk,l is the frequency response of the channel at the k-th

sub-carrier and the l-th symbol time, Nk,l is the noise (additive

white Gaussian noise) component plus interference term with

variance σ2
. The PACEs symbols are periodically introduced

within the OFDM frame during each Nt time slots, and Nf sub-

carriers in the frequency domain respectively (see Fig. 1 and

Fig. 2).

Fig. 1. Time-frequency pilot arrangement in an OFDM frame.

The structure of the pilot pattern is based on the theorem of the 

two-dimensional sampling [2], where any pilot pattern can be

represented using two vectors, for instance u and g

(represented in the Cartesian coordinate). These two vectors

have each one two components that compose the pilot spacing

in time dimension (denoted with the sub-index 1), and in

frequency dimension (denoted with the sub-index 2). These

two vectors have the following structure;
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the vectors u and g can be combined and represented by a

matrix V such 

[ ]:=V u g        (4)

where V is a matrix  of size (2×2)  representing the two

dimensional distribution of the pilots within an OFDM frame.

The determinant of the matrix V will give us the pilot density

dp,
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Although, u1, u2, g1, and g2 can be any value. For particular

geometries of pilot patterns shown in Fig.1, the sampling

matrix, V, can be written as,.
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here the matrices fsV and hV  denotes the block type and

hexagonal pattern respectively. We assume that the value u2

=0 without the loss of generality, since any parallelogram can

be made to u2 =0 by rotating the pattern, the pilot density can

be rewritten as,

( ) 1

1 2detdp u g
−

= =V (7)

it can be emphasized from both equations (5) and (7), that the

pilot density dp is inversely proportional to the pilot spacing.
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Fig. 2. A rectangular pilot spacing with Nc=11, Ns=13, Nf =5, Nt=5 and tap=4.

The frequency response of the channel corresponding to the

pilot inserted within the OFDM frame is first estimated as
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where k’ and l’ denote the sub-carrier and time symbol of the

pilot symbol respectively. The final estimates of the complete

channel transfer function belonging to the desired OFDM

frame is obtained from the initial estimates
,

ˆ
k lH ′ ′

, and by a

two-dimensional (2D) interpolation process. Using the 2D

Wiener filtering the total frequency response of the channel is

given by,
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lklkw ,,, ′′  denotes the coefficients of the Wiener filter for the

desired estimate channel, and is closely linked  with each pilot 

position { lk ′′, },
inH ,

ˆ  is the estimated channel at any

frequency and time position {k, l} within  the OFDM-frame.

Note that, the set of the pilot positions in the OFDM frame is

Ω. The discrete (and continuous) 2D Wiener filtering process

is well developed in [2][3], and used in a Multi-carrier code

division multiple access (CDMA) system in [5]. The two

dimensional Wiener filter is an optimal linear estimator in the

sense that it minimise the mean square error (MSE) The filter

coefficients are obtained by applying the orthogonal principle

in the linear mean square estimation. Note that it is interesting

to estimate a wide-sense stationary uncorrelated scattering

(WSSUS) 2D stochastic process Hk,,l, and also assuming that

lkN ′′,  has zero mean  which is statistically independent from

the pilot symbol 
,k lS ′ ′ , the estimator is chosen to be linear. The 

two dimensional Wiener filter coefficients (if the correlation

matrix existent) is given by,
1

, , , , , , ,

T
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−
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where the (Ntap×Ntap) matrix ϕk,`,k’,’l represent the autocorrelation 

matrix function  which depends only on the distance between



the pilots positions, hence, it is independent of the actual

channel estimation at the {k, l} position. The vector θT
k,l of

size (1×Ntap) denote the  cross-correlation  vector function and

depends only on the distance between the channel to estimate

at the frequency time position {k, l} position respectively. It is

also worth noting that theoretically to fulfill the 2D sampling

theorem, the pilot spacing for periodic rectangular sampling is

given by [2][3][5],
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where fDmax and τmax  denote the maximum frequency Doppler, 

and the maximum delay respectively. Fs are the subcarrier

bandwidth, and T´s the OFDM symbol duration including the

CP interval.

III. OPTIMUM PILOT LOCATION

Assuming an ideal interpolator, equation (8) can be rewritten

as,

( )
{ }

s

lk

lklklkPlk NlcNkHwH ,,1,,,1,
,

,,,,,

~
…… ==∑

Ω∈′′
′′′′= (12)

where in this case ( )lklkPw ,,, ′′  denote the two dimensional

interpolator filter coefficient used when the channel is

perfectly known (i.e. when there is not errors in the channel

estimation). An ideal interpolator could be that used in [7],
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On the basis of (12), the error between the actual estimated

channel and the ideal one can be calculated using the mean

square error which can be represented as 
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where f1 and f2 are the new variables in the frequency domain

such that π/u1 ≥|f1| and π/g2 ≥|f2| [3], the DFT means the

discrete Fourier transform. The terms J1 and J2 represents  the 

minimum mean square due to the self-distortion and

interference. The first term J1 depends on the pilot pattern. On 

the other hand, the  term J2 is due to the interference caused

essentially by the own 2D interpolator. We assume that the

second term J2 is an irreducible interference term. However,

we focus our analysis only upon the J1term with the purpose to 

reduce it effect.

Applying upon the interpolation error coefficient J1, the two-

dimensional Fourier transform we obtain 
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In the case where the error made outside of the useful

bandwidth is not considered,  (16) can be approximated by the 

Taylor development to the following expression 
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where SHk and SHl are the spectral density function of the

channel in the frequency and time domain respectively. In fact 

the J2 term is independent of the pilot position. Therefore, the 

more appropriate pilot position must be chosen in such way

that the value of J1 becomes the much reduced as possible. 

Assuming that u1 and g2 are continues variables the optimum

pilot spacing that minimise the term J1 is obtained by looking

for the zero in it derives 
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the calculus of both functions in (18), arise the following

equations
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the values of the nominators in (19) are the 4
th

 order moment

of the Doppler spectrum and the power delay profiles

respectively. It can be noted from (19) that the variables 1
~u

and 2
~g are directly linked with the pilot density dp. Also it can 

be observed that both variables depend upon the channel

parameters. Therefore they depend on the frequency Doppler

and the power delay of the channel.

While the variable 
1

~u  depends directly from the temporal axis, 

and indirectly from the frequency axis. However, the variable

2
~g  depends indirectly from the temporal axis and directly



from the frequency axis. In the case where the mobility

increase the value of
1

~u  raise, while
2

~g  diminish. Therefore,

when
1

~u  goes to infinity,
2

~g  goes to zero, and the pilot

location strategy resulting a block type of pilots as that usually

used in WLAN systems or in indoor environment.
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Fig.3. Description of different pilot system locations

This system is still not complete, because of both vectors u

and g have each one two component (see (3)), and those used

during the previous analysis have only three values

( )221
~,~,~ guu . The value of g1 has not been determined. It can be 

checked in previous investigations [3][6] that, choosing g1

equal to the half distance of
1

~u , it is possible to obtain an

hexagonal pilot pattern, which is considered as the best

distribution that minimizes the interpolation error. Because the 

pilots involved in the two-dimensional interpolation process

have shorter time-frequency distances [3][5][6].

IV PERFORMANCE EVALUATION

In our simulations, we have considered an OFDM modulation

with the system and channel parameters indicated in Tab.1. A

range of the signal to noise ratio  from 5 up to14 dB, and two

τmax values equals to 50 and 100 ns  have been use. Each figure

legend depicts the used pilot pattern (and whether the optimum 

spacing is used or not).

TABLE I

SIMULATION PROPERTIES

Parameters Values

Total Bandwidth 20 MHz

Number of Carriers Nc= 256

Frequency Carrier 5.8 GHz

Modulation QPSK

Channel Rayleigh

Number of Paths 8

Maximum channel delay τmax 50 ns and 100 ns (equi-

spaced uniform)

Velocity 60 Km/h and 100 Km/h

Cyclic prefix 2 µs

Filtering type Two dimensional

Signal to Noise Ratio range [dB] from 5 up to 14.

Equalization type MMSE

It can be shown in Fig. (4) the bit error rate (BER)

performances when different geometries of pilot patterns are

used. During the simulation process it has been maintained the 

same density of pilot dp. Either, the rectangular and the

hexagonal pilot patterns perform similar BERs when the

optimum time-frequency spacing algorithm (that means the

use of (19)) is used. However, the conventional hexagonal

pattern without use of the optimum insertion provides worst

performance as the SNR increase up to 14 dB.

The same behaviour can be observed in the figures (5) (6) and 

(7), even when different values of v, τmax and density of pilots

are used. However, in Fig. (7), similar performances of BER

are experienced with the three schemes for the SNR values

proximally lower than 8 dB. Above 8 dB, the optimum-

hexagonal scheme outperform the rest of the schemes, but with 

a small difference, except at SNR= 14 dB.

Note that in almost the figures, the schemes (optimum

rectangular and hexagonal) that use the optimum time-

frequency spacing based on (19) outperform the simply

hexagonal spacing, except in Fig. (7).

This could be explained by the fact that, if we increase the

pilot density, the optimum pilot time-frequency spacing based

on (19) loses it interest. Since one main objective behind using 

different pilot pattern geometries is to be able to use the lowest 

possible density of pilot, and at the meantime locating the

PACES using the most appropriate time frequency spacing, in

order to achieve the best CSI acquisition at the receiver.

A general observation can be made, whish is; it doesn’t matter 

the geometry of the pilot patterns whether the algorithm

provided by the (19) is used. In the case where the pilot

spacing is deflected from the optimum time-frequency

location, a degradation of the system performance can be

experienced, even when an hexagonal pattern is employed.

V. CONCLUSIONS

An adaptive algorithm (base on (19)) for the pilot insertion

within the OFDM frames has been developed in this paper.

The proper algorithm adapt the time-frequency pilot spaces

according to the changes that experience the channel

parameters τmax and fDmax. Whether the previous investigations

[2][3][5] have demonstrate the superiority and viability of the

hexagonal pilot pattern, compared with the rectangular or the

diagonal scheme, this work point out that, the performances of 

the hexagonal pattern geometry can be improved when the

optimum time-frequency spacing of the pilots is chosen. 

Note that during the simulations any kind of coding has been

considered, which in any case will improve the system

performance.
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Fig. 5. OFDM system performance with velocity v=100 Km/h, τmax = 50 ns,

dp = 8.33%.

5 6 7 8 9 10 11 12 13 14
10

-4

10
-3

10
-2

10
-1

SNR [dB]

Hex <4,2>

Rect-Optimum <2,4>

 Hex-Optimum <2,4>

Fig. 6. OFDM system performance with velocity v=60 Km/h, τmax=100ns,

and pilot density dp=12.5%.

5 6 7 8 9 10 11 12 13 14
10

-5

10
-4

10
-3

10
-2

10
-1

Hex <6,1>

Rect-Optimum <2,3>

Hex-Optimum <2,3>

SNR [dB] 

Fig. 7. OFDM system performance with velocity v=100 Km/h, τmax =100ns,

dp=16.6%

REFERENCES

[1] Tufvensson and T. Maseng, “Pilot Assisted Channel Estimation for

OFDM in Mobile Cellular Systems” in the proceedings of the IEEE

Vehicular Technology Conference (VTC’97), pp. 1639-1643. USA.

May 1997

[2] P. Höeher, S. Kaiser, and P. Robertson, "Two dimensional Pilot Symbol 

Aided Channel Estimation by Wiener Filtering,” the IEEE Global

Telecommunication. Conf. (GLOBECOM'97). Phoenix, USA, pp. 90-

96, Nov. 1997.

[3] Fernandez-Getino M. Julia,-Time-Frequency Techniques for Efficient

Signalling in OFDM Systems- Universidad Politécnica de Madrid .©

October 2001.

[4] R. Van Nee and R. Prasad, -OFDM for Wireless Multimedia

Communications-.  Ed. Artech House Publisher © 2000.

[5] F. Bader, S. Zazo, J. M. Páez Borrallo, “ Optimum Pilot Pattern for

MC-CDMA Systems,“ in the proceedings of the First Symposium of

Wireless Personal Multimedia Communications (WPMC’99).

Amsterdam, Netherlands. Sept 1999.

[6] D. E. Dudgeon and R, M. Mersereau, -Multidimentional Digital Signal 

Processing-, Ed. Prentice-Hall, NJ. © 1984.

[7] Alan V. Oppenheim, Ronald W. Schafer, “Discrete-Time Signal

Processing”. Prentice Signal Processing Series 1989, ISBN 0-13-

216771-9.


