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Abstract— In this paper the PEG (Progressive Edge-
Growth) algorithm is introduced into the design of H
of q-ary LDPC codes, as well the fourier transform(FT)
decoding algorithm with a equivalent transform(ET) is
proposed. Simulation results show that the performance
of LDPC codes on GF(4) based on PEG Tanner graphs is
significantly better than that based on random graphs at
the short and medium block lengths. And LDPC codes on
GF(4) outperform that on GF(2) slightly with analogous
complexity. Obviously LDPC codes on GF(4) based on
PEG principle are of importantly practical value in future
digital communication systems.

I. INTRODUCTION

Binary LDPC codes have displayed near Shannon
limit performance when the BP (Belief Propagation)
algorithm is used in decoding [2], [3]. Although random
graphs have been used to construct LDPC codes with
impressive performance [4], [5], there is no guarantee
that any given random graph also defines a good code
with a suitable shortest cycle (girth) to facilitate iterative
decoding, especially for relatively short block lengths. To
construct a Tanner graph with a relatively large girth a
sub-optimal algorithm called PEG algorithm is proposed
by X. -Y. Hu [1]. It is proved that the resulting LDPC
codes of PEG Tanner graphs significantly outperform
randomly constructed ones, and the corresponding check
matrixes H are so steady that there is no need to search
the best ones, which must have been done in random
construction method.

Moreover, the research results of David.J.Mackay in-
dicate that the non-binary LDPC codes excel the binary
LDPC codes both based on random graphs in some low
rates [6]. Enlightened by [1], the PEG algorithm is intro-
duced into the design of H of non-binary LDPC codes
different from the encoding algorithm in David.J.Mackay
and others in this paper. And a new decoding algorithm

based on FT algorithm with the equivalent transform
is proposed different from that in [3]–[7]. It is much
simpler than the BP algorithm although its performance
decreases a little. Meanwhile the LDPC codes on GF(4)
decoded by this algorithm still outperform binary LDPC
codes. The paper is arranged as below. In section II
we describe the principle of encoding using the PEG
algorithm in q-ary LDPC codes. In section III the simpler
decoding algorithm is provided. Some good simulation
results are obtained In section IV. Our remarks are
arranged in conclusions.

II. THE CONSTRUCTION OF CHECK MATRIX OF
Q-ARY LDPC CODES

The bipartite graphs of q-ary LDPC codes are similar
to those of binary LDPC codes, but variable nodes have
q possible values, besides, the constraint restrict of check
nodes is more complex. We let q = 2p because we use p
bits in binary channel to transmit a non-binary symbol.

In this paper, the H is constructed by the PEG algo-
rithm. Thereinto, for convenience the non-zero elements
are chosen randomly from the ensemble {1, 2, . . . , q−1}.
Of course, the performance of LDPC Codes on GF(q)
may be improved obviously if the non-zero elements
are chosen based on maximizing the entropies of row.
Namely, the non-zero elements {1, 2, . . . , q − 1} are
chosen according to a special distribution, rather than
completely randomly. First we assume channel models
known, e.g., BSC. Then we choose in each row to
maximize the entropy of the corresponding bit of the
syndrome vector z=Hx, where x is a sample from the
assumed channel noise model. The bigger the entropies
of syndrome, the better the performance of decoder.



A. The Principle of PEG Algorithm

Given a H having dimension m×n, its Tanner graph
is denoted as (V, E), with V the set of vertices (nodes),
i.e. V = Vc ∪ Vs where, Vc = {c0, c1, . . . , cm−1}is the
set of check nodes and Vs = {s0, s1, . . . , sn−1} the set
of symbol nodes. E is the set of edges such that E =
Ec × Es, with edge (ci, sj) ∈ E if and only if hij �= 0,
hij ∈ H, 0 ≤i≤ m−1, 0 ≤ j ≤ n−1. Denote the degree
of symbol node sj by dsj

. Let also the set of edges E
be partitioned in terms of Vs as E = Es0 ∪ Es1 ∪ . . . ∪
Esn−1 , with Esj

containing all edges incident on symbol
node sj . Finally, denote the k-th edge incident on sj by
Ek

sj
, 0 ≤ Ek

sj
≤ dsj

− 1.
For a given symbol node sj , define its neighbor within

depth l , N l
sj

, as the set consisting of all check nodes
reached by a tree spreading from symbol node sj within
depth l, as shown in the example in Figure. 1. Its
complementary set, N̄ l

sj
, is defined as Vc\N l

sj
. In graph

theory, girth g refers to the length of the shortest cycle
in a graph. For each symbol node sj , we define a local
girth gsj

as the length of the shortest cycle passing
through that symbol node. The set of local girths {gsj

}
is referred to as girth histogram. It follows, by definition,
that g = minj{gsj

}.

Fig. 1: Neighbor N l
j within depth l of symbol node sj .

Constructing a Tanner graph with the largest possible
girth is combinatorially difficult. Nevertheless, a sub-
optimum algorithm to construct a Tanner graph with a
relatively large girth is possible. One such algorithm is
the PEG algorithm, in which the local girth of a symbol
node is maximized whenever a new edge is added to the
node. Suppose we have finished constructing edges of
the first j symbol nodes on a Tanner graph, i.e., E =
Es0 ∪ Es1 ∪ . . . ∪ Esj−1 have been established. Let
gt be the temporary girth under the current graph, i.e.,
gt=min{gs0 , gs1 , . . . , gsj−1}. The problem now lies in

selecting the edge set Esj
such that adding these new

edges to the current graph setting does not excessively
impair the current gt. In PEG algorithm, dsj

edges of
Esj

are added to the current graph on an edge-by-edge
basis, and the length of the shortest cycle passing through
symbol node sj is maximized whenever a new edge
originating in sj is being added. First the tree originating
in symbol node sj is expanded up to depth l each time a
new edge of sj is being determined, such that N̄ l

sj
�= ∅

but N̄ l+1
sj

= ∅ or the cardinality of N l
sj

stops increasing
but is smaller than m, and then placing an edge between
sj and a check node selected from N̄ l

sj
. The shortest

cycle passing through this new edge is guaranteed to be
no shorter than 2(l+2).

A subtle point in the PEG algorithm needs further
comment. Whenever we encounter multiple choices for
connecting to sj , i.e., multiple check nodes exist in
N̄ l

sj
, we select the one having the smallest number of

incidence edges under the current graph setting. This
renders the resulting PEG Tanner graph as check-node-
degree uniform as possible. Multiple choices may still
exist because multiple check nodes in N̄ l

sj
might have

the same lowest degree, particularly at the initial period
of construction. Here we randomly select one of these
check nodes.

B. Sum and Product Operation on GF(4)

Sum and product operations on GF(q) refer to [8], and
that on GF(4) are shown in Table I.

TABLE I: Sum and Product operation on GF(4)
�

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

�
0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

When H is a large-scale sparse matrix, we use Gaus-
sian elimination to derive the generator matrix G to
generate codewords.

III. DECODING OF Q-ARY LDPC CODES

We will refer to elements of x as noise symbols and
elements of z as checks. Let N (m) := {n : Hmn �= 0}
be the set of noise symbols that participate in check m.
The decoding problem is to find the most probable vector
x such that Hx=z, with the likelihood of x determined
by the channel model. Let M(n) := {m : Hmn �= 0}
be the set of checks that depend on noise symbol n.



With each nonzero entry in the parity check matrix Hmn,
we associate quantities qa

mn, ra
mn for a ∈ GF (q). The

quantity qa
mn is meant to be the probability that symbol

n of x is a, given the information obtained via checks
other than check m. The quantity ra

mn is meant to be
the probability of check m being satisfied if symbol n of
x is considered fixed at a and the other noise symbols
have a separable distribution given by the probabilities
{qa

mn′ : n′ ∈ N (m)\n, a ∈ GF (q)}. The value of ra
mn

is:

ra
mn =

∑
x:xn=a

δ

⎛
⎝ ∑

n′∈N (m)

Hmn′xn′ = zm

⎞
⎠ ∏

j∈N (m)\n
qxj
mj

(1)

A. Fourier Transform Decoding

If LDPC codes are decoded by the classic BP al-
gorithm, the complexity of decoding scales as q2 per
iteration, but it can be reduced using a Fourier transform
of the probabilities [6], [10]. Because (1) represents a
convolution of the quantities qa

mj , the summation can
be replaced by a product of the Fourier transforms
(taken over the additive group of GF(q)) of qa

mj for
j ∈ N (m)\n, followed by an inverse Fourier transform.
The Fourier transform F of a function f over GF(2) is
given by F 0 = f0 + f1, F 1 = f0 − f1. Transforms
over GF (2p) can be viewed as a sequence of binary
transforms in each of p dimensions. Hence for GF(4)
we have

F 0 = [f0 + f1] + [f2 + f3]

F 1 = [f0 − f1] + [f2 − f3]

F 2 = [f0 + f1] − [f2 + f3]

F 3 = [f0 − f1] − [f2 − f3] (2)

The inverse transform is the same, followed by division
by 2p.

Let (Q0
mj , . . . , Qq−1

mj ) represent the Fourier transform
of the vector (q0

mj , . . . , qq−1
mj ), now ra

mn is the a’th
coordinate of the inverse transform of⎛

⎝
⎛
⎝ ∏

j∈N (m)\n
Q0

mj

⎞
⎠ , . . . ,

⎛
⎝ ∏

j∈N (m)\n
Qq−1

mj

⎞
⎠

⎞
⎠

B. The Equivalent Transform

Assume C to be a codeword, then
∑
j

hijcj = 0(for i’th

check node). On GF(2), we can have
∑
j

cj = 0(j satisfies

the inequation hij �= 0) for non-zero elements are all ’1’.

However, on GF(q) it is not the case for the nonzero
elements are selected from the ensemble {1, 2, . . . , q −
1}, so we can not copy the flow of decoding on GF(2)
simply before modifying the computing of Qa

mj and ra
mn.

For decoding accurately, the equivalent transform(ET) is
proposed.

Now we analyse the equation
∑
j

hijcj = 0 on GF(q).

Here, hij can not be omitted for hij ∈ {1, 2, . . . , q− 1}.
Let c′j = hijcj , then

∑
j

c′j = 0(j satisfies the inequation

hij �= 0). on this condition, LDPC codes can be decoded
by copying the decoding process on GF(2). We obtain
the equivalent transform vector (q′0mj , . . . , q′q−1

mj ) of
the vector (q0

mj , . . . , qq−1
mj ) from (3), (Q′0

mj , . . . ,
Q′q−1

mj ) from (2), r′mn by inverse Fourier transform(IFT)
of ((

∏
j∈N (m)\n

Q′0
mj), . . . , (

∏
j∈N (m)\n

Q′q−1
mj )), and rmn

by the inverse equivalent transform(IET) of r′mn. The
complexity of decoding isn’t added because just a math-
ematical equivalent transform is done, which scales as
Ntq logq(N is the blocklength and t is the average
column weight). The equivalent transform is given by

q′amj = q
a÷hmj

mj , ra
mj = r

′(a⊗hmj)
mj (3)

where, the division operator ′÷′ is added artificially for
convenient for comprehension, deduced from the product
rule. e.g., the division operation on GF(4) refers to Table
II(row :dividend, column:divisor).

TABLE II: Division operation on GF(4)

÷ 0 1 2 3

0 × × × ×
1 0 1 2 3

2 0 3 1 2

3 0 2 3 1

The detailed-step:

A.Initialization
We initialize the values of qa

mn to fa
n , the likelihood

that xn = a according to the channel model.

B.The ET and the FT

q′amn = qa÷hmn
mn

Q′a
mn = FT [q′0mn, . . . , q′q−1

mn ] (4)



C.The IFT and IET(updating ra
mn)

r′amn = IFT [(
∏

j∈N (m)\n
Q′0

mj), . . . , (
∏

j∈N (m)\n
Q′q−1

mj )]

ra
mn = r′(a⊗hmn)

mn (5)

D. Updating qa
mn

qa
mn = αmnfa

n

∏
j∈M(n)\m

ra
jn (6)

where αmn is chosen such that
∑q−1

a=0 qa
mn = 1.

E. calculating qa
n

qa
n = αnfa

n

∏
j∈M(n)

ra
jn (7)

where αn is chosen such that
∑q−1

a=0 qa
n = 1.

We then make a tentative decoding x̂ such that

x̂n = k(qk
n = max{q0

n, . . . , qq−1
n }) (8)

If Hx̂ = z then the decoding algorithm halts having
identified a valid decoding of the syndrome, otherwise
the algorithm repeats(from (4) to (8)). A failure is
declared if some maximum number of iterations (e.g.,
200) occurs without a valid decoding.

IV. SIMULATION RESULTS

In this section we give the performance comparison
between the regular (3, 6) LDPC code based on the
PEG Tanner graph and that based on the random graph,
on GF(4), over AWGN channel in Fig. 2, and compare
the LDPC code on GF(4) with the binary LDPC code
both based on PEG Tanner graphs in Fig. 3. In the two
figures all data, such as 1000, 4000, 20000, represent
block lengths, and all code rates are 1/2.

Figure. 2 shows that when the blocklength is 1000bits,
the LDPC code on GF(4) based on th PEG algorithm
outperforms randomly constructed one by 0.6 dB at a
BER of 10−6, when 4000bits, the former outperforms
the latter by 0.4dB at a BER of 10−6, when 20000bits,
the both performance is nearly the same. It is proved that
the former has advantages over the latter at the short and
medium block lengths.

Figure. 3 is the performance comparison between
LDPC codes on GF(2) and GF(4) whose H are both
based on the PEG algorithm. Through the figure we
find that at rate R=1/2 the performance of the LDPC
code on GF(4) is slightly better than that on GF(2) over
AWGN channel, and the both computing complexity is
analogous.

Fig. 2: Bit error rate(BER) of LDPC codes on GF(4) based
on PEG Tanner graph and random graph, respectively.

Fig. 3: BER of LDPC codes on GF (2) and on GF (4) both
based on PEG Tanner graph.

V. CONCLUSIONS

Using the FT decoding algorithm with the equivalent
transform is proposed, which achieves the decoding of
LDPC codes on GF(q) efficiently, q = 2p. And the PEG
algorithm is introduced into the construction of check
matrixes of q-ary LDPC codes. Simulation results show
that the performance of LDPC codes on GF(4) based
on PEG Tanner graphs is better than that on GF(4)
based on random graphs, especially at the short block
lengths. Whereas the optimization of H of LDPC codes
is difficult and practical at the short block lengths in
comparison with long block lengths, so this work is of
important value in the design of H on GF(q). On the
other hand, the performance comparison between LDPC
codes on GF(4) and those on GF(2) both based on PEG
Tanner graphs can be done more easily than that both
based on random graphs where the comparison only can
be done by expectation. Simulation results show that the



former outperforms the latter slightly at the rate R=1/2,
and the both have analogous computing complexity.

In a word, it is believed that the non-binary LDPC
code on GF(4) based on the PEG principle and de-
coded by the FT decoding algorithm with the equivalent
transform is a preferable candidate in future digital
communication systems, especially in transmission using
short and medium block lengths. Next we will investigate
the applications of q-ary LDPC codes to ADSL systems
and satellite communication systems [9].
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