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Abstract— The task of channel estimation in a frequency-
selective multi-input multi-output (MIMO) system presents a
real challenge for conventional training-based solutions, since
the huge number of channel coefficients demand a huge number
of training symbols, which will significantly reduce the system
bandwidth-efficiency. As a possible countermeasure, we propose a
semi-blind channel estimation algorithm, which can learn channel
coefficients accurately when only a short training is available. The
main idea is to use blind data/channel estimation algorithms to
improve the quality of the channel knowledge obtained from
the short training. With the proposed semi-blind algorithm,
the required training length will no longer be unaffordable for
frequency-selective MIMO systems.

I. INTRODUCTION

For high-rate data transmission, MIMO systems attract
increasing attention due to promising capacity gains [1][2].
If the delay spread is not significantly shorter than the symbol
duration, the transmission channels are frequency-selective.
Moreover, multiple data sequences arrive at individual re-
ceive antennas simultaneously and interfere with each other.
Therefore, a MIMO channel equalizer is not only responsible
for removing inter-symbol interference, but also for remov-
ing multiple-access interference. In order to accomplish this
double duty, the equalizer often demands perfect channel
knowledge.

In single-input single-output (SISO) systems, a training
sequence is often inserted into the data stream for the purpose
of channel estimation (CE). Because training-based algorithms
have low computational complexity and good robustness in
noisy environments, they are very popular in today’s digital
communication systems. However, if we directly apply purely
training-based channel estimation schemes to MIMO systems,
the situation becomes quite different. Due to inter-symbol
interference and multiple-access interference, the required
training length per transmit (Tx) antenna will be proportional
to the product of the channel impulse response length and
the number of Tx antennas. This fact presents a fundamental
challenge for training-based CE schemes, especially when the
system employs many Tx antennas and experiences a delay
spread channel. The large amount of training symbols required
for reliable channel estimation will significantly reduce the
system bandwidth-efficiency. Furthermore, for a fast fading
channel, it is also possible that the needed training length will
spend a complete channel coherence interval, then there will be
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no time left for data transmission before the channel changes.
This situation should be definitely circumvented.

An intuitive countermeasure would be shortening the length
of training. But, to make this practically attractive, a reduction
of training length should not cause a considerable system
performance degradation. As a matter of fact, all transmitted
data symbols are actually carrying the same channel infor-
mation as the training symbols, within the same channel
coherence interval. If this channel information can also be
exploited, then the required training length can be largely
reduced. We propose a MIMO channel estimation algorithm,
which can learn channel coefficients accurately when only
a small amount of training is available. This algorithm is a
combination of training-based channel estimation algorithms
and blind equalization techniques, and is thereby termed as
semi-blind channel estimation (SBCE).

Throughout this paper, the complex baseband notation is
used. Concerning vector/matrix operations, we use (-)7, (-)*,
(), and ()T to denote transpose, complex conjugate, com-
plex conjugate and transpose, and Moore-Penrose left/right
pseudo inverse, respectively. A bold lower case letter marks a
column vector, and a bold capital letter denotes a matrix.

Il. CHANNEL MODEL

The equivalent discrete-time channel model of the MIMO
system, which comprises pulse shaping, physical channel,
receive filtering and baud-rate sampling, can be written as

Nr L
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where (0 < k < K — 1), k is the time index, and K is the
block length. L denotes the effective memory length of all
subchannelsvlv, which is assumed to be known at receiver side.
h'i[k] = [hg [k], Y [k], ... A} [k:]]T denotes the time-varying
channel vector representing the subchannel between the ;"
transmit antenna and the i** receive antenna. z;[k] represents
the k*" data symbol from the j** transmit antenna, and n; [k]
denotes the k*" additive white Gaussian noise sample added
to the ** channel output. Fig. 1 shows a block diagram of
this channel model.

1Here, we assume that all subchannels have the same effective memory
length. However, this assumption does not indicate any restriction to the
algorithm proposed in this paper.



Fig. 1.

Equivalent discrete-time MIMO channel model

Assuming block fading, (1) can be written in matrix form
as

Y=H X+N, o)

where Y v, «x is the channel output matrix, Hy, » vy (+1)
is the channel matrix, X, (z+1)xx IS the data matrix, and
N, xx IS the noise matrix. In the following, we will always
use (2) instead of (1).

I1l. CHANNEL ESTIMATION
A. Joint Least Squares Channel Estimation

For SISO systems, least-squares channel estimation (LSCE)
is optimal w.r.t. minimizing the squared channel estimation
error, given that the data symbols are known during an
observation interval [3]. For the MIMO case, if the training
sequences of all Tx antennas overlap with each other for a time
interval of sufficient length, LSCE will also be possible and
optimal, and is then usually called joint least squares channel
estimation (JLSCE) [4].

Given the channel model in (2), JLSCE can be expressed

as
H=Y X" . (X, X")"'=v.X], ©)

where X, denotes the symbol matrix formed by training. The
corresponding normalized (w.r.t. the number of Rx antennas)?
mean-squared error (MSE) is defined as

MSE 2 E{|[H-H|L} /N
= o2 w{(x.x{) '}, @)

where o2 denotes the variance of the additive noise, and
tr(A) = > | a;; denotes the trace of matrix A. For sim-
plicity, we herein define

Tri (A) 2 tr{(AAH)*l}. ()

Given the noise variance, the channel estimation MSE is solely
determined by the value of Tri (X;). In order to minimize
the value of Tri (Xt), the training sequences transmitted from

2The number of Rx antennas has no effects on the training requirement,
and is therefore removed from the expression of the MSE.
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Fig. 2. Extending training with unknown data symbols

the multiple antennas must have impulse-like auto-correlation
and zero cross-correlation® [5]. For sequences fulfilling this
condition, the value of Tri (X;) can be written in an analytical
expression:

Np(L+1)

K,—L "~
where K; denotes the number of training symbols per Tx
antenna.

Equation (6) shows two facts. First, given the system dimen-
sion, a longer training will bring a better channel estimation
quality in the sense of the mean-squared error. Second, in order
to guarantee a certain channel estimation quality, the length of
training must increase as the number of Tx antennas increases.
For example, given L = 2 and the desired CE quality as

Tri (X,) = (6)

MSE <0.25- 02, 0
then the required training length will be

K; >26 for Np =2,
K; >98 for Ny =8,

(8a)
(8b)

where the latter case can really cause a problem for a system
deployed in a fast-fading environment.

B. Semi-Blind Channel Estimation

For purely training-based algorithms, a reliable estimation
of a frequency-selective MIMO channel will demand a large
amount of training symbols, which will considerably lower
the system bandwidth efficiency. However, if we take the
channel information carried by unknown data symbols into
account, this situation might be changed. In the following,
we introduce a semi-blind channel estimation scheme for
MIMO systems, which uses training symbols together with
neighboring unknown data symbols to accomplish the task
of channel estimation. Compared to purely training-based
schemes, the number of training symbols can be saved a lot,
while the channel estimation quality is still conserved.

From now on, we consider a BPSK system with Ny =
Ngr = 2 and L = 2 as an illustrative example. As shown in
Fig. 25, we use K,, = K; + K, + K, symbols per Tx antenna
to perform JLSCE instead of using just K training symbols.
Let X; denote the matrix formed by training symbols, and
X,, denote the matrix formed by training and neighboring

3Given a finite alphabet constellation, a certain training length and a certain
system dimension, sequences fulfilling this condition may not exist.

4BPSK modulation is assumed throughout this paper for simplicity.

Swithin this paper, all data structures are shown in the form of binary
sequences before BPSK modulation.



data symbols. Exhaustive searches show that for sure we will
have the following relationship (cf. Tab. I):

Tri (X,,) < Tri (X¢), if K; >0, 9

independent of the values of unknown data symbols. Further-
more, if we include more and more unknown data symbols
into X,,, the average value of Tri (Xm) becomes smaller and
smaller (cf. Fig. 5):

mean {Tri (X/,)} < mean {Tri (X,,,)}, if K] > K;. (10)

Above two equations show that the channel estimation quality
can be improved by extending the ‘training’ sequence with
data symbols, given that these data symbols are all known at
the receiver.

However, the data symbols are actually unknown at receiver.
Before we can get a better channel estimation, we have to
estimate the data symbols correctly. But the problem is that,
in order to estimate data symbols correctly, we need a perfect
channel knowledge in the first place, which sounds like a self-
contradiction. To solve this problem, we adopt the technique
of turbo processing:

1. i=0Hy=Y-X]|
2.zfz+1
*Xm_JVD msz1
«H; =Y, - X

3. Repeat 2 until (Hi,mei) = (ﬁi,l,f(m,i,l),

where 7 is the iteration index, and JVD(Y|}AL»,1) denotes data
estimation by means of the joint Viterbi detector (JVD) [6][7]
given the channel knowledge H;_;. At the beginning, a coarse
channel estimation is done by performing JLSCE over the
short set of training sequences. Then, this channel knowledge
is used to get an estimate of neighboring data symbols via
the JVD, during which training symbols serve as a priori
information. With the estimated data symbols, now we get a
virtual training which is longer than the original true training
sequence. Performing JLSCE over this virtual training, a new
channel estimate (hopefully with lower MSE) is obtained. By
repeating this procedure again and again, the channel estima-
tion quality can be improved step by step. This statement is
supported by the simulation results provided in Sec. V.

A similar iterative joint data/channel estimation algorithm
has been proposed by S. Talwar in [8] for the purpose of
blind equalization, which is named iterative least-squares with
projection (ILSP). In ILSP, both data and channel estimation
are done by performing an orthogonal projection in a linear
space. Due to the full-rank requirement of the channel matrix,
ILSP can only be applied in the situation where Np >=
Nr(L + 1), which is difficult to meet when the channel is
frequency-selective. Furthermore, the small dimension of the
channel matrix will produce significant noise enhancement in
the procedure of data estimation, and consequently degrade
the convergence property of the algorithm. In contrast, by
using nonlinear techniques such as the Viterbi algorithm for
data estimation, the above mentioned two problems are both
removed. In accordance with the context in [8], we term
the newly proposed algorithm as iterative least-squares with
Viterbi (ILSV) algorithm.
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Fig. 4. Joint sequence/channel estimation by ILSV algorithm

IV. PROPOSED RECEIVER STRUCTURE

With the semi-blind channel estimation algorithm, we pro-
pose two receiver structures. For the first one, channel esti-
mation is done by the ILSV algorithm over K,, midamble
symbols. Given this channel knowledge, sequence estimation
of the whole data block is done by a suitable algorithm such
as the JVD. For the second one, we directly use the ILSV
algorithm to jointly estimate the channel coefficients and the
whole block of data symbols, which means that we choose
K,, = K. Accordingly, we name the first receiver structure
ILSV-JVD (cf. Fig. 3), and the second one ILSV (cf. Fig. 4).
Comparing these two structures, ILSV-JVD is of practical
interest for fast-fading channels, especially when the channel
coherence interval is much shorter than the block length. While
given block-fading channels, ILSV is more suitable than ILSV-
JVD and will provide better performance at the price of higher
computational complexity.

V. NUMERICAL RESULTS

We choose a BPSK system with two transmit antennas and
two receive antennas as a test platform, and assume that the
effective memory length of all sub-channels equals to two. The
assumption of block-fading is also given.

A. Trace

Given a set of training sequences, we extend them by adding
random data symbols at both sides, as showed in Fig. 2. As
the appended data symbols are totally random, one may doubt
that if the newly formed virtual training could be even worse
than the original one. To give an answer, we provide two
simulation results. First, given a certain training, the mean
values of Tri (Xm) under different choice of K,, are plotted
in Fig. 5. This result tells us that the newly formed virtual
training matrix X,,, is better than X; on average. Second,
given a certain training and a certain value of K, we check
Tri (Xm) under all possible value combinations of the random
data symbols, and measure its maximum, minimum and mean
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K; 0 1 2 3 Z
Kpn =K +2 K; 8 10 12 14 16
min {Tri (Xm)} 1.2000 | 0.9333 | 0.6667 | 0.5417 | 0.4444
max { Tri (Xm) 1.2000 | 1.0211 | 0.9939 | 0.9830 | 0.9770
mean{ Tri (Xm) 1.2000 | 0.9799 | 0.8079 | 0.6737 | 0.5702
TABLE |

STATISTICS OF TRI (X;)

value, which are listed in Tab. 1. A nice result is that even
the maximum value of Tri (X,,) is smaller than Tri (X),
for all K; > 0. Furthermore, the average, maximum and
minimum value of Tri (Xm) all decrease monotonously as
K; increases. We conclude that the CE performance can be
certainly improved by using virtual training, as long as the
included data symbols are correctly estimated at the receiver.

B. Channel Estimation

The performances of training-based and semi-blind channel
estimation algorithms are depicted in Fig. 6. As we can see, for
purely training-based JLSCE, a training length reduction from
26 symbols/Tx to 8 symbols/Tx leads to a 7 dB SNR penalty
w.r.t. MSE. Exploiting the channel information carried by data
symbols, this penalty is eliminated or at least mitigated by
the ILSV algorithm. The more the data symbols we take into
account, the higher the performance improvement is achieved.
Particularly, when we choose K; = 8 and K,, = 32, the CE
quality of the ILSV algorithm is already comparable to the
one of training-based JLSCE with K, = 26 within a wide
range of SNR. Due to the random property of data symbols,
in order to achieve the same CE performance, a virtual training
must be longer than a optimal training, but hopefully not much
longer. The nonlinear behavior of the MSE curves of the ILSV
algorithm in the low SNR range comes from the errors in data
symbol estimation.

Another result is given in Fig. 7. Now the value of K, is
fixed to be 32, while the iteration number of the ILSV is
chosen to be different values. An interesting phenomenon is
that 99% of MSE reduction comes from the first iteration. This
fact tells us that, if the value of K, is not very large, we can
rather fix the iteration number of the ILSV algorithm to be
“1” in order to reduce the computational load.
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C. Channe Equalization

Joint Viterbi detector is optimal for MIMO channel equal-
ization [6][7] and practically feasible when Np(L + 1) has a
moderate value. Therefore, we choose JVD as the sequence
estimator for our 2 x 2 test system. In order to give a
fair performance comparison between systems with different
training lengths, the energy consumed by training symbols is
subtracted from the energy of the data symbols. That is, the
total available energy is fixed for a certain amount of data
symbols. Thereby, a larger number of training symbols will
lead to a lower SNR per symbol (E;/No).

Shown by our simulation results, the MSE quality im-
provement provided by the semi-blind algorithm also brings
a considerable BER reduction at the output of the equalizer.
In Fig. 8, the ILSV-JVD receiver with K; = 8 shows an
approximately 2 dB SNR gain compared to the JLSCE-JVD
receiver with K; = 8. The only difference between these
two equalization schemes is that one uses a semi-blind CE
algorithm and the other uses a purely training-based CE al-
gorithm. Given a block-fading channel, the channel coherence
interval equals to the length of the data block, therefore we
can actually choose K,, = K. According to the results in
Fig. 6, such a large value of K, should bring a high-quality
channel estimate and further improve the system performance.
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This is attested by the curves of the ILSV® receiver in Fig. 8.
When K = 148, the performance of the ILSV receiver is
better than the JLSCE-JVD receiver with K; = 26 within a
wide range of SNR, and is even close to the curve of the JVD
receiver with known channel coefficients. This result proves
that by employing semi-blind channel estimation algorithms,
the length of the training sequences required for desirable BER
performance can be reduced significantly.

To further verify the effectiveness of the proposed algo-
rithm, the simulation results for a system with N = Np =4
and L = 2 is provided in Fig. 9, and the simulation results
for a system with N = Ng = 8 and L = 0 is also provided
in Fig. 10. These results show that the semi-blind channel
estimation algorithm works both for frequency-selective and
flat-fading MIMO systems with various number of antennas.

V1. CONCLUSIONS

For conventional approaches, very long training will be
needed in order to obtain a good estimate of a frequency-
selective MIMO channel. In this paper, we investigated the
possibility of reliable channel estimation when only short

6As the ILSV algorithm actually estimates the data and the channel jointly,
the task of channel equalization is already done by it when K,, = K is
chosen, therefore we name the receiver structure as ILSV under this situation.
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Fig. 10. BERvs. Ey/No, K = 148, Ny = Ngp =8, and L = 0.

training is available. The simulation results show that, by
utilizing iterative joint data/channel estimation, the require-
ments on the training length can be largely relaxed. Generally
speaking, given the semi-blind channel estimation algorithm,
the demanded training length is now only Nr(L + 1) + L,
which is affordable even when N is rather large.

Within this paper, we used JLSCE and JVD as the channel
estimation algorithm and the data estimation algorithm, respec-
tively. As a matter of fact, any suitable data/channel estimation
algorithm can be utilized to improve the channel estimation
quality in the way described in Sec. 111-B. The computational
complexity of JLSCE is proportional to N,?(L + 1)3, and
should be manageable in most cases. However, the computa-
tional complexity of JVD is exponential in N (L + 1), which
will obviously bring problems when the system has many
Tx antennas. Therefore, data detection algorithms with re-
duced complexity need to be investigated. Sequential detection
techniques which combine linear and non-linear equalization
algorithms should be a potential solution. Furthermore, the re-
dundancy introduced by channel coding might also be utilized
in the procedure of data estimation. These topics are subject
to further research.
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