
  

 
Abstract—The dynamic and platform independent 

reconfiguration of reconfigurable devices in an E²R 
environment is based on a reconfiguration strategy which is 
distributed across different layers of abstraction. This paper 
introduces an architecture of the hardware abstraction layer 
for configurable execution modules, which perform the 
reconfiguration on a fine grain level and carry out the tasks 
associated with a particular radio access technology.  
 

Index Terms—E²R, Physical Layer, Hardware Abstraction 
Layer, Configurable Execution Modules, Logical Device 
Driver, Physical Device Driver, Service Interface 
 

I. INTRODUCTION 
UNCTIONAL elements in an End-to-End 
Reconfigurable (E²R) [1] environment have been 

identified and described in [2]. In order to provide partial or 
seamless dynamic reconfiguration of E²R equipment, a 
layered approach is followed which distributes the process 
of reconfiguration across several layers. Functional 
elements are described and modelled on different levels of 
abstraction which hide the implementation details to higher 
layers, thus enabling a dynamic reconfiguration process on 
different layers. 

After presentation of the general layered architecture of 
E²R devices which allows for a platform independent 
hierarchical reconfiguration, a Hardware Abstraction Layer 
(HAL) is introduced, which hides the details of the 
underlying Configurable Execution Modules (CEM) to the 
Configuration Control Module (CCM) in the higher layer. 
The HAL architecture and its methods to access various 
classes of CEMs are discussed in detail, followed by an 
outline of an operating environment for programmable 
CEMs, which is needed to carry out real time tasks with 
modem functionality for a particular Radio Access 
Technology (RAT). Different configuration processes for 
CEMs are explained with particular emphasis on the 
communication fabric, which interconnects the CEMs. The 
role of configuration data from the CCM and a suitable 
configuration language is covered in [3]. 

Related work with a different application background 
was done by the OMG within the Software-Based 
Communication Task Force [4]. 

II. GENERAL ARCHITECTURE OF E²R-DEVICES 
Wireless terminals and basestations or access points in an 

E²R-environment provide an abstract configuration 
interface to the signal processing components. This 
interface is supplied by the CCM, which is implemented in 
an Instruction Set Architecture (ISA) device. An overlaying 
CMM is able to access and modify the implemented RAT in 
the device through this interface. The interface is realized 
with the CCM Service Interface which is hiding 
implementation details of the underlying hardware. The 
access is unified, hence, platform and vendor independent. 

 
The CEMs in an E²R device execute the functional chain 

of a particular RAT. Similar to the CCM, which hides 
implementation details from higher layers using a service 
interface [5], CEMs also provide a service interface to hide 
their implementation details from the CCM. This CEM 
Service Interface (CEM_Service_IF) is located inside the 
CEM HAL. The major part of a CEM concerns the 
hardware to execute RAT functions; the hardware 
abstraction layer of a CEM is therefore just the necessary 
overhead to unify the access to CEM hardware. The 
abstraction layer of the CEMs allows two different views on 
CEMs: 

 
• Functional view: The overlaying CCM is able to 

configure the implemented functions on the CEM. 
How to configure these functions is generalized 
and independent from the individual CEM 
implementation. 

• Configuration view: A hierarchical configuration 
of the implemented CEM is possible. Starting from 
a configuration of parameters available on all 
realizations of the specific class of CEM to the 
configuration of the individual implementation of 
the particular CEM. Configuration can simply add 
or remove implemented functions or adjust their 
functionality. 

 
As shown in Figure 1, CEMs are subdivided into two 

classes: 
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The first class of Processing-CEMs (P-CEM) carries out 
the data processing functions for a given RAT 
implementation. These P-CEMs perform computational 
tasks. 

The second class of Communication-CEMs (C-CEM) is 
responsible for connecting the P-CEMs. These C-CEMs 
mange the complete interconnect for processing and control 
data. 
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Figure 1: Processing CEMs and Communication CEMs 
connected to the CEM HAL. 

 

A. Processing-CEM (P-CEM) 
In an E²R device physical layer processing is done with 

state-of-the-art signal processing devices, ranging from 
custom ASICs and RF-front-end to FPGAs, programmable 
accelerators and general purpose DSPs. Different 
technologies can be used for these physical layer modules. 
These data processing devices build the class of P-CEMs in 
the E²R environment. System architects can build a 
heterogeneous system on chip, system in a package 
(multiple silicon chips connected using e.g. flip-chip 
technology, delivered in a single package) or printed circuit 
board from these P-CEMs. 

In an hierarchical abstraction, the P-CEMs are divided 
into five basic subclasses: programmable logic devices and 
compute fabrics (e.g. FPGA), DSPs, Accelerators, ASICs 
and RF-Modules. Later in this paper we will describe the 
concept of Logical Device Drivers (LDD) and Physical 
Device Drivers (PDD). A LDD is provided for each specific 
class of P-CEM while a PDD adapts these classes to a 
specific (e.g. proprietary) implementation of the technology. 

All these P-CEMs have interfaces to exchange data with 
other CEMs and to store data in external memories. P-
CEMs can be connected with shared or global memory 
using First-In-First-Out (FIFO) buffers or interrupts based 
streaming data C-CEMs. 

B. Communication-CEM (C-CEM) 
The C-CEM provides physical interfaces to connect the 

different P-CEMs to the master ISA device, which runs the 
CCM. It will also provide a configurable physical 
interconnection fabric for routing data and control 
information between the different P-CEMs. 

The C-CEM will have a set of ports defined. The number 

of ports and the number of physical connections in each 
port will depend on the individual implementation. Each of 
the P-CEM will connect to the C-CEM through these ports. 
In Figure 2, a C-CEM with 2 Ports P1 and P2 is shown. The 
port configuration and assignment is reconfigurable and will 
be configured according to the interface specifications of 
the P-CEM, which are provided by the PDD. The C-CEM 
communicates with the CCM through the CEM_Service_IF, 
which is composed of two separate interfaces: 
Configuration Interface and Functional Interfaces. 

Apart from providing the physical interfaces between the 
P-CEMs and the ISA device, C-CEMs will also provide 
interfaces to transfer data between the different P-CEMs 
which will be present in the system. The topology of the 
interconnect architecture for these transfers will be selected 
by the CCM or an entity which will form the configuration 
processing chain and map this chain on to the underlying P-
CEMs, in order to execute a particular RAT. 

In order to satisfy this need for inter-CEM 
communication and data transfer, while modelling the C-
CEM, different interfaces one each for a particular P-CEM 
are realized [6]. This individual interfaces will be 
instantiated only when the particular P-CEM is present in 
the system configuration. 
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Figure 2: Communication CEM Interfaces 

 

III. CEM - ABSTRACTION LAYER  
To realize the two different views on the CEM two 

modules are provided for system abstraction: A physical 
device driver (PDD) acts as software glue to access the 
CEM-hardware through the communication fabric. The 
logical device driver (LDD) realizes the functional and 
configuration view on the CEM. The LDD links the current 
configuration of the CEM with the functional capability. 
For the configuration view the CEM Service Interface of the 
LDD provides a Configuration Interface (CIF) for 
hierarchical configuration and implementation of functions. 
The Functional Interface (FIF) of the CEM Service 
Interface supports the functional view on the CEM. To 
implement the functional and configuration interface a set 
of processing engines within the LDD and PDD are 
necessary. Hence, it consists of three key components: 



  

1) CEM_Msg_Handler 
This entity reads the received configuration language data 

messages intended for FIF and CIF; it handles the 
communication with the overlaying CCM. If required, a 
possible implementation of the CEM_Msg_Handler is a 
Message Passing Interface [7] module. 

 
2) Configuration Interpreter: 

The configuration interpreter is able to interpret the 
received data on the FIF depending on the actual 
configuration of the CEM. 

 
3) Config_datastore (CDS): 

A small data storage to store the current configuration of 
a specific CEM class. This database is very small to reduce 
power of the device. Hence, it stores just the necessary data 
to interpret received data on the functional interface 
pertaining to actual device configuration. 

 
The architecture of a CEM hardware abstraction layer 

module is shown in Figure 3. 
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Figure 3: CEM Abstraction Layer CEM_Msg_Handler, 
Configuration Interpreter and CDS. 

 

A. Object Orientated Architecture  
The architecture facilitates an object-orientated approach. 

Abstraction and modularization through data hiding and 
encapsulation of structure and behaviour are emphasised. 
This allows more natural mapping of domain concepts to 
the reconfiguration architecture design. The creation of 
extensible frameworks through inheritance and 
polymorphism improves the reusability. Inheritance creates 
strong dependencies between a base class and its derived 
classes. 

The device drivers must be loaded at the application side 
before access to the hardware can be obtained. Device 
drivers can be loaded and unloaded anytime. Devices can be 
used synchronously or asynchronously. Asynchronous 
device usage is preferred, since it is more CPU efficient. 
Partial reconfiguration of components can be achieved 
without downtime of other components which are not 
reconfigured, if this is supported by the underlying 
hardware. Therefore, the device driver at the kernel side 
library is often split into two libraries: LDD and PDD. 

B. Logic Device Driver  
The LDD, encapsulating the logical functions of a device 

e.g., on and off, and read and write, containing all the 
complexity of typical device usage usually in the form of a 
state machine. This part contains all common code. This is a 
polymorphism bound driver. Each CEM class has similar 
LDD per CEM. The LDD is not manufacturer dependant 
and collects CEM common parts/functionality. 

The LDD hides the implementation of the function and 
allows CCM to set up parameters and new Functions 
without talking directly to the hardware. The LDD 
instantiates on demand and uses the operations supplied by 
the PDD to access the CEM-hardware. 

The CEM LDD is also specific to that particular class of 
CEM. CEMs of a single class can share the same LDD 
package. 

C. Physical Device Driver  
The PDD is carrying out the functions on a specific 

device. This should be as thin as possible to improve 
portability to new devices. 

It is the proprietary module inside the CEM Abstraction 
Layer. It contains manufacturer dependant parts and might 
disappear for standardised resources. A CEM could be 
replaced by a CEM from another vendor by just providing a 
new PDD for the ISA-device. 

The PDD is supplied for each CEM and contains 
operations to configure the CEM (i.e. download a bit stream 
or object) as well as operations to write data to and from the 
resource. This includes writing instantiation and control 
data, but also configuring data channels for C-CEM. 

 

IV. E²R COMPATIBLE DEVICES 

A. Network on Chip (C-CEM) 
Several flavours of C-CEMs are possible, depended on 

the targeted throughput and latency requirements. An E²R 
compatible reconfigurable modem does not limit the 
physical implementation. It has just to be able to carry out 
configuration transactions to be considered as a C-CEM. 
Implementations can consist of busses, networks, or  direct 
connections. 

For high throughput Network-on-Chip (NoC) 
components may very soon exist on many System-on-Chip 
(SoC) devices. The reason for this is that more and more 
communication partners on one chip exchange information 
with each other. The so far implemented bus structures can 
only connect a limited number of communication partners 
efficiently but they do not scale to higher numbers. A 
second problem comes from deep submicron technology 
where long global wiring become undesirable due to their 
low performance, higher power consumption and noise 
phenomenon [8]. Also, a large part of power consumption 
of the chip is consumed in the clock tree. In addition to that, 
clock skew is a very big problem in today's chip designs. It 
takes a great effort to solve these skew problems. 

 
 



  

These difficulties can be solved with NoCs. A network 
may allow an asynchronous communication between the 
different parts of the system. These dedicated parts are 
clocked locally. That approach is called Globally 
Asynchronous Locally Synchronous (GALS). 

In general, NoCs are comparable with existing Wide 
Area Networks in wide areas, for example, as used for inter-
computer communication, but several aspects have to be 
done in other ways. In particular, the specification of the 
physical layer has to accommodate the on chip submicron 
effects and problems, which are different from other 
communication mediums. 

Another fact is that protocols used for NoCs should have 
fewer overheads and enable a relatively simple 
implementation. This is required because otherwise large 
parts of the chip area will be spent just for the network. 
In such a NoC case the CCM via the C-CEM would 
configure the routing table and manage Quality of Service 
(QoS) pre-settings. 

 

B. RTOS services API for DSP-CEM (P-CEM) 
To allow implementation of components of different 

RATs on a same DSP, it is necessary to define a standard 
Operating Environment (OE). An Application Programming 
Interface (API) for use in a modem to access the Real Time 
Operating System (RTOS) of such OE has been identified. 
Because the API is particularly suited to the implementation 
of modem components, it has been named the “Modem 
Interface towards RTOS”. It is part of the technical services 
supporting the modem components. miRTOS enables, 
through a POSIX-oriented profile, to give the modem 
waveform application abstraction from the RTOS available 
on the DSP CEM. 
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Figure 4: RTOS services API connected to the CEM 
hardware abstraction layer 

 
A LDD will be provided for the RTOSes with miRTOS API 
to utilize the additional functionality of the DSP. 

As shown in Figure 4, the PDD is provided for the DSP 
itself and the LDD has a logical connection to the miRTOS 
API. 
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Figure 5: Definition of miRTOS interface 

 
 
Figure 5 shows the miRTOS runtime package, which 

represents the software delivery realizing the miRTOS API 
on the processor hosting the component. The interface can 
be sub-divided into two main interfaces: Task Management 
and Semaphore, which are described below: 
 
1) Task management 
 

TaskManagement 

pthread_attr_init(attr : pthread_attr_t) : int
pthread_create(thread : pthread_t, attr : pthread_attr_t, start_routine : routine, arg : Variant) : int
pthread_cancel(thread : pthread_t) : int
pthread_attr_setschedparam(attr : pthread_attr_t, param : sched_param) : int 

(from miRTOS) 
<<Interface>> 

pthread_attr_t
<<typeDef>>

sched_param 
sched_priority : int 

<<typeDef>> 
pthread_t

<<TypeDef>>
routine 

th_entry(argc : Variant, argv : Variant)

Represents the operation 
starting the thread created with 
pthread_create.

 
Figure 6: Interface TaskManagement (from miRTOS) 
 
This interface (Figure 6) supports the creation of a task 

with the appropriate attributes (pthread_create). This 
interface also allows the cancellation of this created task 
(pthread_cancel). 

In POSIX standard, the task (or thread) attributes are 
handled through an attributes object initialized with default 
values by the pthread_attr_init function before the creation 
of the task. Several tasks can share the same object 
attributes. 

 
2) Semaphores 

Semaphores are used to synchronize a task with an event 
or with another task, and also to send a message to a task. 
MiRTOS semaphore functions permits: 

 
- to create and initialize a semaphore, 
- to use a semaphore, 
- to destroy a semaphore. 

 



  

A semaphore can be dedicated to the synchronization of a 
given task with another task or with an Interrupt Service 
Routine (ISR). 

Semaphore functions can also be used to send a message 
to a given task. A memory space and a semaphore must be 
defined, dedicated to this task. The message to be sent is put 
in the memory space, and then the semaphore is released to 
notify the task of the message reception. 

 

V. CONFIGURATION PROCESS  
Example: C-CEM Configuration 

Here it will be described for the C-CEM how new 
configuration data is downloaded and how the enabled or 
embedded functions are configured. 

The C-CEM is realized on a reconfigurable logic 
resource, the C-CEM resource. The main tasks in the 
configuration of the C-CEM resource are  

 
1) Configuration of the Ports 
2) Configuration of the Interconnect Fabric 
3) Reconfiguration of the Interconnect Fabric 

 
And later if sufficient reconfigurable resources are 

available on the C-CEM resource after realizing the desired 
C-CEM functionality, the CCM may configure a P-CEM in 
the surplus resources of the C-CEM resource. 

The C-CEM ports are configured depending on the P-
CEM connected to that Port. The port configuration can be 
one of a set of standard interface profiles (PCI, PCIx, 
AMBA, …) which will be stored in the configuration 
database of the CCM. For a particular port, the P-CEM’s 
PDD provided by the manufacturer of the P-CEM installed 
on that port, can specify one of the standard configuration 
profile for the interface port or define its own user 
configuration. The specified port configuration will then be 
downloaded on to the C-CEM thro the Port Configuration 
interface (which will be part of the CIF in the CEM LDD) 
and configure the port, thus completing its physical 
interface to the ISA device. 

After configuration of the C-CEM ports, the physical 
interconnect functionality is configured on the C-CEM 
resource. This configuration is again performed through the 
CIF interface of the CEM LDD. This configuration sets up 
the interconnect fabric which will be based on the data 
transfer and control requirements of the RAT being set up. 

The dynamic reconfiguration of the interconnect fabric is 
performed through the specific interfaces [9] realized as 
part of the FIF interface. 

The reconfiguration of the any P-CEM realized in the C-
CEM resource is performed as any other P-CEM through 
the interfaces realized as part of FIF interface. 

 

VI. CONCLUSION 
An abstract configuration interface is needed for E²R 

devices in order to configure different RATs. Following an 
object oriented approach, a detailed architecture of the HAL 
has been presented, which provides an abstract service 

interface to higher layers for configuration of different 
CEM classes. The hardware abstraction needed between 
CCM and CEM can be achieved by means of logical and 
physical device drivers. Only the latter is aware of and 
specific to the underlying hardware / implementation of the 
CEM. A particular strategy for dynamic configuration of C-
CEMs has been introduced. 

The dynamic or partial reconfigurability, which can be 
achieved, independent from the underlying hardware 
components needs to be validated using SystemC models 
for various CEMs. 
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