

Abstract—The dynamic and platform independent

reconfiguration of reconfigurable devices in an E²R
environment is based on a reconfiguration strategy which is
distributed across different layers of abstraction. This paper
introduces an architecture of the hardware abstraction layer
for configurable execution modules, which perform the
reconfiguration on a fine grain level and carry out the tasks
associated with a particular radio access technology.

Index Terms—E²R, Physical Layer, Hardware Abstraction
Layer, Configurable Execution Modules, Logical Device
Driver, Physical Device Driver, Service Interface

I. INTRODUCTION
UNCTIONAL elements in an End-to-End
Reconfigurable (E²R) [1] environment have been

identified and described in [2]. In order to provide partial or
seamless dynamic reconfiguration of E²R equipment, a
layered approach is followed which distributes the process
of reconfiguration across several layers. Functional
elements are described and modelled on different levels of
abstraction which hide the implementation details to higher
layers, thus enabling a dynamic reconfiguration process on
different layers.

After presentation of the general layered architecture of
E²R devices which allows for a platform independent
hierarchical reconfiguration, a Hardware Abstraction Layer
(HAL) is introduced, which hides the details of the
underlying Configurable Execution Modules (CEM) to the
Configuration Control Module (CCM) in the higher layer.
The HAL architecture and its methods to access various
classes of CEMs are discussed in detail, followed by an
outline of an operating environment for programmable
CEMs, which is needed to carry out real time tasks with
modem functionality for a particular Radio Access
Technology (RAT). Different configuration processes for
CEMs are explained with particular emphasis on the
communication fabric, which interconnects the CEMs. The
role of configuration data from the CCM and a suitable
configuration language is covered in [3].

Related work with a different application background
was done by the OMG within the Software-Based
Communication Task Force [4].

II. GENERAL ARCHITECTURE OF E²R-DEVICES
Wireless terminals and basestations or access points in an

E²R-environment provide an abstract configuration
interface to the signal processing components. This
interface is supplied by the CCM, which is implemented in
an Instruction Set Architecture (ISA) device. An overlaying
CMM is able to access and modify the implemented RAT in
the device through this interface. The interface is realized
with the CCM Service Interface which is hiding
implementation details of the underlying hardware. The
access is unified, hence, platform and vendor independent.

The CEMs in an E²R device execute the functional chain

of a particular RAT. Similar to the CCM, which hides
implementation details from higher layers using a service
interface [5], CEMs also provide a service interface to hide
their implementation details from the CCM. This CEM
Service Interface (CEM_Service_IF) is located inside the
CEM HAL. The major part of a CEM concerns the
hardware to execute RAT functions; the hardware
abstraction layer of a CEM is therefore just the necessary
overhead to unify the access to CEM hardware. The
abstraction layer of the CEMs allows two different views on
CEMs:

• Functional view: The overlaying CCM is able to

configure the implemented functions on the CEM.
How to configure these functions is generalized
and independent from the individual CEM
implementation.

• Configuration view: A hierarchical configuration
of the implemented CEM is possible. Starting from
a configuration of parameters available on all
realizations of the specific class of CEM to the
configuration of the individual implementation of
the particular CEM. Configuration can simply add
or remove implemented functions or adjust their
functionality.

As shown in Figure 1, CEMs are subdivided into two

classes:

E²R: Hardware Abstraction Layer for
Configurable Execution Modules

Hendrik Seidel, Marcus Bronzel, Technische Universität Dresden (seidel@ifn.et.tu-dresden.de)
Syed Naveen Altaf A, Institute for Infocomm Research, Singapore (naveen@i2r.a-star.edu.sg)

Bernd Steinke, Nokia Research Center, Bochum, Germany (bernd.steinke@nokia.com)
Mirsad Halimic, Panasonic MDL, Uxbridge, Middlesex, UK (mirsad.halimic@panasonic-pmdc.co.uk)

Laurent Alimi, Thales, France (laurent.alimi@fr.thalesgroup.com)

F

The first class of Processing-CEMs (P-CEM) carries out
the data processing functions for a given RAT
implementation. These P-CEMs perform computational
tasks.

The second class of Communication-CEMs (C-CEM) is
responsible for connecting the P-CEMs. These C-CEMs
mange the complete interconnect for processing and control
data.

CCM

Analog / Digtial
Frontend

DSP2

ASIC1
(FFT)

FPGA1

DSP1

C-CEM1

Analog /
Digital

Frontend
LDD - PDD

LDD DSP

PDD
DSP1

LDD/PDD
ASIC1

LDD FPGA LDD C-CEM

CEM_Service_IF: CEM Service Interface

ISA-device

PDD
DSP2 PDD FPGA1 PDD C-CEM1

CEM_Service_IF CEM_Service_IF CEM_Service_IF CEM_Service_IF CEM_Service_IF

CEM-Hardware Abstraction Layer

Figure 1: Processing CEMs and Communication CEMs
connected to the CEM HAL.

A. Processing-CEM (P-CEM)
In an E²R device physical layer processing is done with

state-of-the-art signal processing devices, ranging from
custom ASICs and RF-front-end to FPGAs, programmable
accelerators and general purpose DSPs. Different
technologies can be used for these physical layer modules.
These data processing devices build the class of P-CEMs in
the E²R environment. System architects can build a
heterogeneous system on chip, system in a package
(multiple silicon chips connected using e.g. flip-chip
technology, delivered in a single package) or printed circuit
board from these P-CEMs.

In an hierarchical abstraction, the P-CEMs are divided
into five basic subclasses: programmable logic devices and
compute fabrics (e.g. FPGA), DSPs, Accelerators, ASICs
and RF-Modules. Later in this paper we will describe the
concept of Logical Device Drivers (LDD) and Physical
Device Drivers (PDD). A LDD is provided for each specific
class of P-CEM while a PDD adapts these classes to a
specific (e.g. proprietary) implementation of the technology.

All these P-CEMs have interfaces to exchange data with
other CEMs and to store data in external memories. P-
CEMs can be connected with shared or global memory
using First-In-First-Out (FIFO) buffers or interrupts based
streaming data C-CEMs.

B. Communication-CEM (C-CEM)
The C-CEM provides physical interfaces to connect the

different P-CEMs to the master ISA device, which runs the
CCM. It will also provide a configurable physical
interconnection fabric for routing data and control
information between the different P-CEMs.

The C-CEM will have a set of ports defined. The number

of ports and the number of physical connections in each
port will depend on the individual implementation. Each of
the P-CEM will connect to the C-CEM through these ports.
In Figure 2, a C-CEM with 2 Ports P1 and P2 is shown. The
port configuration and assignment is reconfigurable and will
be configured according to the interface specifications of
the P-CEM, which are provided by the PDD. The C-CEM
communicates with the CCM through the CEM_Service_IF,
which is composed of two separate interfaces:
Configuration Interface and Functional Interfaces.

Apart from providing the physical interfaces between the
P-CEMs and the ISA device, C-CEMs will also provide
interfaces to transfer data between the different P-CEMs
which will be present in the system. The topology of the
interconnect architecture for these transfers will be selected
by the CCM or an entity which will form the configuration
processing chain and map this chain on to the underlying P-
CEMs, in order to execute a particular RAT.

In order to satisfy this need for inter-CEM
communication and data transfer, while modelling the C-
CEM, different interfaces one each for a particular P-CEM
are realized [6]. This individual interfaces will be
instantiated only when the particular P-CEM is present in
the system configuration.

CCM

C-CEM1

LDD C-CEM

ISA-device

PDD C-CEM1

CEM_Service_IF

P2 P1 P-CEM

Physical Interface

- Physical Entity
- Logical Entity- Logical Entity

Figure 2: Communication CEM Interfaces

III. CEM - ABSTRACTION LAYER
To realize the two different views on the CEM two

modules are provided for system abstraction: A physical
device driver (PDD) acts as software glue to access the
CEM-hardware through the communication fabric. The
logical device driver (LDD) realizes the functional and
configuration view on the CEM. The LDD links the current
configuration of the CEM with the functional capability.
For the configuration view the CEM Service Interface of the
LDD provides a Configuration Interface (CIF) for
hierarchical configuration and implementation of functions.
The Functional Interface (FIF) of the CEM Service
Interface supports the functional view on the CEM. To
implement the functional and configuration interface a set
of processing engines within the LDD and PDD are
necessary. Hence, it consists of three key components:

1) CEM_Msg_Handler
This entity reads the received configuration language data

messages intended for FIF and CIF; it handles the
communication with the overlaying CCM. If required, a
possible implementation of the CEM_Msg_Handler is a
Message Passing Interface [7] module.

2) Configuration Interpreter:

The configuration interpreter is able to interpret the
received data on the FIF depending on the actual
configuration of the CEM.

3) Config_datastore (CDS):

A small data storage to store the current configuration of
a specific CEM class. This database is very small to reduce
power of the device. Hence, it stores just the necessary data
to interpret received data on the functional interface
pertaining to actual device configuration.

The architecture of a CEM hardware abstraction layer

module is shown in Figure 3.

CEM_Service_IF

CIF FIF

CDS
Configuration

Interpreter

PDDPDD PDDPDD

CEM_Msg
Handler

LDD

Figure 3: CEM Abstraction Layer CEM_Msg_Handler,
Configuration Interpreter and CDS.

A. Object Orientated Architecture
The architecture facilitates an object-orientated approach.

Abstraction and modularization through data hiding and
encapsulation of structure and behaviour are emphasised.
This allows more natural mapping of domain concepts to
the reconfiguration architecture design. The creation of
extensible frameworks through inheritance and
polymorphism improves the reusability. Inheritance creates
strong dependencies between a base class and its derived
classes.

The device drivers must be loaded at the application side
before access to the hardware can be obtained. Device
drivers can be loaded and unloaded anytime. Devices can be
used synchronously or asynchronously. Asynchronous
device usage is preferred, since it is more CPU efficient.
Partial reconfiguration of components can be achieved
without downtime of other components which are not
reconfigured, if this is supported by the underlying
hardware. Therefore, the device driver at the kernel side
library is often split into two libraries: LDD and PDD.

B. Logic Device Driver
The LDD, encapsulating the logical functions of a device

e.g., on and off, and read and write, containing all the
complexity of typical device usage usually in the form of a
state machine. This part contains all common code. This is a
polymorphism bound driver. Each CEM class has similar
LDD per CEM. The LDD is not manufacturer dependant
and collects CEM common parts/functionality.

The LDD hides the implementation of the function and
allows CCM to set up parameters and new Functions
without talking directly to the hardware. The LDD
instantiates on demand and uses the operations supplied by
the PDD to access the CEM-hardware.

The CEM LDD is also specific to that particular class of
CEM. CEMs of a single class can share the same LDD
package.

C. Physical Device Driver
The PDD is carrying out the functions on a specific

device. This should be as thin as possible to improve
portability to new devices.

It is the proprietary module inside the CEM Abstraction
Layer. It contains manufacturer dependant parts and might
disappear for standardised resources. A CEM could be
replaced by a CEM from another vendor by just providing a
new PDD for the ISA-device.

The PDD is supplied for each CEM and contains
operations to configure the CEM (i.e. download a bit stream
or object) as well as operations to write data to and from the
resource. This includes writing instantiation and control
data, but also configuring data channels for C-CEM.

IV. E²R COMPATIBLE DEVICES

A. Network on Chip (C-CEM)
Several flavours of C-CEMs are possible, depended on

the targeted throughput and latency requirements. An E²R
compatible reconfigurable modem does not limit the
physical implementation. It has just to be able to carry out
configuration transactions to be considered as a C-CEM.
Implementations can consist of busses, networks, or direct
connections.

For high throughput Network-on-Chip (NoC)
components may very soon exist on many System-on-Chip
(SoC) devices. The reason for this is that more and more
communication partners on one chip exchange information
with each other. The so far implemented bus structures can
only connect a limited number of communication partners
efficiently but they do not scale to higher numbers. A
second problem comes from deep submicron technology
where long global wiring become undesirable due to their
low performance, higher power consumption and noise
phenomenon [8]. Also, a large part of power consumption
of the chip is consumed in the clock tree. In addition to that,
clock skew is a very big problem in today's chip designs. It
takes a great effort to solve these skew problems.

These difficulties can be solved with NoCs. A network
may allow an asynchronous communication between the
different parts of the system. These dedicated parts are
clocked locally. That approach is called Globally
Asynchronous Locally Synchronous (GALS).

In general, NoCs are comparable with existing Wide
Area Networks in wide areas, for example, as used for inter-
computer communication, but several aspects have to be
done in other ways. In particular, the specification of the
physical layer has to accommodate the on chip submicron
effects and problems, which are different from other
communication mediums.

Another fact is that protocols used for NoCs should have
fewer overheads and enable a relatively simple
implementation. This is required because otherwise large
parts of the chip area will be spent just for the network.
In such a NoC case the CCM via the C-CEM would
configure the routing table and manage Quality of Service
(QoS) pre-settings.

B. RTOS services API for DSP-CEM (P-CEM)
To allow implementation of components of different

RATs on a same DSP, it is necessary to define a standard
Operating Environment (OE). An Application Programming
Interface (API) for use in a modem to access the Real Time
Operating System (RTOS) of such OE has been identified.
Because the API is particularly suited to the implementation
of modem components, it has been named the “Modem
Interface towards RTOS”. It is part of the technical services
supporting the modem components. miRTOS enables,
through a POSIX-oriented profile, to give the modem
waveform application abstraction from the RTOS available
on the DSP CEM.

C-CEM

CCM

LDD for miRTOS API

ISA-device

PDD DSP

CEM_Service_IF

DSP

RTOS
with

miRTOS API

C-CEM

CCM

LDD for miRTOS API

ISA-device

PDD DSP

CEM_Service_IF

CCM

LDD for miRTOS API

ISA-device

PDD DSP

CEM_Service_IF

DSP

RTOS
with

miRTOS API

Figure 4: RTOS services API connected to the CEM
hardware abstraction layer

A LDD will be provided for the RTOSes with miRTOS API
to utilize the additional functionality of the DSP.

As shown in Figure 4, the PDD is provided for the DSP
itself and the LDD has a logical connection to the miRTOS
API.

miRTOS

MiRTOS runtime

[RAT] DSP Component

Semaphore
(from miRTOS)

TaskManagement
(from miRTOS)

<<uses>>

<<realize>>

Figure 5: Definition of miRTOS interface

Figure 5 shows the miRTOS runtime package, which

represents the software delivery realizing the miRTOS API
on the processor hosting the component. The interface can
be sub-divided into two main interfaces: Task Management
and Semaphore, which are described below:

1) Task management

TaskManagement

pthread_attr_init(attr : pthread_attr_t) : int
pthread_create(thread : pthread_t, attr : pthread_attr_t, start_routine : routine, arg : Variant) : int
pthread_cancel(thread : pthread_t) : int
pthread_attr_setschedparam(attr : pthread_attr_t, param : sched_param) : int

(from miRTOS)
<<Interface>>

pthread_attr_t
<<typeDef>>

sched_param
sched_priority : int

<<typeDef>>
pthread_t

<<TypeDef>>
routine

th_entry(argc : Variant, argv : Variant)

Represents the operation
starting the thread created with
pthread_create.

Figure 6: Interface TaskManagement (from miRTOS)

This interface (Figure 6) supports the creation of a task

with the appropriate attributes (pthread_create). This
interface also allows the cancellation of this created task
(pthread_cancel).

In POSIX standard, the task (or thread) attributes are
handled through an attributes object initialized with default
values by the pthread_attr_init function before the creation
of the task. Several tasks can share the same object
attributes.

2) Semaphores

Semaphores are used to synchronize a task with an event
or with another task, and also to send a message to a task.
MiRTOS semaphore functions permits:

- to create and initialize a semaphore,
- to use a semaphore,
- to destroy a semaphore.

A semaphore can be dedicated to the synchronization of a
given task with another task or with an Interrupt Service
Routine (ISR).

Semaphore functions can also be used to send a message
to a given task. A memory space and a semaphore must be
defined, dedicated to this task. The message to be sent is put
in the memory space, and then the semaphore is released to
notify the task of the message reception.

V. CONFIGURATION PROCESS
Example: C-CEM Configuration

Here it will be described for the C-CEM how new
configuration data is downloaded and how the enabled or
embedded functions are configured.

The C-CEM is realized on a reconfigurable logic
resource, the C-CEM resource. The main tasks in the
configuration of the C-CEM resource are

1) Configuration of the Ports
2) Configuration of the Interconnect Fabric
3) Reconfiguration of the Interconnect Fabric

And later if sufficient reconfigurable resources are

available on the C-CEM resource after realizing the desired
C-CEM functionality, the CCM may configure a P-CEM in
the surplus resources of the C-CEM resource.

The C-CEM ports are configured depending on the P-
CEM connected to that Port. The port configuration can be
one of a set of standard interface profiles (PCI, PCIx,
AMBA, …) which will be stored in the configuration
database of the CCM. For a particular port, the P-CEM’s
PDD provided by the manufacturer of the P-CEM installed
on that port, can specify one of the standard configuration
profile for the interface port or define its own user
configuration. The specified port configuration will then be
downloaded on to the C-CEM thro the Port Configuration
interface (which will be part of the CIF in the CEM LDD)
and configure the port, thus completing its physical
interface to the ISA device.

After configuration of the C-CEM ports, the physical
interconnect functionality is configured on the C-CEM
resource. This configuration is again performed through the
CIF interface of the CEM LDD. This configuration sets up
the interconnect fabric which will be based on the data
transfer and control requirements of the RAT being set up.

The dynamic reconfiguration of the interconnect fabric is
performed through the specific interfaces [9] realized as
part of the FIF interface.

The reconfiguration of the any P-CEM realized in the C-
CEM resource is performed as any other P-CEM through
the interfaces realized as part of FIF interface.

VI. CONCLUSION
An abstract configuration interface is needed for E²R

devices in order to configure different RATs. Following an
object oriented approach, a detailed architecture of the HAL
has been presented, which provides an abstract service

interface to higher layers for configuration of different
CEM classes. The hardware abstraction needed between
CCM and CEM can be achieved by means of logical and
physical device drivers. Only the latter is aware of and
specific to the underlying hardware / implementation of the
CEM. A particular strategy for dynamic configuration of C-
CEMs has been introduced.

The dynamic or partial reconfigurability, which can be
achieved, independent from the underlying hardware
components needs to be validated using SystemC models
for various CEMs.

ACKNOWLEDGEMENT
This work has been performed within the framework of the
EU funded project E²R. The authors would like to
acknowledge the contributions of their colleagues from the
E²R consortium.

REFERENCES
[1] ST-2003-507995 E²R Project,

http://www.e2r.motlabs.com
[2] M. Bronzel, H. Seidel, J. Brakensiek, et al., “Functional

Elements in E2E Reconfigurable Equipment”,
Proceedings of the 13th IST Mobile and Wireless
Communications Summit (IST Summit). Lyon, France,
27.-30. June 2004.

[3] R. Burgess, S. Mende, “The Role of Configuration
Data and a Configuration Control Module in an End-to-
End (E²R) Software Radio System”, IST Mobile
Summit 2005.

[4] Software-Based Communication Domain Task Force
http://sbc.omg.org/

[5] C. Dolwin, S. Mende, J. Brakensiek, “The Role of the
Configuration Control Module in an End to End
Reconfigurable System”, SDR Forum Technical
Conference, Phoenix, USA, 15-18.11.04.

[6] S. Naveen, B. Steinke, H. Seidel, et al. “Reconfigurable
Modem Architecture and Its Abstraction in an End to
End Reconfigurable Communication Network”, WG6
Reconfigurability, WWRF#12 Meeting, Toronto,
Canada, Nov. 04.

[7] MPI - Message -Passing Interface: http://www-
unix.mcs.anl.gov/mpi/

[8] A. Jantsch, Hannu Tenhunen ‘Networks on Chip’,
Kluwer Academic Publishers, 2003

[9] B. Steinke, H. Seidel, M. Halimic, and S. Naveen,
“Hardware Abstraction Architecture based on
Configurable Execution Modules for Functional
System Chains”, WG6 Reconfigurability, WWRF#13
Meeting, Cheju, Korea, March 05.

