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Abstract– In this paper, the performance of the multiple-shift

correlation (MSC) based blind channel equalizer (BCE) under

channel order mismatch due to small head and tail channel coef-

ficients is investigated. The analysis results show that the output

signal-to-interference plus noise ratio (SINR) of the MSC-based

BCE is degraded due to the small channel coe cients. The per-

formance degradation is function of the optimal output SINR,

the optimal output power, and the control vector. In such chan-

nel order mismatch environment, this paper proposes a simple

but e ective iterative method to improve the performance. Anal-

ysis of the iterative method is also performed. Simulation exam-

ples are demonstrated to show the e ectiveness of the proposed

method and the analyses.

I. Introduction

Blind channel equalizers (BCE) without training data avail-
able receive much attention in recent years [1]-[14]. Early blind
equalization techniques [1] [2] exploited the higher order statis-
tics (HOS) of the output to identify the channels. Unfortu-
nately, the HOS-based BCE requires a large number of data
samples and huge computation load which limit their applica-
tions in fast changing environments. To circumvent the short-
comings of the HOS-based approaches, second-order-statistics
(SOS) was considered in BCE. The SOS-based BCE was devel-
oped based on cyclostationary characteristics of the signal [16]
[17]. The first SOS-based BCE was derived by Tong et al. [3].
They demonstrated that the SOS is su cient for blind adaptive
equalization by using fractionally sampling or using an array of
sensors. Since that, extensive researches were explored in the
literature. The well-known approaches are the least-squares,
the subspace, and the maximum likelihood [3] [8] [9]. These
blind equalizers were termed the two-step methods which esti-
mate multiple channel parameters first and then equalize the
channels based on the estimated channel parameters. However,
the two-step methods are not optimal because they do not take
the channel estimation error into account in the second-step
optimization procedure. Recently, direct equalization estima-
tors become more attractive [10]-[13]. The linear prediction
based equalizer was developed by [13]. [12] used the adaptive
beamforming technique to develop a constrained optimization
method. Multiple-shift correlation (MSC) of the signals can
be used in a partially adaptive channel equalizer to achieve
fast convergence speed and low computation load. These direct
equalizers can be adaptive, leading to much simpler realization
for practical implementation.
Most of the SOS-based equalizers su er from the performance

degradation caused by the model mismatch. The mismatch may
be from inadequate channel order estimation due to limited ob-
servation data or the small channel coe cients. Practical multi-
path channels often have small head and tail terms, selection of
appropriate channel order may not be an easy task. As shown in
[14] that the blind channel equalization/identification methods
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should model only the ’significant part’ of the channel composed
of the ’large’ channel coe cient terms. The ’small’ head and/or
tail terms should be neglected to avoid overmodeling the system
and causing degradation of the equalization performance. [15]
presented a new channel order criterion for blind equalization
and [14] investigated the robustness of the LS and SS approaches
by using the perturbation theory.
In this paper, we study the steady-state performance of the

MSC-based equalizer. We explore the relationship between the
output signal-to-interference plus noise ratio (SINR) and the
small head and tail terms of the FIR channels. By applying
an orthogonalization approximation to the analyses, the output
SINR in terms of the small channel coe cients is derived. A
degradation factor defined by the output SINR of the MSC-
based equalizer over the optimal value is used to examine the
performance degradation of the equalizer. We find that the
degradation factor is not only a function of the small channel
coe cients, but also a function of the optimal output SINR, the
optimal output power, and the control vector. To reduce the
degradation caused by the small channel coe cients, this paper
proposes a simple iterative method. The analysis of the iterative
method is also performed. From the analysis results, we iden-
tify that the iterative method indeed improves the equalization
performance.

II. The Signal Model

Let x(t) =[ 1( ) 2( ) · · · ( )] be the received data vector
of an array with sensor elements, where ” ” represents trans-
pose. If x(t) is sampled at the symbol rate, the digitized data
vector can be written by

x(n) =

q 1X
i=0

his(n i) + v(n) (1)

where x(n) = x(t = n T) =[ 1( ) 2( ) · · · ( )] with
being the sampling interval, { ( )} is the input signal symbol
sequence, v(n)=[ 1( ) 2( ) · · · ( )] represents the additive
noise, and {hi = [h1(i) 2( ) · · · ( )] = 1 2 · · · } consist
of all the channel parameters of the FIR channels in which
the channel orders should not higher than 1, but at least a
channel has the channel order 1.
Now consider a received data vectorX(n) = [xT(n) xT(n 1)

· · · xT(n M + 1)]T which stacks sampled data of x(n).
Using (1), X(n) can be expressed as

X(n) = A(h)S(n) +V(n) (2)

where

A(h) =

h0 h1 · · · hq 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .

0 · · · h0 h1 · · · hq 1 ( )x( )

= [A1 A2 · · · AL] (3)



is a block Toeplitz matrix with = + 1. In (2), V(n)
= [vT(n) vT(n 1) · · · vT(n M + 1)]T and S(n) = [ ( )
( 1) · · · ( + 1)] represents the signals with their
signatures corresponding to the columns of A(h).
In this paper, ( ) is assumed as the white noise with mean

zero and variance 2, ( ) is assumed to an independent identi-
cally distributed (i.i.d.) zero-mean sequence with E{ ( ) ( )}
= ij where E{·} is the expectation. We also assume ( ) is in-
dependent to ( ). A(h) is assumed to have full column rank.
In this paper, each Ai is called the direction vector correspond-
ing to the signal ( + 1).
Next, consider the multiple-shift correlation (MSC) matrix

of X(n) defined by RX(k) = E{X(n)XH(n k)} where ’ ’
represents transpose and complex conjugate. Using (2), we have

RX(k) = RS(k) +RV(k) (4)

where RS(k) = A(h)E{S(n)SH(n k)}AH(h) and RV(k) =
E{V(n)VH(n k)} Since ( ) is i.i.d and E{ ( ) ( )} = ij,
using (3) we have

RS(k) =
L kX
i=1

Ai+kA
H
i (5)

for 0 and RS(k) = 0(pM)x(pM) if It is noted
that RV(0) =

2I(pM)x(pM) and RV(k) = 0(pM)x(pM) if
. Therefore, at = 0,

RX(0) =
LX
i=1

AiA
H
i +

2
I (6)

which is called the auto-correlation matrix of X(n) and is in
general of full rank. In the following, we write RX = RX(0) for
simplicity.

III. The MSC-based BCE

Let the weight vector of the equalizer for resolving the signal
( + 1) be denoted byWd and the output of the equalizer
be given by ( ) =WH

dX(n). Then the output power can be
expressed by

= E
©
| ( )|2

ª
=WH

dRXWd (7)

and the output SINR of usingWd is given by

SINR =
WH

dAdA
H
dWd

WH
d (RX AdA

H
d )Wd

(8)

where | · |2 denotes the 2-norm. If and the direction
vector Ad is known, the adaptive array theory [18] shows that
the optimal weight vector is

Wod = R
1

X Ad (9)

In this paper, the scalars and vectors with the subscript ’ ’
represent the optimal ones. The equalizer using (9) achieves
the minimum output power given by

=WH
odRXWod = A

H
dR

1
X Ad (10)

By (9) and (10), the optimal output SINR can be found by

SINR =
WH

odAdA
H
dWod

WH
od(RX AdA

H
d )Wod

=
1

(11)

It follows that

=
SINR

1 + SINR
(12)

(12) indicates that the minimum output power is less than unity.
If the optimal output SINR is very high, 1+SINR SINR
and then the minimum output power approximates unity.
Suppose that the channel order ( 1) is estimated correctly

by methods, from (5) RS(L 1) = ALA
H
1 and RV(L 1) = 0

if 1 Then, using (4) we have

RX(L 1) = ALA
H
1 (13)

The MSC-based BCE is developed based on (13). Since = +
1, the inequality 1 is equivalent to 1 1 That

means the MSC-based BCE can work under the environment
that the channel order should be at least one, or equivalently, at
least a multipath of the signal should exist in the environment.
Based on the SCORE approach [17], the direction vectors

A1and AL can be extracted by selecting two non-zero vectors
b and c and computing

R
H
X(L 1)b = A1(A

H
L b) (14)

RX(L 1)c = AL(A
H
1 c) (15)

where b and c termed the control vectors, are chosen to satisfy
AH
L b 6= 0 and AH

1 c 6= 0. We find that (14) and (15) are
equivalent to A1 and AL, respectively, except for a scalar, and
can be used as the estimates of the direction vectors. The weight
vectors of the MSC-based BCE are given by

W1 = R
1

X R
H
X(L 1)b (16)

WL = R
1

X RX(L 1)c (17)

respectively. Substituting (16) and (17) into (7), the output
power of using the weight vectorsW1 andWL are given by

1 =W
H
1 RXW1 = b

H
RX(L 1)R 1

X R
H
X(L 1)b (18)

=WH
LRXWL = c

H
R
H
X(L 1)R 1

X RX(L 1)c (19)

respectively.

IV. Performance Analysis

From the derivations of the previous section, it is clear that
the MSC-based BCE should know the channel order exactly in
order to select correct time-shift index = 1 of the MSC
matrix for estimating the direction vectors. However, the chan-
nel order detection should depend on strength of the channel
coe cients. The equalization channels often consist of small
head and tail terms so that the channel order may be underes-
timated. As shown in [14], the small channel coe cients should
be neglected to avoid overmodeling the system but these small
channel coe cients will cause performance degradation of the
equalization.
Suppose that the system has 1 small heads and 2 small

tails with 1 + 2 . Then the channel coe cients h1 · · ·
hm1

and hq m2+1 · · · hq are small comparing with hm1+1,
hm1+2 · · · hq m2

. According to (3), it is noted that the di-
rection vectors of A1 A2 · · · Am1

and AL m2+1, AL m2+2

· · · AL will be small comparing with the direction vectors of
Am1+1, Am1+2 · · · AL m2

For analysis, we assume the
small channel coe cients are small enough so that channel order
is detected as 1 2 1 rather than 1. In the following,
we first investigate the performance under the mismatch of the
channel order due to small channel coe cients. Using (16) and
(17) with now being replaced by 1 2, the weight
vectors of the MSC-based BCE can be expressed by

Wm1+1 = R
1

X R
H
X(L m1 m2 1)b (20)



WL m2
= R 1

X RX(L m1 m2 1)c (21)

respectively, where

RX(L m1 m2 1)

= AL m2
A
H
m1+1 +

m1+m2+1X
i=1 i6=m1+1

AL m1 m2 1+iA
H
i (22)

It is noted that the second term of the right side of (22) consists
of the components of the small direction vectors. If their values
are too small and can be negligible, (22) will reduce to RX(L
m1 m2 1)=AL m2

AH
m1+1 Therefore, the MSC-based BCE

using (20) and (21) can successfully resolve the signals of (

1) and ( + 2 + 1) without significant performance
degradation. This is the reason why we change the subscripts
of (20) and (21).
However, in practical situation, the channel coe cients may

not be small enough, the performance of the MSC-based BCE
therefore degrades. It has been assumed that the direction vec-
tors of A1 A2 · · · Am1

and AL AL 1 · · · AL m2+1 are
small comparing with the direction vectors of Am1+1, Am1+2

· · · AL m2
The weight vectors are

Wm1+1 = R
1

X R
H
X(L m1 m2 1)b (23)

WL m2
= R 1

X RX(L m1 m2 1)c (24)

where

RX(L m1 m2 1)=

m1+m2+1X
i=1

AL m1 m2 1+iA
H
i (25)

It is noted from (25) that only AL m2
AH
m1+1 is not a ected by

the small channel coe cients. Substituting (25) into (23) yields

Wm1+1=

m1+m2+1X
i=1

R
1

X AiA
H
L m1 m2 1+ib (26)

Using (26), we have

A
H
m1+1Wm1+1 po(m1+1)A

H
L m2

b (27)

where we have used the following approximation

A
H
m1+1R

1
X Ai 0 for i 6=m1 + 1 (28)

The output power of usingWm1+1 is given by

W
H
m1+1RXWm1+1

m1+m2+1X
i=1

poi|b
H
AL m1 m2 1+j|

2

(29)
where we have used the approximation of (28) again. From (8),
the output SINR ofWm1+1 is given by

SINR
1+1 =

WH
m1+1Am1+1A

H
m1+1Wm1+1

WH
m1+1

(RX Am1+1A
H
m1+1

)Wm1+1
(30)

Substituting (27) and (29) into (30) and after some calculations,
the output SINR of the equalizer using (20) can be expressed
by

SINR
1+1 SINR ( 1+1) 1+1 (31)

where
1+1 is called the degradation factor with

1+1 =

µ
1 +

µ
SINR ( 1+1)

( 1+1)

¶µ
1+1

( 1+1)|b
HAL m2

|2

¶¶ 1

(32)

where

1+1 =
1+ 2+1X

=1 6= 1+1

|bHAL m1 m2 1+i|
2 (33)

By the similar way, we can derive the output SINR of the
equalizer usingWL m2

by

SINR
2

SINR ( 2) 2
(34)

where

2
=

µ
1 +

µ
SINR ( 2)

( 2)

¶µ
2

( 2)|c
HAm1+1|

2

¶¶ 1

(35)
and

2
=

1+ 2+1X
=1 6= 1+1

( 1 2 1+ )|c
H
Ai|

2 (36)

V. The Proposed Iterative Method

In this section, we propose a simple but e ective iterative
method to reduce the sensitivity from the small channel coef-
ficients. This method was also ever used for performance im-
provement of the adaptive spatial filtering [19]. Unfortunately,
detailed performance analysis was not given by [19].
Let Wm1+1(l) and WL m2

(l) represent the weight vectors
after iterations. The iterative method is described as follows.

Wm1+1(l) = R
1

X R
H
X(L m1 m2 1)b(l) (37)

WL m2
(l) = R 1

X RX(L m1 m2 1)c(l) (38)

where the 0 0th control vectors are selected by b(l) =
WL m2

(l 1) and c(l) =Wm1+1(l 1) with the initial vectors
b(1) =WL m2

(0) = b and c(1) =Wm1+1(0) = c. Then we
have

Wm1+1(1) = R
1

X R
H
X(L m1 m2 1)b; (39)

Wm1+1(2) = R
1

X R
H
X(L m1 m2 1)b(2) (40)

= R
1

X R
H
X(L m1 m2 1)WL m2

(1)

= c

where

m1+m2+1X
i=1

po(L m1 m2 1+i)R
1

X AiA
H
i

By (39) and (40), we can find that

Wm1+1(2l+ 1) =
l
R

1
X R

H
X(L m1 m2 1)b; (41)

Wm1+1(2l) =
l
c (42)

Using (40), we can approximate l by

l

m1+m2+1X
i=1

p
l
o(L m1 m2 1+i)p

l 1
oi R

1
X AiA

H
i (43)

Now, let us consider the odd case first. By (41) and (43),

Wm1+1(2l+ 1) (44)

1+ 2+1X
=1

( 1 2 1+ ) R
1

X AiA
H
L m1 m2 1+ib



Then

A
H
m1+1Wm1+1(2l+ 1) p

l
o(L m2)p

l+1
o(m1+1)

A
H
L m2

b (45)

and

W
H
m1+1(2l+ 1)RXWm1+1(2l+ 1) (46)

1+ 2+1X
=1

2
( 1 2 1+ )

2 +1|bHAL m1 m2 1+i|
2

Using (45) and (46), the output SINR after (2 + 1) iterations
can be found by

SINR
1+1(2 + 1) SINR ( 1+1) 1+1(2 + 1) (47)

where

1
1+1(2 + 1) =

1 +

µ
SINR ( 1+1)

( 1+1)

¶Ã
1+1(2 + 1)

2
( 2)

2 +1
( 1+1)

|bHAL m2
|2

!

with

1+1(2 + 1)

=
1+ 2+1X

=1 6= 1+1

2
( 1 2 1+ )

2 +1|bHAL m1 m2 1+i|
2

Next, consider the even case. Using (42) and (43) yields

A
H
m1+1Wm1+1(2l) p

l
o(L m2)p

l
o(m1+1)A

H
m1+1c (48)

W
H
m1+1(2l)RXWm1+1(2l) (49)

1+ 2+1X
=1

2
( 1 2 1+ )

2 |cHAi|
2

As a result, the output SINR after 2 iterations can be found
by

SINR
1+1(2 ) SINR ( 1+1) 1+1(2 ) (50)

where

1
1+1

(2 )

= 1 +

µ
SINR ( 1+1)

( 1+1)

¶Ã
1+1(2 )

2
( 2)

2 1
( 1+1)

|cHAm1+1|
2

!

with

1+1(2 ) =
1+ 2+1X

=1 6= 1+1

2
( 1 2 1+ )

2 1|cHAi|
2

By the similar way as shown above, we can derive that

SINR
2
(2 + 1) SINR ( 2) 2

(2 + 1) (51)

SINR
2
(2 ) SINR ( 2) 2

(2 ) (52)

where

1

2
(2 + 1) =

1 +

µ
SINR ( 2)

( 2)

¶Ã
2
(2 + 1)

2
( 1+1)

2 +1
( 2)

|cHAm1+1|
2

!

1

2
(2 ) =

1 +

µ
SINR ( 2)

( 2)

¶Ã
2
(2 )

2
( 1+1)

2 1
( 2)

|bHAL m2
|2

!

with

2
(2 + 1)

=
1+ 2+1X

=1 6= 1+1

2 2 +1
( 1 2 1+ )|c

H
Ai|

2

2
(2 )

=
1+ 2+1X

=1 6= 1+1

2 2 1
( 1 2 1+ )|b

H
AL m1 m2 1+i|

2

VI. The Illustrated Examples

In this section, we provide an example to verify the analy-
sis results derived at the previous sections. An 4-element ar-
ray with channel order 3 is examined. The channel param-
eters are present in the Table I. In the following results, we
multiply h0 and h3 by a small scalar as h0 and h3 in
the simulations. That is 1 = 2 = 1 is selected to exam-
ine the e ect of the small head and tail channel coe cients
on the array output SINR. The control vectors are chosen as
b = c =[1 1 · · · 1]T.
Figure 1 shows the values of the performance degradation at

di erent scalar value . In this example, the input SNR = 30
dB. The dimension of X(n) is 24, thus = + 1 = 9,

1 + 1 = 2, and 2 = 8. The iterative method using 5
iterations is also performed for verification. From this figure, we
find that the analyses of the equalizer without iteration quite
match the actual simulation results of the MSC-based BCE.
The improvement of using the iteration method is also verified.
The analyses of the equalizer using five iterations is close to the
simulation results.
Figure 2 shows the performance degradation versus the input

SNR. In this example, the scalar = 0 005 the dimension of
X(n) is 24, and the number of iterations is 5. From this fig-
ure, we find that the analyses of the equalizer without iteration
match the actual simulation results of the MSC-based BCE. The
improvement of using the iteration method is quite significant
at the range of SNR=20 dB to SNR=40 dB.
Figure 3 shows the performance degradation versus the di-

mension . In this example, the scalar = 0 005 the input
SNR=30 dB, and the number of iterations is 5. Again, we
find that the analyses of the equalizer without iteration quite
match the actual simulation results of the MSC-based BCE. The
improvement of using the iteration method is very significant.
Using 5 iterations can almost eliminate the degradation due to
small channel coe cients.
Figure 4 shows the performance degradation versus the num-

ber of iterations. In this example, the scalar = 0 005 the
input SNR=30 dB, and the dimension of X(n) is 24. From
the figures, the analyses of the equalizer without iteration quite
match the actual simulation results of the MSC-based BCE us-
ing W2. From Figure 4, W2 using 3 iterations can eliminate
the degradation due to small channel coe cients.
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Table I The channel impulse responses
ch. h0 h1 h2 h3

#1 0 -1.28-i*0.3 1.61+i*2.3 0.17+i*0.2
#2 -1.0-i*0.5 0.10+i*1.1 1.47+i*1.8 -0.48-i*0.5
#3 0 -0.28+i*0.5 0.37-i*1.0 0.04-i*0.1
#4 -0.2+i*0.4 0.03-i*0.2 0.33-i*0.8 -0.10+i*0.2
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Fig. 2. The degradation factor versus the input SNR (dB). Solid curves

are the analysis results and the dash curves with ’+’ are the simulation

results of the MSC-based BCE.
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Fig. 3. The degradation factor versus the dimension. Solid curves are

the analysis results and the dash curves with ’+’ are the simulation

results of the MSC-based BCE.
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Fig. 4. The degradation factor versus the number of iterations. Solid

curves are the analysis results and the dash curves with ’+’ are the

simulation results of the MSC-based BCE.


