
A Simple Upper Bound on Mutual Information for
Ricean-Fading MIMO Channel

Bamrung Tau Sieskul Thomas Kaiser
Fachgebiet Nachrichtentechnische Systeme, Fakultät für Ingenieurwissenschaften, Universität Duisburg-Essen

Bismarckstraße 81, 47057 Duisburg, Deutschland, Tel: +49 (0)203 379 4398, Fax: +49 (0)203 379 4437
sieskul@nts.uni-duisburg.de, thomas.kaiser@uni-duisburg.de

Abstract— This paper deals with the problem of MIMO link
capacity assessment. Unlike previous analysis model whose trans-
fer function HHH is preassigned as circularly-symmetric complex-
valued Gaussian random matrix, we consider a directional
MIMO channel model in the presence of Ricean fading and phys-
ical scattering. Spatial parameter of the model is first separated
into directional mean and its associating standard deviation, the
nominal direction and the angular spread, respectively. An upper
bound on the ergodic capacity mean is then proposed by using
such a separable parameterization. Shown as a deterministic
function of Rice factor, nominal direction, and angular spread,
the proposed upper bound provides, fortunately, an insight into
Ricean fading and physical scattering. Since it does not require
any eigenvalue decomposition, the bound computation is thus
very simple. Numerical examples are conducted to demonstrate
not only the bound tightness compared with sample mean capac-
ity, but also relationships of the bound to various parameters.

I. INTRODUCTION

The use of array antennas at both receiver and transmitter
has emerged a prominent role in wireless communication sys-
tems. The cause of this is due to the possibility of significant
gains. Advantage of the above exploitation can be verified
by information theoretic results. Regarding fading behavior,
Rayleigh channel is reasonable for a lot of environments.
As encountered in the situation where LOS (Line-Of-Sight)
portion is significant, however, the Ricean channel is, in turn,
anticipated to be a more suitable candidate. Additionally, the
channel might be considered, in particular, as a generalized
approach with respect to the Rayleigh channel.

The era of MIMO began indeed with modeling all entries
of NLOS (Non-Line-Of-Sight) channel matrix as identically-
independent complex-valued Gaussian random variables with
zero mean and unit variance (see e.g., [1], [2], [3]). Previ-
ous unstructured statistics paved the praiseworthy way for a
foundation of stochastic MIMO channel analysis. In certain
situations, this seemed, however, insufficient to reflect the
actual impact of spatial parameters in the matrix HHH . This is
because the ignorance of physical scattering will cause the
mismatch in capacity assessment. On behalf of Kronecker

structure [4], a disagreement where the unstructured channel
did not render multipath effects accurately, indicated that the
Kronecker factorization leads to systematic prediction errors.
Based on actual field measurements, therefore, there exists
a lot of physical MIMO models that takes the geometrical
scattering into account (see e.g., [5], [6], [7], [8]).

In the vicinity of the mobile sources, the Rayleigh fading
channel in the presence of spatial scattering leads to angular
spread of the signals impinging on the array. Such a spatial
channel model has been validated against experimental data
[9] whereby a transmitter in the field experiments has been
placed in urban areas approximately 1 km from the receiving
array. Furthermore, a lot of measurements have shown that
local scattering in the vicinity of a mobile is a non-negligible
phenomenon [10]. These independent investigations coincide
quite well with the so-called distributed source MIMO model
[11]. Accounting for LOS portion, a significant result [11]
reports that when the transmitter-to-receiver distance is short
and the antenna spacing is large, the assumption of distributed
source is more accurate than the point source model.

Regarding the capacity assessment of MIMO link, it is
well-known that the ergodic mean of capacity, i.e., statistical
expectation of the stochastic channel capacity, will, in fact,
converge to the ergodic capacity mean when the number
of independent runs tends to infinity. However, it requires
numerous computational burdens to ascertain all realizations
of the stochastic channel. Moreover, no straight insight is
available from this manipulation due to the lack of explicit
relationships to considered parameters. One way to satisfy
both desires is to find a deterministic function of such sto-
chastic quantities. Some analytic derivations have already been
dedicated to the unstructured model [12] and [13] for dual
antenna systems (either two transmit or two receive antennas).
To avoid the lengthy Monte Carlo simulations, upper bounds
for MIMO capacity assessment were proposed according to
various assumptions [14], [15] and [16].

Contributions of this paper are twofold. For either receiver
or transmitter, we capture the random scattering directions into
two associated terms of directional statistic in angular cluster.
By means of population mean and its corresponding standard
deviation (see e.g., [17] and [18]), it is, in general, called
the nominal direction and angular spread. We formulate a
parametric framework in order to analyze the MIMO channel,
which indeed concerns the scattering characterization due to
realistic propagation. Incorporating the LOS portion into the
random channel, we offer an upper bound on the ergodic

mean of channel capacity for the Ricean-fading MIMO system
where uniform power allocation is assumed and the perfect
channel knowledge at the receiver is available. It appeared that
the proposed upper bound not only is computationally simple
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Fig. 1. Dispersive MIMO channel.

but also provides an insight into Ricean fading and scattering.
For terminology conciseness, we designate AAA, aaa and a

as matrix, column vector and scalar, respectively. The mul-
tidimensional sets C and R stand for complex and real
quantities. The operators (·)∗ and (·)T denote element-
wise conjugate and matrix transpose, whereas (·)H sig-
nifies either transpose or conjugate. The notation xxx ∼
NC (µx;Σxx,Γxx) is called the complex-valued Gaussian
random vector xxx that holds population mean µx = E 〈xxx〉,
covariance Σxx = E 〈

(xxx − µx)(xxx − µx)H
〉

and complemen-
tary covariance Γxx = E 〈

(xxx − µx)(xxx − µx)T
〉
, where E 〈·〉,

or exactly E 〈·〉x, designates the statistical expectation with
respect to x.

II. RICEAN-FADING MIMO CHANNEL MODEL

Restrict our attention to a number of signals transmitting
through a dispersive channel and then impinging on the sensor
array antenna. With phase reference at the first element, the
array response vector aaa(ψ) : [−90◦, 90◦] �→ C

N
E
×1 of both

ends can be written ideally as

aaa(ψ) �
[
1 eikd

E
sin(ψ) · · · eikd

E
(N

E
−1) sin(ψ)

]T
, (1)

where k = 2π
λ designates the wave number, dE denotes

equi-distance between two adjacent elements, ψ∈{φ, ϕ} and
N

E
∈{N

Rx
, N

T x
} signify the azimuth angle and the number of

antenna elements for the receiver or transmitter respectively.
The physical model can be illustrated corresponding to Fig. 1.

In previous developments, many scattering models assume
that the nominal angles φ and ϕ of the receiver or transmitter,
direct path gain α, Doppler frequency fD and phase shift ν
are deterministic while angular deviation δψ ∈ {δφ, δϕ} and
associating random path gain γ can be considered as stochastic
quantities during the data burst. At a continuous time t∈R

1×1
+ ,

the array receiver output xxx(t)∈C
N

Rx
×1 can be characterized

such that (see e.g., [19] and [20])

xxx(t) = HHH(t)sss(t) + nnn(t), (2)

where sss(t) ∈ C
N

T x
×1 designates baseband signal vector due

to the flat-fading channel, nnn(t) ∈ C
N

Rx
×1 denotes additive

noise imposed at receiver array and HHH(t) ∈ C
N

Rx
×N

T x is
transfer function matrix. In Ricean-fading channel, the transfer
function might be expressed as (see e.g., [12])

HHH(t) = H̄̄H̄H(t) + H̃̃H̃H(t), (3)

where H̄̄H̄H(t) and H̃̃H̃H(t) denote the LOS and NLOS portions,
respectively. The LOS component might be described as a
time-varying term αei(2πf

D
t+ν) [21, pp. 34–35]. Together with

specular part [22], the channel matrix H̄̄H̄H(t) of directional
MIMO model can be represented as

H̄̄H̄H(t) = αei(2πf
D

t+ν)aaa(φ)aaaH(ϕ). (4)

Let Ts be a sampling period in which the condition t = n
T
Ts

satisfies the Nyquist’s rate. One can easily transform such a
deterministic portion into discrete-time framework as

H̄̄H̄H[n
T
] = αei(2πf

D
TsnT

+ν)aaa(φ)aaaH(ϕ), (5)

where nT
∈ N

1×1 denotes the sampling instant. For sim-
plicity, let the Rayleigh portion H̃̃H̃H[nT ] hold zero mean, i.e.
E 〈HHH[nT

]〉 = H̄̄H̄H[n
T
].

Let each NLOS path be i.i.d. (identical and independent
d istribution). The superposition of all N

P
paths turns out to

(see e.g., [6], [7] and [23])

H̃̃H̃H[nT ] �
N

P∑
n

P
=1

γn
P

[nT ]aaa(φ̃n
P

[n
T
])aaaH(ϕ̃n

P
[n

T
]), (6)

where φ̃n
P

[nT ] � φ+δφn
P

[nT ] and ϕ̃n
P

[nT ] � ϕ+δϕn
P

[nT ]
denote the arrival and departure directions respectively.

For a certain incoming ray, we employ the central limit
theorem in such a way that γn

P
[nT ] ∼ NC

(
0; σ2

γ , 0
)
, where

the second zero stems from circularly-symmetric property.
Remark 1: Due to the i.i.d. assumption, the path gain

statistic of directional model with σ2
γ = 1

N
P

equals to that
given by the unstructured model (see e.g., [3, Def. 1]),
where the NLOS portion is defined as

[
H̃̃H̃H[n

T ]
]
[n

Rx
,n

T x
]

i.i.d.∼
NC (0; 1, 0) ; ∀nRx , nT x .

III. LINK CAPACITY OF MIMO SYSTEM

Let ň
E

= min(N
Rx

, N
T x

) be the minimum number of
antenna elements. In this paper, we assume that the channel
state is available at the receiver but not at the transmitter.
When the additive noise nnn(t) in (2) is spatially uncorrelated
according to E〈

nn
E

n∗
ń

E

〉
= σ2

n ;∀ńE , nE , it is well-known
that the the ergodic mean of channel capacity of the MIMO
system is given by [2]

c = log2 |III(ň
E

) +
	

NT x

Υ |, (7)

where |·| signifies the matrix determinant, 	 is the average SNR
(signal-to-noise ratio) per received element and the Hermitian
matrix Υ ∈C

ň
E
×ň

E is classified into

Υ =

{
HHHHHHH ; NRx ≤ NT x

HHHHHHH ; N
Rx

> N
T x

.
(8)

Note that when 	 = 0, this leads to c = 0 for whatever ň
E

,
N

T x
and Υ . If the channel matrix HHH is random, the associating

ergodic capacity becomes [1, Th. 1]

ce = E 〈c〉 = E〈
log2 |III(ň

E
) +

	

NT x

Υ |〉. (9)



Next we shall consider the capacity assessment based on
spatial fading correlation. Using Jensen’s inequality, there
exists an upper bound c̄ according to write [24]

c̄ = log2

∣∣∣III(ň
E

) +
	

N
T x

E〈
Υ

〉∣∣∣. (10)

IV. SEPARABLE PARAMETERIZATIONS

In this section, the proposed upper bound on the ergodic
mean of channel capacity will be derived from the explicit
form of E〈

HHH[n
T
]HHHH[n

T
]
〉
.

A. Approximating Spatial Fading Correlation

Assuming that N
Rx

≤ N
T x

, it allows us to

E〈
HHH[n

T
]HHHH[n

T
]
〉

= H̄̄H̄H[n
T
]H̄̄H̄HH[n

T
] + E〈

H̃̃H̃H[n
T
]H̃̃H̃HH[n

T
]
〉
.

(11)
Straightforward calculating H̄̄H̄H[n

T
]H̄̄H̄HH[n

T
], we arrive at

H̄̄H̄H[n
T
]H̄̄H̄HH[n

T
] = α2N

T x
aaa(φ)aaaH(φ). (12)

Taking an incoherently distributed channel into account, the
second-order statistic is characterized by [25]

E〈
γn

P
[n

T
]γ∗

ń
P

[ń
T
]
〉

= σ2
γδn

P
,ń

P
δn

T
,ń

T
, (13)

where δ·,· signifies the Kronecker delta function and σ2
γ

designates the power of the n
P

-th path. We proceed afterwards
on

E〈
H̃̃H̃H[n

T
]H̃̃H̃HH[n

T
]
〉

= E
〈⎛

⎝ N
P∑

n
P

=1

γn
P

[n
T
]aaa(φ̃n

P
[n

T
])aaaH(ϕ̃n

P
[n

T
])

⎞
⎠

⎛
⎝ N

P∑
ń

P
=1

γ∗
ń

P
[nT ]aaa(ϕ̃ń

P
[nT ])aaaH(φ̃ń

P
[nT ])

⎞
⎠ 〉

= N
T x

N
P∑

n
P

=1

E〈|γn
P

[n
T
]|2

aaa(φ̃n
P

[n
T
])aaaH(φ̃n

P
[n

T
])

〉
γn

P
[n

T
],δφn

P
[n

T
]

= σ2
γNT x

N
P∑

n
P

=1

E〈
aaa(φ̃n

P
[nT ])aaaH(φ̃n

P
[n

T
])

〉
δφn

P
[n

T
]
.

(14)

Note that the random amplitude |γn
P

[n
T
]|2 is Rayleigh dis-

tributed since γn
P

[n
T
] is Gaussian.

The compact form shown above depends on the stochastic
variable φ̃n

P
[n

T
]. Let us consider a heuristic approximation

of such parameterization.
Heuristic 1: Over the spatial continuum of interest, a large

number of incoming paths allows us to

E〈
H̃̃H̃H[n

T
]H̃̃H̃HH[n

T
]
〉

≈ ρN
T x

∫ π

−π

f(δφ|0; σ2
φ)aaa(φ + δφ)aaaH(φ + δφ)dδφ,

(15)

where ρ � N
P
σ2

γ is the power due to random paths and
f(δφ|0;σ2

φ) denotes a conditional PDF for random deviation
δφ given a priori knowledge of the angular spread σφ.

B. Spatial Frequency Parameterization

Rather than the physical angles φ and σφ, spatial frequency
response is preferable due to the better accuracy of approxi-
mating the first-order Taylor series around the array broadside
[25]. Indeed, the spatial frequency ω and its associating
standard deviation σω are provided by

ω(ψ) = kd
E

sin(ψ) (16a)
σω(ψ, σψ) = kd

E
cos(ψ)σψ. (16b)

For small angular spreads, the so-called spatial frequency

approximation results in a separable form as

E〈
H̃̃H̃H[nT

]H̃̃H̃HH[n
T
]
〉 
 ρN

T x
aaa(φ)aaaH(φ) � B̃̃B̃B(σωφ

)

= ρN
T xDDDa(ωφ)B̃̃B̃B(σωφ

)DDDH
a (ωφ),

(17)

where the diagonal and unitary matrix DDDa(ω) :
[−kd

E
, kd

E
] �→ C

N
E
×N

E and the symmetric Toeplitz
matrix B̃̃B̃B(σω) : R

1×1
+ �→ R

N
E
×N

E are parameterized
by nominal angle and angular spread, respectively. The
(nE

, ń
E
)-th elements of both can be given from [25, p. 22]

[DDDa(ω)][n
E

,ń
E

] = ei(n
E
−1)ωδn

E
,ń

E
(18a)

[B̃̃B̃B(σω)][n
E

,ń
E

] = Ψ((n
E
− ń

E
)σω|0, 1), (18b)

where the characteristic function Ψ(t|, 0, 1) � F(f(δω|, 0, 1))
of the governed PDF is given for a random variable with zero-
mean and unit variance. In a certain situation, the (n

E
, ń

E
)-th

element in B̃̃B̃B(σω) can be expressed as

[B̃̃B̃B(σω)][n
E

,ń
E

] =

⎧⎪⎪⎨
⎪⎪⎩

sin((n
E
−ń

E
)
√

3σω)

(n
E
−ń

E
)
√

3σω
; uniform

e−
1
2 (n

E
−ń

E
)2σ2

ω ; Gaussian
1

1+ 1
2 (n

E
−ń

E
)2σ2

ω
; Laplacian.

(19)

It is worthwhile to note that if the incoming ray is not random
i.e., with zero variance, the LOS enables each element in B̄̄B̄B �
B̃̃B̃B(0) = 1 (N

E
×N

E
) to be unity. In this paper, we commonly

define the Ricean factor as [21, p. 40] µ � α2

ρ . Let BBB(σωφ
, µ) :

R
2×1 �→ R

N
Rx

×N
Rx be

BBB(σωφ
, µ) � µB̄̄B̄B + B̃̃B̃B(σωφ

). (20)

Then, it readily follows that

E〈
HHH[n

T
]HHHH[n

T
]
〉

= ρN
T x

DDDa(ωφ)BBB(σωφ
, µ)DDDH

a (ωφ). (21)

V. PROPOSED UPPER BOUND ON THE MEAN OF ERGODIC
CAPACITY

Throughout this section, algebraic manipulations are de-
voted to express the upper bound in such a way that rather
than stochastic expression in (9), it should be written as a
deterministic function. Together with the heuristic (15), the
upper bound indicated in (10) becomes

c̄ = log2 |III(N
Rx

) + ρ	DDDa(ωφ)BBB(σωφ
, µ)DDDH

a (ωφ)|. (22)

Notice that III(N
Rx

) + ρ	DDDa(ωφ)BBB(σωφ
, µ)DDDH

a (ωφ) can be
seen as DDDa(ωφ)

(
III(N

Rx
) + ρ	BBB(σωφ

, µ)
)
DDDH

a (ωφ). Invoking



|ABC| = |A||B||C| and |DDDH
a (ω)| = 1

|DDDa(ω)| , the upper bound
is then

c̄ = log2 |III(N
Rx

) + ρ	BBB(σωφ
, µ)|. (23)

To coincide with other previous studies, the Rice factor is
usually preferred to be normalized (see e.g., [14] and [22]).
Then, it follows from α2 + ρ = 1 that

α =
√

µ

µ + 1
(24a)

ρ =
1

µ + 1
. (24b)

Proposition 1: For the ergodic capacity of Ricean channel
generated by (3), (5) and (6), an explicit form of the upper
bound on its mean can be written as

c̄ = log2

∣∣∣∣III(N
Rx

) + 	

(
µ

µ + 1
B̄̄B̄B +

1
µ + 1

B̃̃B̃B(σωφ
)
)∣∣∣∣ , (25)

where
c̄ ≥ E 〈c〉 . (26)

Proof: The upper bound (25) of ergodic capacity mean
in MIMO link is given by putting the ρ in (24b) into (23)
and then algebraically manipulating the result in conjunction
with (20). As stated before, the expression (26) holds from the
concavity employed in log2 E 〈a〉 ≥ E 〈log2 a〉 ; a > 0.

Remark 2: Although the proposed upper bound in (25) is
not shown explicitly as a function of nominal direction, the
relationships between c̄ and φ can be seen from (16b).

Remark 3: Apart from the average SNR and the number of
antenna elements, it can be pointed out that the proposed upper
bound c̄ in (25) also depends on other channel parameters, such
as, Rice factor µ, and angular spread σφ.

Remark 4: Let 
·� be the trace operator of matrix . Recall
the derivative for ∂

∂x ln |A(x)| = 
A−1(x)Ȧ(x)�, where
Ȧ(x) � ∂

∂xA(x). With loga(x) = ln(x)
ln(a) , we obtain

˙̄c(φ) = ω̇φ(φ) ˙̄c(σωφ
) = −	kd

E
sin(φ)σφ

(1 + µ) ln(2)

CCC−1 ˙̃Ḃ̃Ḃ̃B(σωφ

)�,
(27)

where CCC � III(N
Rx

) +	
(

µ
µ+1B̄̄B̄B + 1

µ+1 B̃̃B̃B(σωφ
)
)

. At the critical
point ˙̄c(φ) = 0, the result of sin(φ) = 0 implies φ = 0. Then,
φ = 0 is a critical point of the upper bound.

VI. NUMERICAL SIMULATIONS

Customarily, we employ the ULA with half-wavelength
separation for both receiver and transmitter. All significant
parameters are set up as indicated in each figure. The sample
mean capacity is to average all N

R
independent calculations in

(7). Indeed the proposed upper bound is computed from (25).
In Fig. 2, simulation is conducted by varying the average

SNR 	. As expected, the increase of SNR and/or antenna
elements allows the MIMO channel to more affordable capac-
ity. At low SNR, the proposed upper bound agrees well with
sample mean capacity. When both SNR and antenna elements
are high, however, the difference between mean capacity and
the upper bound is noticeable. This is due to the effect of
directional approximation in (15).
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Fig. 2. MIMO link capacity as a function of average SNR � for several
values of antenna elements.
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Fig. 3 illustrates the tightness of the proposed upper bound
in the aspect of Rice factor µ. When increasing the Rice factor,
the spatial approximation in (15) is gradually insignificant.
Then, the proposed upper bound tends to be tight in large
Rice factor. It is noteworthy that the Rayleigh channel (µ =
0) provides more capacity than the Ricean channel (µ >
0). Fortunately, this coincides with the results performed in
unstructured model (see e.g., [12] and [26]).

The pictorial impact of nominal direction and angular spread
in MIMO channel capacity is shown in Fig. 4. Note that the
more the angular spread, the higher the available mean capac-
ity. This is due to spatial diversity implicit in NLOS portion.
For a considerable angular spread, the channel capacity is
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Fig. 4. MIMO link capacity as a function of nominal direction of arrival for
several values of angular spreads.

maximal along broadside direction (φ = 0◦). In addition, the
error effect of the first-order Taylor series approximation in
(17) is quite accurate for small angular spread.

VII. CONCLUSION

We have developed a parametric framework for assessing
the ergodic mean capacity of MIMO channel model in the
presence of both Ricean fading and physical scattering. The
objective of capacity assessment in this way is to investigate
the realistic propagation model rather than making analysis
on the unstructured statistic of Ricean channel matrix HHH .
To avoid the lengthy Monte Carlo simulation, we have also
provided an upper bound on the ergodic mean of channel
capacity based on the so-called separable parameterization. A
rigorous advantage of the proposed upper bound is to reflect
MIMO link capacity as an analytic function of Rice factor
and directional parameters, such as, nominal direction, angular
spread. Regarding computational and accuracy viewpoints, it
holds not only simple calculation, but also asymptotic tightness
in several situations, for instance, in small average SNR, small
angular spread and large Rice factor. In addition, a rather
distinctive study is shown herein that the Ricean channel leads
to higher channel capacity when angular spread is larger.
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