
Towards Distributed Context Management in
Ambient Networks

Christoph Reichert, Michael Kleis
Fraunhofer FOKUS

Kaiserin-Augusta-Allee 31
10589 Berlin, Germany

E-mail:{reichert,kleis}@fokus.fraunhofer.de

Raffaele Giaffreda
BT, Polaris House, Rm 129

Adastral Park, Martlesham Heath
Ipswich IP5 3RE, United Kingdom
E-mail: raffaele.giaffreda@bt.com

Abstract— Context information makes applications and net-
works aware of their situation. A scalable and distributed
architecture consisting of context sources, context processors, and
context sinks as basic components is proposed, together with an
outline of a client-server protocol between these components. Two
important functions of this architecture are context coordination
and context management, which can be carried out in a fully
distributed and self-organized way by means of peer-to-peer
overlay networks and recursive cascading of context processors.
The basic properties of the architecture and its potential evolution
are discussed.

I. INTRODUCTION

Context information makes applications and networks aware
of their situation [1] and improves certain functions in network
or applications, but is typically not critical in the sense
that a functionality cannot be provided at all if the context
information is not available. However, context information is
expected to play a vital role in supporting autonomic decision
making and is regarded as a necessity for self-organization.

The Ambient Networks [2] vision supports spontaneous
merging of heterogeneous networks through the implemen-
tation of an architecture based on a modular Ambient Control
Space (ACS). Such an autonomic behavior requires decision-
making capabilities to be implemented in support of each
of the functions the ACS is made of. The main role of
the ”context provisioning” module is to collect, process and
manage context information on behalf of each of the ACS
functions. The reason behind this requirement is twofold. First,
the availability of context information helps reduce the scope
of the problem that any autonomic decision-making algorithm
is faced with. Second, it has been proven useful to separate
context information collection, processing and management
from its actual use [3].

The main challenge for a context architecture arises from
the fact that basically any information about a network, its
services, applications, nodes, links and users, can be valuable

1This paper describes work undertaken in the Ambient Networks Informa-
tion Society Technologies (IST) 507134 project. The IST program is partially
funded by the Commission of the European Union. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the Ambient Networks project or the Context Aware
Networks work package.

context information and should therefore be accessible to basi-
cally any other component in the network. The basic problem
is scalability regarding these potentially large amounts of data.
The guiding principles are therefore twofold: First, requests for
context information are answered only on demand, and proac-
tive context information processing is avoided. (Note that this
approach does not exclude caching.) Second, distributed peer-
to-peer overlay techniques are exploited to spread the work
load over several nodes. Within the Ambient Networks project,
the size of the ”context information space” has been further
reduced through agreeing with the clients (other functions of
the ACS) what could be considered useful context information
needed to improve the operations of each of the functions [4].

This work outlines a system architecture for context re-
trieval, processing, coordination and management. Sec. II de-
scribes the basic components of the architecture, in particular
context processors, sketches a protocol for context related
conversation between these components, and proposes P2P
overlay networks for distributed context coordination. Sec. III
describes both a centralized and distributed approach for con-
text management, accomplishing the task of establishing multi-
pipes for context processing. As an example scenario, auto-
nomic provider selection using out architecture is described
in Sec. IV. Sec. V discusses the more important aspects of
the architecture in more detail, and Sec. VI concludes with a
summary and future work.

II. THE ARCHITECTURE

A. Context Association

The elemental concept of the architecture is the context
association. A context association is a directed relation from a
context source to a context sink, i.e., the direction is that of the
context information flow. The context source is the component
providing/producing the context information, and the context
sink is the component using/consuming it.

A context association has certain attributes, among which
are Context Level Agreements (CLAs), Quality of Context
(QoC) specifications, and the protocol actually used to retrieve
the context information. The protocol is assumed to be a client-
server protocol, where the context source acts as the server,
and the context sink acts as the client. Modes of retrieval

(server push vs. client pull) are also attributes of a context
association.

Context sink is any entity embedding a context client
(making the entity context-aware). Otherwise, we do not make
any assumptions about context sinks, like when or why they
request, how they are affected by, or what decisions are made
based on context information.

B. Context Sources, CIBs and URIs

We assume that a context source provides descriptive con-
text information in form of a structured set of information
elements, stored-in or simply linked-to via the Context Infor-
mation Base (CIB), similar in nature to an SNMP Management
Information Base (MIB) [5]. The content and structure of a
CIB are determined by its type, which may be a SNMP MIB,
an XML Document Type Definition (DTD), a file format etc.
A particular CIB instance of a given type is identified by
its Uniform Resource Identifier (URI) [6]. The information
represented by a CIB may be dynamic and change over
time, but only the context source updates its CIB. The basic
operations to retrieve context information are that a context
client fetches the content of the CIB by means of a client-
server protocol, or subscribes for event notifications delivered
when the CIB content changes. A context source maintaining
one or more CIBs accessible via a context protocol is also
called Context Provider Agent (CPA) [7].

C. Context Coordinator

All context sources register their CIBs at a conceptually
centralized entity, the Context Coordinator (ConCoord). The
ConCoord is the first point of contact for a context client:
clients query the ConCoord in order to get the locations of
CIBs, and the ConCoord responds with contact information
of the CIBs. In other words, the ConCoord does not store the
context information itself, but pointers to it. The functions of
the ConCoord are summarized as:

• a registry where a context source registers the URIs of
its CIBs with its contact information. Context sources are
authenticated.

• a resolver which maps a context information request to
one or more URIs.

• a function to authenticate and authorize client access to
CIBs.

A registered CIB is uniquely identified by its URI, and
completely described by the triple (URI, type, contact).

The registry of the ConCoord is itself a CIB, the meta-CIB
of all other CIBs. The meta-CIB should also be accessible
by the protocol primitives described below, since this enables
clients to subscribe to events like ”notify me whenever a new
CIB of type X registers”. This is important information for
context clients to detect new sources of context information,
or to learn that currently used context sources are no longer
available.

D. Context Protocol Primitives

A context protocol provides basically the following primi-
tives:

• REGISTER. A context source registers the URIs of its
CIBs and its contact information at the ConCoord.

• RESOLVE. A context client requests context information
in form of URIs from the ConCoord, which responds with
the contact information of the corresponding CIBs.

• FETCH. A context client fetches context information
from a CIB.

• SUBSCRIBE/NOTIFY. A context client subscribes to a
CIB with an event specification. Thereafter, the client
receives notifications whenever the CIB changes in a way
specified by the client.

Note that the FETCH primitive can only be used for descrip-
tive context, while SUBSCRIBE/NOTIFY is used for events
and descriptive context. Note also that there is no primitive
to update a CIB, since this is done exclusively by the context
source which “owns” its CIBs.

The motivation for RESOLVE is that a client can locate its
desired CIBs once and issue FETCH requests or change sub-
scriptions as often as desired without generating more activity
in the ConCoord than necessary. The alternative would be to
send all FETCH or SUBSCRIBE requests to the ConCoord,
which than locates the CIBs and forwards the requests to them.

E. Context Processors

The above context protocol primitives and the architectural
elements introduced so far allow clients to request only
“raw” context information provided by CIBs. These do not
provide yet a way to filter, aggregate, and correlate context
information. This is accomplished by context processors (or
synthesizers [8], which consist of three parts:

• a context client to get context information from one or
more input CIBs of type T1,T2, . . . ,Tn.

• a processing function f : T1 × T2 × . . .Tn �→ T which
transforms input context information of types Ti into
output information of type T .

• an output CIB of type T which represents the processed
information and makes it accessible via the context pro-
tocol.

A context processor is therefore a context client “back to
back” to a context source with a processing function in
between. Context processing is then performed in a data-driven
manner following the pipes-and-filters pattern by associating
the output of a processor with the input of another.

Fig. 1 depicts a directed acyclic graph (DAG) whose nodes
are context sources, context processors (CP), and context
clients and whose edges are context associations. Nodes with
zero in-degree are initial CIBs and the original source of “raw”
context information. Nodes with zero out-degree are final
context clients and the ultimate sink of context information.
Nodes with non-zero in-degree and non-zero out-degree are
context processors. The subgraph for a client, i.e., the subgraph

CIB

CP

CP

Client

Client

CIB

CIB

Multi−pipe

Fig. 1. A DAG constructed by initial context sources, context processors
and final context sinks.

made up of all nodes and edges having a directed path to the
client, is called the multi-pipe for that client.

Context processors with a single input are either filters,
extracting specific information from their input, converters,
transforming the input into another format, or loggers, record-
ing the history of context information. Context processors
with multiple inputs act as aggregators or correlators on their
inputs.

Context processing can basically be performed in two
modes. When a client issues a FETCH to get context in-
formation from a directly associated context processor, the
FETCH request is propagated back towards the initial context
sources. Alternatively, a context processor might be able to
serve the request from a cache. Recursively fetching and pro-
cessing context information is the client-driven mode (pull). In
contrast, recursive subscription and notification is the source-
driven mode (push).

Mixtures of both modes are also possible. For instance, a
caching processor with a single input might exist solely for
the purpose to move off load from another context source,
which experiences a high rate of FETCH requests. The caching
processor subscribes to the CIB and responds to FETCH
requests on behalf of the initial context source.

Note that only the type, but not the URI, of the output
CIB of a context processor is determined. The actual content
of the output CIB and its URI depend on the CIB instances
feeding the processor. For instance, when a processor receives
input from user specific CIBs with user specific URIs, then
the output is also user specific and should be identified by
user-specific URIs.

F. Distributed Context Coordination

The registry of the ConCoord has to map context URIs
to contact information of the CIBs identified by these URIs.
The registry can be realized by Distributed Hash Tables
(DHTs) using multiple schemes from the area of structured
Peer-to-Peer (P2P) overlay networks like Chord [9], Content
Addressable Networks (CAN) [10], or Tapestry [11]. In order
to simplify the explanation, we assume that every context
source, sink, and processor joins the P2P overlay, which makes
up the distributed ConCoord.

After joining the P2P network, context sources register the
URIs of their CIBs in form of pairs (URI, contact). The context
source first applies a common, uniform hash function to the

URI. The resulting hash key identifies the node on which the
entry is to be stored. Then, the pair (URI, contact) is sent
through the overlay to this node and stored there.

When any other overlay node issues a RESOLVE request
for a given URI, the hash function is applied on the URI to
identify the node where the entry is stored, and the entry is
then retrieved via the overlay. (Messages internal to the P2P
overlay are not described here and different from those in
Sec. II-D.)

Methods to self-organize the nodes of a P2P network into a
resilient overlay topology are well known and guarantee upper
bounds for the scope of a search (e.g. O(logN) in the case of
Chord [9], where N is the number of nodes in the ConCoord),
so that a distributed ConCoord is quite feasible.

III. CONTEXT MANAGEMENT

Context processors register their type with the ConCoord.
The ConCoord’s registry therefore maintains initial CIBs and
context processors.

When the ConCoord receives a RESOLVE request, the
ConCoord performs the following steps:

1) It looks up the registry whether there is an initial CIB
for this request. If so, its contact information is returned.

2) Otherwise, the request is passed to a context manager,
which tries to determine a multi-pipe whose final output
CIB provides the desired context information.

The focus of this section is on approaches for step 2, context
management, which means the task of instantiating multi-pipes
in both centralized and distributed context management.

A. Centralized Context Management

A centralized context manager (CoMa) receives a RE-
SOLVE request to instantiate a multi-pipe. The CoMa has
access to a database which maps context types to blueprints
of multi-pipes. A blueprint specifies

• which context processors are required, and
• how they have to be interconnected by context associa-

tions,
to provide the requested type of context information. In other
words, a blueprint is a multi-pipe without initial input CIBs.
A blueprint must be type consistent in the sense that a
context processors output type must match the input type
of the next one. Polymorphic processor functions might also
be advantageous in some cases. In essence, a blueprint with
multiple context processors is the functional composition of its
constituent processing functions. As an example, for a linear
pipe of processors with functions f , g, and h, the function of
the blueprint is then f ◦g◦h = h(g(f (x))).

Note that as for a single processor, a blueprint specifies only
the type of its input CIBs, but not their instances (URIs). The
URIs for the initial input CIBs have to be inferred from the
RESOLVE request.

There may be several different blueprints for basically the
same type of context information, because there are often
several different ways to obtain context information, with

different levels of granularity, accuracy, etc. We expect that
the right choice can often be made by taking Quality of
Context (QoC) into account, so that both blueprints as well as
RESOLVE requests have QoC specifications associated with
them.

The basic steps during multi-pipe establishment are then as
follows:

1) CoMa infers the context type from the RESOLVE re-
quest (URI and QoC) and looks up a blueprint for it. If
this fails, a ”context not available” error is returned.

2) Otherwise, establish appropriate context associations be-
tween the processors specified in the blueprint.

3) Derive the initial context sources and establish context
associations between them and the first context proces-
sors to form the complete multi-pipe.

This central approach concentrates the knowledge about
multi-pipes at a single entity, the CoMa, and requires this
knowledge to be represented explicitely in form of blueprints
as well as the mapping of context types to blueprints.

Given that the client knows best about the nature of the
desired context, a further approach is to let the client specify
the blueprint with required input CIBs. The client can check
by accessing the meta-CIB whether the required processors are
available. If so, it can include the blueprint into the RESOLVE
request.

B. Distributed Context Management

A more interesting approach is to enable distributed context
management in a self-organized way, circumventing the need
for a centralized CoMa. Recall that a processor function is
strongly typed. A type signature like f : T1 × T2 �→ T of a
processor basically says: “I can provide context information
of type T , given that my inputs are of type T1 and T2.”

This enables to establish a multi-pipe recursively and in
a distributed way. The ConCoord locates the final context
processor, which locates the processors for its input, which
again locate the processors for their input, and so on, until the
inputs are all initial CIBs. More precisely, the following steps
occur:

1) A client sends a RESOLVE request with a context URI
to the ConCoord.

2) The ConCoord checks whether the URI identifies an
initial CIB. If so, it returns the contact information of
the CIB.

3) Otherwise, the ConCoord infers the type of the required
CIB, locates a processor with this type as its output type,
and passes the URI of the original RESOLVE request
to this processor.

4) The processor infers the URIs of its input and sends a
RESOLVE request with these URIs to the ConCoord.

5) Steps 2 – 4 are repeated until all URIs can be resolved
during step 2.

Fig. 2 depicts the message sequence chart for the recursive
establishment of a linear pipe between a client, two context

Client ConCoord

PASS(URI0)

RESOLVE(URI1).req

RESOLVE(URI1).rsp

RESOLVE(URI0).req

FETCH.req

PASS(URI1)

Processor 1 Processor 2 Initial CIB

RESOLVE(URI2).req

RESOLVE(URI2).rsp

FETCH.req

FETCH.req

FETCH.rsp
FETCH.rsp

FETCH.rsp

RESOLVE(URI0).rsp

Fig. 2. Recursive establishment of a linear multi-pipe.

processors, and an initial CIB, as well as the first FETCH of
the client.1

The critical requirement for the recursive approach is that
a processor, knowing already its input types, is also able to
infer which CIB instances of that type, i.e., their URIs, are
required. This basically says: “I can provide context identified
by URI X (of type T), given that my input CIBs are URI Y1
(of type T1) and Y2 (of type T2).” This requirement is much
stronger than just inferring the input types.

C. Inter-domain Context Management

A context client in one domain should be able to ask for
context information about another domain, which requires
to consult the ConCoord of the other domain. The remote
ConCoord has to be located (or a representative node in the
distributed overlay), and we propose to define a new DNS
SRV record [12] for the resolution of ConCoords.

A client always asks its local ConCoord even for remote
context URIs. It is then the task of the local ConCoord to
locate and contact the remote ConCoord and relaying the RE-
SOLVE request to it, maybe after a Context Level Agreements
(CLA) has been established between both ConCoords. This
design decision is motivated by the goal to keep context clients
as simple as possible, and also enables caching of both remote
ConCoord locations and CLAs by the local ConCoord.

IV. EXAMPLE SCENARIO

One possible application of our architecture is the following:
Consider a mobile network (train, airplane, car) reaching
an area where two or more providers offer WLAN access
(train station, airport, city). Each provider offers access with
different properties (bandwidth, QoS, price, etc.), and the
mobile network contains an agent which selects the provider
automatically (maybe based on policies). The agent needs two

1PASS is a protocol message internal to the context architecture to pass
the received URI to the next processor. It is never received or sent by final
clients or initial sources.

types of network context information: first, it needs to be
notified whenever an alternative provider becomes available,
and second, that provider’s access properties.

Our context architecture supports this scenario as follows:
The agent first subscribes to the set of all reachable providers
to be notified whenever the new provider is available. The set
of available providers is maintained by a context processor,
which itself subscribed to all wireless interfaces of the mobile
network (excluding devices of its users), which detected the
access point of the new provider. When the agent is notified,
it asks its local ConCoord to resolve the URI for access
properties. The local ConCoord forwards this request to the
remote ConCoord of the new provider. After the resolution is
complete, the agent fetches the access information and finally
makes the decision.

This example also shows that network context as understood
in this work is typically not fuzzy or uncertain, which is often
the case for user context [8].

V. DISCUSSION

We argue that the described architecture contains many
alternative designs as special cases, especially all centralized
designs. In some networks, it is feasible to run a centralized
ConCoord, centralized CoMa, and all context processors on
a single node, which could be called a “context server”. For
small networks, this is certainly a reasonable approach, which
also enables to reduce communication overhead by replacing
the protocols by local software interfaces.

We do not propose a fine-grained design of context pro-
cessors, albeit the architecture does not exclude such an
approach, because it is likely to result in multi-pipes with large
diameters (meaning here the longest path from an initial source
to a final sink). The motivation for multi-pipes composed
from context processors is to reduce communication and
computation overhead by re-using intermediate results during
context processing. Assume for the moment there were no
context processors, and a client requires the information of
several “raw” CIBs to make a decision, then context processing
happens within the client, whether this is called so or not.
When another client requires the same inputs for a similar
decision, it repeats what the first client already did. The
obvious approach is to “factor out” this commonality, which
leads to the concept of context processors. Indeed, whenever
such commonalities are recognized, it is the right time to
ask: “Should this commonality become a dedicated context
processor?” The answer to this question depends on how
frequent such a processor will be used, and how complex its
processing function is. High usage frequency and complexity
are definitely a strong indication for a dedicated processor.

Context URIs play a key role in the proposed architecture.
We basically assume that when a client wants specific context
information, it is able to construct a URI for a CIB from
which the information can be retrieved.2 This assumption is

2It is thereby irrelevant whether the CIB is an initial CIB or the end of a
multi-pipe.

justified by the fact that context information will be structured
according to ontologies described in languages like the Web
Ontology Language (OWL), which require that every concept
in an ontology can be referenced by a unique URI [13]. For
the recursive establishment of multi-pipes, an additional issue
is that a context processor is able to infer the URIs of its input
CIBs from its functional signature and the requested URI.
Otherwise, context processors are also required to interpret
ontologies.

VI. CONCLUSION AND FUTURE WORK

We presented an architecture for context processing based
on context sources, context sinks, and context processors, and
sketched the basic primitives required by a context protocol.
In order to achieve distributed and self-organized context
coordination and management, we proposed Distributed Hash
Tables based on peer-to-peer overlay networks and recursive
establishment of context processing multi-pipes. We argued
that the proposed architecture enables implementations within
the entire spectrum from a single, centralized context server
for small ambient networks up to a fully distributed and self-
organized system. Regarding the question what functionality
should be provided by context processors, an evolutionary
approach is proposed based on the usage frequency and
complexity of the processor function. We then presented a real
world scenario showing how network context can automate
the selection of providers. Finally, we addressed the role of
the context URI namespace.

REFERENCES

[1] A. K. Dey, “Understanding and Using Context,” Personal and Ubiqui-
tous Computing, vol. 5, no. 1, pp. 4–7, Feb. 2001.

[2] N. Niebert, et al., “Ambient networks: An architecture for communi-
cation networks beyond 3G,” IEEE Wireless Commun. Mag., vol. 11,
no. 2, pp. 14–22, Apr. 2004.

[3] A. K. Dey, et al., “A Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware Applications,” Human
Computer Interaction, vol. 16, no. 2–4, 2001.

[4] A. Jonsson et al., “Ambient Networks ContextWare,” Public Deliver-
able D6.1 of the EU Ambient Networks project, to be published on
www.ambient-networks.org.

[5] D. Harrington, et al., “An Architecture for Describing Simple Network
Management Protocol (SNMP) Management Frameworks,” RFC 3411,
IETF, Dec. 2002.

[6] T. Berners-Lee, et al., “Uniform Resource Identifier (URI): Generic
Syntax,” RFC 3986, IETF, Jan. 2005.

[7] M. Khedr et al., “Negotiating Context Information in Context-Aware
Systems,” IEEE Intell. Syst., vol. 19, no. 6, pp. 21–29, Nov./Dec. 2004.

[8] A. Ranganathan, et al., “Reasoning about Uncertain Contexts in Per-
vasive Computing Environments,” IEEE Pervasive Computing, vol. 3,
no. 2, pp. 62–70, June 2004.

[9] I. Stoica, et al., “Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications,” in ACM SIGCOMM, San Diego, CA, USA, Aug.
2001, pp. 149–160.

[10] S. Ratnasamy, et al., “A Scalable Content-Addressable Network,” in
ACM SIGCOMM, San Diego, CA, USA, Aug. 2001, pp. 161–172.

[11] B. Y. Zhao, et al., “Tapestry: An Infrastructure for Fault-tolerant Wide-
area Location and Routing,” UC Berkeley, Tech. Rep. UCB/CSD-01-
1141, Apr. 2001.

[12] A. Gulbrandsen, et al., “A DNS RR for specifying the location of
services (DNS SRV),” RFC 2782, IETF, Feb. 2000.

[13] J. Heflin, “OWL Web Ontology Language Use Cases and
Requirements,” W3C Recommendation, Feb. 2004. [Online]. Available:
www.w3.org/TR/webont-req/

