
Abstract— Capturing contextual information, especially

higher-level contexts enables systems to understand and predict

the behaviour of a mobile user. This kind of information is

mostly implicit contexts, which abstract a complex state of a

situation and can only partly be captured by employing sensors.

Higher-level context has the potential to make user-application

interaction richer, simpler, and more intuitive. However,

composing higher-level contexts from explicit, atomic contexts

requires complex and painstaking reasoning procedures to

resolve uncertainty due to inconsistent sensor readings and

incomplete information. In this paper, we introduce a new

approach that assists application developers to take higher-level

contexts into account without the need to know the details of

atomic contexts. To demonstrate our approach, we will introduce

the Context-Aware E-Pad (CAEP) we have designed and

implemented. CAEP “observes” the user making a decision and

associates with it a set of atomic contexts. Likewise, correlated

decisions are mapped to similar associations. By repeatedly

“observing” the user making decisions, CAEP can predict user’s

wishes and behaviours.

Index of terms—association, atomic contexts, decision, higher-

level contexts, implicit contexts, lower-lever contexts

1. INTRODUCTION

Typical applications centre the user’s attention to the

computing task, which needs to be performed to fulfil the

user’s request [1]. These applications oblige the user to

provide all input information pertaining to a task an

application should accomplish. As far as the computing task is

the only task, to which the user pays attention, this might not

be a problem; but typically user has to divide his attention

between other activities such as driving, talking to other

people, holding a presentation, etc., while a computing task is

in progress. In this case, these kinds of applications introduce

enormous distraction instead of assisting a user to solve a

specific problem.

Furthermore, development in integrated circuit technology

has enabled the production and deployment of computing

devices at an ever falling price. Whereas once it has been

considered as a revolution to provide individuals with

personal computers, it is now an everyday practice to carry

with us mobile computers and communicate with them on the

spur of the moment. The implication is twofold: on one hand,

it has become commonplace for a user to own multiple

devices; on the other hand, these devices as well as the users

are no longer stationary. In consequence of this, resources

have become pervasive and a mobile user can access and

process information virtually from anywhere at anytime.

Therefore, mobile applications and services must evolve to

make the needed computing task less obtrusive. In other

words, the amount of explicit input a user has to supply for a

computing task must be reduced.

It is widely acknowledged by researchers in the mobile

field that context-aware computing can meet this desire to

reduce explicit input. By enriching applications with implicit

context information, we could increase their awareness of

people, places, and computing devices. This awareness further

leads to the execution of useful services with little or no

involvement from the user.

Consider a business man driving inside a foreign city

searching for a parking lot, expecting at the same time an

important business related call. But his mobile phone, which is

inside his jacket, is at the backseat, still on vibration mode

because of a meeting he has been attending.

A context-aware application can assist such a desperate

driver in a number of ways. To start with, it could

automatically switch the phone to a ring mode, as its master

could not detect the arrival of a call while driving;

furthermore, the phone can autonomously discover resources

inside the car, such as a loudspeaker and a microphone, to

make conversation on the phone less obtrusive.

From this scenario, we can list four important aspects of

context-aware computing:

A. Implicit understanding of user’s situation

Context-aware applications, assisted by numerous sensors

and other context data sources, can build an understanding of

a user’s situation. This greatly enhances the inherent input

deficiency traditional mobile applications suffer [1] from. In

our brief scenario above, this happens, if the mobile phone

understands that the businessman is driving.

B. Reduction of user side input

Success in capturing the context of a user brings about the

invocation of services suitable to the context. As a direct

consequence of A, a context-aware application reduces the

businessman’s involvement by switching the mobile phone

from vibration mode to ring mode.

C. Adaptation

Adaptation occurs in two ways: firstly, the mobile phone’s

ring mode is adjusted to the driving context; secondly, it

adapts to available resources inside the car. The latter occurs

Composition of Reusable Higher-level Contexts

Waltenegus Dargie, Tino Löffler, Olaf Droegehorn, Klaus David

Waltenegus Dargie, Tino Loeffler, Olaf Droegehorn, Klaus David

Chair of Communication Technology (ComTec), University of Kassel,

Wilhelmshoeher Allee 73,

34121, Kassel, Germany

Phone: +49 561 6304; Fax: +49 561 6360.

Email: {Droegehorn , David}@ uni-kassel.de

when the mobile phone splits incoming voice to an external

speaker, while a microphone is used to stream in voice from

the user.

In general, in pervasive computing environments, due to the

mobility of both users and devices in time and space, the

states of resources available may potentially change. In all

these circumstances, context-aware applications attempt to

adapt their behaviour to the ever changing context of a user,

the devices he uses, the co-located people around, and the

physical environment.

D. Provision of useful Services

Depending on the context of the businessman, the mobile

phone may prioritise incoming phone calls. This implies that

context-aware applications are sensitive to change in

preference of the mobile user and know which type of services

to provide and which not to provide [2].

Having said all this, designing and implementing context-

aware applications, which exploit implicit context information

and dynamically available resources, is not an easy task. In

this paper, we will discuss some outstanding issues context-

aware application developers face and show how we have

addressed a few of them.

The rest of this paper is organised as follows: in section 2,

we will discuss some of the challenges in designing context-

aware applications; in section 3, we will discuss related

works; in section 4, we will introduce the Context-Aware E-

Pad (CAEP) and discuss its typical features; and finally, in

section 5, we will give a brief conclusion.

2. CHALLENGES IN DESIGNING CONTEXT-AWARE

APPLICATIONS

Human-human interaction, besides the expressiveness and

the richness of the language used, involves implicit

understanding of the context that encompasses the subject of

interaction. This is due to the fact that humans are fit with

powerful sensing organs which enable them to perceive the

physical world appropriately. Here we are not merely

referring to the common catalogue of five senses – light,

hearing, touch, taste, and smell. These hardly cover all that is

taking place. There are other vital organs which sense muscle

tension and pressure on joints and tendons; the human brain

knows intuitively the tilt of a head, the bend of an elbow, the

position of a foot; below the conscious level, automatic

systems adjust the chemical components of blood, control air

pressure in the lung and blood pressure in the arteries, and

monitor organ stretch receptors [3].

Computers are relatively good to measure and report their

internal states as well as the internal states of other computers.

They are, however, greatly limited to measure and capture the

context of its users as well as the physical environment in

which they operate in. Employing sensors may augment their

measuring capacity and may enhance their awareness of the

external world. But awareness is more than just measuring.

Awareness means making sense of the data measured.

Our brain presents the world to us not as a collection of raw

data, but wholly, conceptually, and meaningfully [3].

Likewise, computers must translate the huge amount of raw

data that is collected from sensors and other context data

sources in a way that is meaningful to a human user.

Unfortunately, the richness and complexity of the world in

which a mobile user and his devices operate make this process

extremely overwhelming. Creating software or i.e. a system to

capture a context, translate it to a desirable format, perform

various manipulations and comparisons on it, and present it to

the user in a meaningful way, is a difficult and time

consuming software development task [4]. In addition, the

challenge to potentially utilize a variety of hardware must be

addressed. Besides, since context information can be gathered

in a variety of ways, undoubtedly semantic conflicts may

occur due to heterogeneity of context data sources. There are

two types of semantic conflicts: representational and

ontological. Representational conflict occurs when two

context data sources use different terms to refer to the same

context; ontological conflict occurs when two context data

sources use the same term to refer to two different contexts.

Therefore, resolving such plethora of semantic conflicts in

order to enable interoperability is a significant challenge.

Furthermore, we cannot capture all types of contexts by

employing sensors. There are higher-level contexts, which

abstract complex states of a situation. They are implicit by

nature and focus on the essential aspects of an entity and

ignore or conceal less-important or non-essential aspects.

Higher-level contexts are composed of numerous atomic

contexts1 and involve tedious reasoning procedures to resolve

uncertainty due to inconsistent sensor readings and missing

information. Apart from the reasoning task, identifying every

relevant atomic context that has the ability to describe some

potential properties of the higher-level contexts has to be

addressed by the application developer.

In the next section we will discuss related work before we

introduce our contribution.

II. RELATED WORK

Cohen et al [5] defined and implemented a nonprocedural

programming language called iQL for higher-level context

composition. The language assists application developers to

identify and bind heterogeneous data sources. An iQL

programmer expresses requirements for data sources instead

of identifying specific sources; a runtime system discovers

appropriate data sources, binds to them, and rebinds when

properties of data sources change.

Dey [1] proposes aggregators in his architecture for

context-aware computing. Aggregators collect all relevant

low-level contexts from the surrounding environment to

characterise the situation of an entity as wholly as possible,

where an entity can be a person, a device, or a place. Dey

1 We use atomic contexts and lower-level contexts interchangeably; in both

cases we mean context types that can directly be captured by employing

sensors.

identifies three essential low-level contexts: identity, location,

and activity. So an aggregator searches context data sources

that provide these low-level contexts. However, aggregators

perform no actual higher-level context composition. It is up to

the application to make sense of the set of lower-level

contexts.

Korpipää et al [6] propose a context recognition service that

is capable of composing higher-level contexts. It uses a naïve

Bayesian classifier which reasons about a higher-level context

by aggregating numerous simple context atoms. The context

atoms are selected based on their ability to describe some

potential properties of the higher-level context. Other criteria

include feasibility of measuring or recognising the context

chosen as accurately and unambiguously as possible. Among

its most important tasks, the framework manages uncertainty

of sensor readings through the use of probability based

inference and fuzzy membership.

Using the framework, a mobile device recognises whether it

is outdoors or indoors; whether a sound is from a car, a water

tap, rock music, classical music, an elevator, a speech, or from

some other source. For the first two higher-level contexts,

namely, indoors and outdoors, 14 atomic contexts describing

the environment’s light, humidity, and temperature were used,

while 47 audio-based atomic context atoms were used to

describe the remaining seven higher-level contexts.

The approaches above identify and describe at design time

the type of atomic contexts required for composition. In iQL

they were described as requirements; aggregators receive

from the application a description of the type of context

sources it binds; the naïve Bayesian classifier of context

recognition service requires an ontological description of the

atomic contexts together with a vector of context atom

confidence values.

To decide atomic contexts at design time limits a

composition assignment to those context atoms. Besides,

application developers are forced to deal with lower-level

context details, and to determine the way these atomic

contexts should be organised and reasoned about.

We strive to free application developers from setting

requirements for higher-level context compositions. Towards

this end, the behaviour of the user plays a significant role. We

associate the decisions of a user with a set of atomic contexts

that have indirect influence on the decisions. Furthermore,

related decisions are organised in such a way that an implicit,

higher-level context can be inferred from them.

3. CONTEXT-AWARE E-PAD (CAEP)

CAEP is a word processor and exhibits similar

characteristics to that of other word processors: a new pad can

be created; existing pads can be loaded, edited, deleted and

exchanged with different participation levels. Participation

levels determine, with which access rights a pad is dispatched

to recipients and includes editing and saving rights.

Figure 1: A snapshot of CAEP

Unlike many word processors, however, CAEP is context-

aware in that it reacts to the context of a user to undertake a

word processing task less obtrusively.

The essential features of CAEP are summarised as follows:

Whenever a user interacts with it, it associates the

interaction (in the form of decisions) with the

situation in which the interaction takes place. This

situation is characterised by a set of atomic contexts

which can directly be determined.

From the association, it generates a user profile or a

subpart thereof to reason about higher-level contexts

in terms of correlated decisions.

From repeated observation and an aggregate of

associations, it learns the behaviour of its user in

order to provide useful services in a proactive

manner.

Moreover, the user’s profile is useful for a semantic-

based interaction between a user and the application.

For instance, for people who have to deal with many

files per day, remembering a file’s name is a

nightmare. Using CAEP, accessing a file is fairly

simple: all the user has to remember is a situation

(context) that is related to a file. Internally, CAEP

maps the context to a file name and helps the user

narrow his searching space.

In the two subsections following we discuss the features

above in more detail2.

A. Reasoning about higher-level contexts in terms of

user’s decisions

One common feature shared by all context-aware

applications is that they react to the context of the user. Here

we use context loosely. It may apply to the state of devices,

networks, places, as well as co-located people. In most

context-aware applications, this reaction to contexts entails

one or more event-condition-action (ECA) rules. An ECA rule

consists, primarily, an event (context), a condition (context

parameter), and an action.

We present a model of the introspected world by a set of

well-formulated formulas of the first-order logic. Hence a

typical ECA rule may look like:

2 Due to space limitation, we do not discuss semantic-based interaction in

this paper.

)1()()()())(()(lklkheaterjiietemperaturmlkji

Rule (1) defines two predicates: temperature and heater to

state a general rule that if the value of a temperature

measurement descends below a certain threshold, a heater

should be switched on.

Now let us consider another formula as given by rule (2):

)2(x)(y)(xloadedxpadylecture

In rule (2), we want to load a pad for the user whenever he

attends lecture y. In this case, the predicate lecture is a higher-

level context, which is an abstraction of a complex situation.

Since by employing sensor information it cannot directly be

concluded: lecture y, our approach to solve this, is by using a

mechanism to reason about this implicit context using a set of

atomic contexts.

A simple inference rule may comprise a formula such as:

)3(
)()((

),(_

),(

)()()()()()()()(

nlecture

milkhj

irhumidityrelative

hretemperaturrroom

nmlkjihr

Defining our “world model” using the formulas and rule (3)

at design time has two drawbacks. Firstly, the application is

bound to react only to the context types: temperature and

humidity, thereby missing the chance to describe lecture in

terms of other contexts. We do not mean, of course, that these

two atomic contexts alone can describe the context in a lecture

room. We rather mean that other context types may as well

describe a lecture session instead of these two context types.

Besides, here the availability of context data sources (or

sensors) that deliver these context types is already assumed.

Secondly, all the existential quantifiers must be predetermined

either by the application developer or by the user himself.

CAEP’s design concept frees both the application developer

and the user from describing a higher-level context in terms of

lower-level contexts. No specific rules are required at the side

of the application at design time. Instead, the application

“observes” for a set time as the user makes decisions3 to

associate every decision with a set of contexts that are

acquired at the time the decision is made. Note that a decision

is not associated with a specific set of atomic contexts.

Decisions are the basic elements with which useful services

are executed. Each decision corresponds to an action routine

whose execution causes CAEP to take certain actions,

transforming one world model to some other world model.

3 Decisions in this context are loading, editing, creating, sending, and

receiving a pad. External decision histories such as switching a mobile phone

from a ring mode to a vibration mode are stored as the user’s profile and are

accessible to CAEP.

The observation time can be either an absolute temporal

event or a relative temporal event. An absolute observation

time corresponds to a unique time span on the time line with a

clearly defined reference time and an offset time. A relative

observation time corresponds to a unique time span on the

time line, but in this case the reference event can be other than

a temporal event. A relative observation time may be specified

using any one of the decisions we mentioned earlier.

During an observation time, CAEP associates a set of

context atoms with every decision the mobile user makes. Our

goal is to express a decision in terms of the situation this set of

context atoms characterises. Hence, the set of context atoms

should represent the situation as accurately as possible. To

minimise erroneous conclusions about a situation, CAEP

searches at runtime and binds to heterogeneous aggregators,

since heterogeneous aggregators gather and aggregate context

data from sources which are spatially and temporally

diversified.

Once the observation time is over, context types, which

appear in the association repeatedly and which maintain

predictable characteristics both with respect to their previous

values as well as with respect to other context types, are taken

as representative contexts to express a decision in terms of a

complex situation.

We will elaborate this by an example. Suppose we want

CAEP to reason about its whereabouts inside a university

campus in the absence of a GPS receiver or an indoor

localisation system. Likely places are: lecture rooms,

conference halls, offices, corridors, a library, a cafeteria, a

gym, an amphitheatre, an outdoor tennis court, and so on.

CAEP should gather and processes environmental contexts

such as temperature, light intensity, sound pressure, humidity,

etc., and together with empirical and heuristic context

knowledge, reason about particular places. Moreover, we

want CAEP to learn the user’s behaviour of loading a pad

whenever he attends a particular lecture.

Since the user does not set a specific rule, there is no need

to know a priori, which context types should best describe the

loading situation. Therefore, during the observation time,

CAEP listens to a loading decision. When a decision occurs, it

binds to available heterogeneous aggregators to gather context

data characterising the situation. Equation (4) represents the

semantics by which a decision is associated with a set of

context atoms

)4(
23%40_

13_720_

__

Cetemperaturhumidityrelative

bBpressuresoundLuxIntensitylight
context

whenxpadloadedxpadpaddecision

o

 One reason to remain flexible in the use of atomic context

sources is that since we expect resources to be pervasive, their

states may potentially change over time. Context data sources

may come, move, or their performance may deteriorate due to

aging of sensors, depletion of battery power, channel

dynamics, etc. Consequently, two associations may

incorporate different sets of atomic contexts.

Once representative context atoms are identified and

associated with a decision, the result is saved as a loading

profile or a subpart thereof so that it can be accessible to other

applications as well. This rule-based profile is useful to

associate additional correlated decisions to reason about more

complex situations.

Multiple correlated decisions increase CAEP’s capability to

learn the behaviour of a mobile user. For instance, suppose the

user switches his mobile phone from a ring mode to a

vibration mode while he attends lecture y, at which time the

decision to load pad x was also made. Assuming that the user

habitually switches his mobile phone to vibration mode

whenever he attends a lecture, this decision also entails similar

associations during the observation time. Since both decisions

are related decisions, internally they will be mapped to the

same sets of contexts. So a central profile administrator

merges the two profiles as shown in equation 5. Table 1

displays four associations for a loading decision during a one

month observation time.

)5(
23%40_

13_720_

,___

__

Cetemperaturhumidityrelative

bBpressuresoundLuxIntensitylight
context

whenviberationyphonestatusringyphonephone

followedByxpadloadedxpadpaddecision

o

Because of a decision profile, both the application

developer and the user are now shielded from the concern of

lower-level context details. This is summarised by equation

(6). As can be seen, the existential quantifiers are illuminated

from the equation.

)6

_

)1000100()150(

%)5030()6.2322((

),(_),(_

),(_),(

))()()()()(a

ylecturelecture

LuxkdBj

iChC

krIntensitylightjrpressuresound

irhumidityrelativehretemperaturrroom

kjihr oo

)6(
,_)(

)(y)(x))((b
vlecture

zystatusringyphonexloadedxpad
zv

B. Learning user’s behaviour

Contexts which appear often in associations and maintain

relatively deterministic characteristics contribute significantly

to learn the behaviour of the user; contexts which appear

either infrequently or which maintain nondeterministic

characteristics despite their frequent appearance, contribute

little to learn the behaviour of the user. Even those contexts

which exhibit deterministic characteristics are subject to

uncertainty. We distinguish two types of uncertainties:

uncertainty due to the inherent limitation of sensing elements

and uncertainty due to the unpredictable nature of the user.

We cannot control uncertainties due to sensing elements; but

uncertainties due to the user’s unpredictable characteristics are

studied in view of the aggregate associations and with respect

to the higher-level context we are interested. For example, a

user may not arrive at a lecture exactly on a set time; he may

be sometimes late and sometimes early. Nevertheless, he may

not be earlier or later than the duration of a lecture.

Temporal contexts are very helpful to study habitual

actions. If there is a continuously increasing time context

associated with a user’s decision, and if this continuity

exhibits some deterministic pattern, CAEP attempts to infer a

habit using equation (5).

To determine time pattern in the user’s loading behaviour,

CAEP decomposes the temporal context in to two parts: time

and day. As can be seen from the table, the second loading

decision occurred 10 days after the first decision; the third

decision occurred four days after the second and fourteen days

after the first; the fourth decision occurred 7 days after the

third, 11 days after the second, and 21 days after the first.

Therefore, CAEP calculates a mean interval by considering

two decisions as related decisions.

Therefore:

)5(
1

1
a

i
l

m

j

j

i

)5(b
x

x
x

Where li is the mean loading interval; i is the total number

of decisions; j is a decision interval in days per j adjacent

decisions; m is the number of all possible decision intervals; x

is the number of related decisions within a decision interval; x

is the breadth of a decision interval. Figure 4 graphically

displays equation (5) for the scenario of table 1.

TABLE I

DECISION-CONTEXT ASSOCIATION FOR LOADING A SPECIFIC E-PAD

Date A set of low-level contexts

1 [[context:time: Tuesday, September 21, 2004, 9:57:23

AM][context:temperature:23][context:sound_pressure:3

dB]][context:light_Intensity: 720 Lux][context:RH:50%]]

2 [[context:time: Tuesday, October 1, 2004, 10:10:23 AM]

[context:Sound_pressure:6 dB][context:temperature:23]

[context:Light_Intensity:9000 Lux][context:RH:20%]]

3 [[context:time: Tuesday, October 5, 2004, 10:10:23

AM][context:temperature:22][context: sound_pressure :3.86

dB]][context:light_Intensity: 700 Lux] context:RH:45%]

4 [[context:time: Tuesday, October 12, 2004, 10:00:07

AM][context:temperature:23][context: sound_pressure :3.98

dB]][context:light_Intensity: 716 Lux] context:RH:48%]

RH = relative humidity; temperature is measured in degree centigrade. 20

micropascal is used as a reference to measure sound pressure.

Figure 4: Graphical representation of interval calculation for time variant

contexts.

Therefore equation (5) yields to:

)6(75.6
3

3

7410

2

74

2

410

daysli

CAEP used the environmental contexts to decide whether

the decision was made inside a library, on a corridor, inside a

cafeteria, in his own room, or in a lecture room. Table 2

summarises the aggregate decision-context association. Note

that lecture room is a higher-level context that was a result of

the aggregation of decision-context associations of table 1.

TABLE 2: A SUMMARY OF LOADING DECISION AND CORRESPONDING

ASSOCIATION.

Context
Decision

Place Time Day

Load Lecture Room 10:02 AM{±7} Tuesday

III. CONCLUSION

Reduction of obtrusiveness is a major goal in context-aware

computing. Whereas enriching applications with context

information reduces the explicit input a user has to provide for

a computing task, there are, however, contexts, which cannot

directly be captured by employing sensors or other context

data sources. These are higher-level abstractions of a complex

situation, and must be reasoned about in terms of numerous

atomic contexts. Existing context-aware applications

incorporate rules that dictate a composition procedure and

identify at design time the type of atomic contexts, which

potentially describe some properties of the higher-level

context. In this paper we introduced a way to exploit runtime

contexts instead of defining atomic contexts at design time. As

a demonstration, we introduced the Context-Aware E-Pad

(CAEP). CAEP associates a user’s interaction with a set of

atomic contexts that are collected at runtime from a computing

environment; where a computing environment encompasses

persons, devices, places, and the application itself. By

observing repeated decisions a user makes and by aggregating

correlated decisions and runtime atomic contexts, CAEP (1)

shields the user from the concern of lower-level context

details; (2) reasons about higher-level contexts using the set of

atomic contexts and previous context-decision associations;

and (3) helps the user define additional higher-level contexts

in terms of decisions.

IV. ACKNOWLEDGEMENT

We would like to acknowledge partial funding of the German

“Bundesministerium für Bildung und Forschung (BMBF) in

the framework of the Wireless Internet and mik21 projects.

V. REFERENCE

[1] A. Dey, “Providing Architectural Support for Context Aware

Applications,” PhD Dissertation, pp. 41, 81, 2002.

[2] W. Dargie, O. Droegehorn, K David, "Sharing of Context

Information in Pervasive Computing," In Proc. of the 13th

Mobile and Wireless Communication Summit, pp. 839 – 843.

IST, 2004.

[3] P. Yancey and P. Brand, “In His Image,” Sondervan

Publisher, pp. 131-132, 1987.

[4] J. Pascoe, “Adding generic contextual capabilities to

wearable computers,” In the Proceedings of the 2nd

International Symposium on Wearable Computers

(ISWC'98), pp. 92-99. IEEE, 1998.

[5] N.H. Cohen, A. Purakayastha, J. Turek, L. Wong, D. Yeh,

“iQueue: A Pervasive Data Composition Framework,” In the

Proceedings of The 3rd International Conference on Mobile

Data Management. IEEE, 2002.

[6] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Kernen, and E-J.

Malm, “Managing Context Information in Mobile Devices,”

Pervasive Computing, IEEE, 2003.

[7] http://www.ashrae.org

[8] T. Malmstrom, J. Andersson, F.R. Carrié, P. Wouters, and

Ch. Delmotte, “Source Book for Energy Efficient Air Duct

System in Europe,” Airways Partners, 2002.

[9] C.W. Bayer, R.J. Hendry, S.A. Crow, and J. Fisher, “The

Relationship between Humidity and Indoor Air Quality in

Schools,” In Proc. Indoor Air, 2002.

[10] D.R. Wulfinghoff, “Energy Reference Manual,” Energy

Institute press, 1999.

