
Abstract— Capturing contextual information, especially 

higher-level contexts enables systems to understand and predict 

the behaviour of a mobile user. This kind of information is 

mostly implicit contexts, which abstract a complex state of a 

situation and can only partly be captured by employing sensors. 

Higher-level context has the potential to make user-application 

interaction richer, simpler, and more intuitive. However, 

composing higher-level contexts from explicit, atomic contexts 

requires complex and painstaking reasoning procedures to 

resolve uncertainty due to inconsistent sensor readings and 

incomplete information. In this paper, we introduce a new 

approach that assists application developers to take higher-level 

contexts into account without the need to know the details of 

atomic contexts. To demonstrate our approach, we will introduce 

the Context-Aware E-Pad (CAEP) we have designed and 

implemented. CAEP “observes” the user making a decision and 

associates with it a set of atomic contexts. Likewise, correlated 

decisions are mapped to similar associations. By repeatedly 

“observing” the user making decisions, CAEP can predict user’s 

wishes and behaviours. 

Index of terms—association, atomic contexts, decision, higher-

level contexts, implicit contexts, lower-lever contexts  

1. INTRODUCTION

Typical applications centre the user’s attention to the 

computing task, which needs to be performed to fulfil the 

user’s request [1]. These applications oblige the user to 

provide all input information pertaining to a task an 

application should accomplish. As far as the computing task is 

the only task, to which the user pays attention, this might not 

be a problem; but typically user has to divide his attention 

between other activities such as driving, talking to other 

people, holding a presentation, etc., while a computing task is 

in progress. In this case, these kinds of applications introduce 

enormous distraction instead of assisting a user to solve a 

specific problem.  

Furthermore, development in integrated circuit technology 

has enabled the production and deployment of computing 

devices at an ever falling price. Whereas once it has been 

considered as a revolution to provide individuals with 

personal computers, it is now an everyday practice to carry 

with us mobile computers and communicate with them on the 

spur of the moment. The implication is twofold: on one hand, 

it has become commonplace for a user to own multiple 

devices; on the other hand, these devices as well as the users 

are no longer stationary. In consequence of this, resources 

have become pervasive and a mobile user can access and 

process information virtually from anywhere at anytime.  

Therefore, mobile applications and services must evolve to 

make the needed computing task less obtrusive. In other 

words, the amount of explicit input a user has to supply for a 

computing task must be reduced.  

It is widely acknowledged by researchers in the mobile 

field that context-aware computing can meet this desire to 

reduce explicit input. By enriching applications with implicit 

context information, we could increase their awareness of 

people, places, and computing devices. This awareness further 

leads to the execution of useful services with little or no 

involvement from the user.   

Consider a business man driving inside a foreign city 

searching for a parking lot, expecting at the same time an 

important business related call. But his mobile phone, which is 

inside his jacket, is at the backseat, still on vibration mode 

because of a meeting he has been attending. 

A context-aware application can assist such a desperate 

driver in a number of ways. To start with, it could 

automatically switch the phone to a ring mode, as its master 

could not detect the arrival of a call while driving; 

furthermore, the phone can autonomously discover resources 

inside the car, such as a loudspeaker and a microphone, to 

make conversation on the phone less obtrusive. 

From this scenario, we can list four important aspects of 

context-aware computing: 

A. Implicit understanding of user’s situation  

Context-aware applications, assisted by numerous sensors 

and other context data sources, can build an understanding of 

a user’s situation. This greatly enhances the inherent input 

deficiency traditional mobile applications suffer [1] from. In 

our brief scenario above, this happens, if the mobile phone 

understands that the businessman is driving. 

B. Reduction of user side input  

Success in capturing the context of a user brings about the 

invocation of services suitable to the context. As a direct 

consequence of A, a context-aware application reduces the 

businessman’s involvement by switching the mobile phone 

from vibration mode to ring mode.

C.  Adaptation 

Adaptation occurs in two ways: firstly, the mobile phone’s 

ring mode is adjusted to the driving context; secondly, it 

adapts to available resources inside the car. The latter occurs 
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when the mobile phone splits incoming voice to an external 

speaker, while a microphone is used to stream in voice from 

the user.  

In general, in pervasive computing environments, due to the 

mobility of both users and devices in time and space, the 

states of resources available may potentially change. In all 

these circumstances, context-aware applications attempt to 

adapt their behaviour to the ever changing context of a user, 

the devices he uses, the co-located people around, and the 

physical environment. 

D. Provision of useful Services 

Depending on the context of the businessman, the mobile 

phone may prioritise incoming phone calls. This implies that 

context-aware applications are sensitive to change in 

preference of the mobile user and know which type of services 

to provide and which not to provide [2].  

Having said all this, designing and implementing context-

aware applications, which exploit implicit context information 

and dynamically available resources, is not an easy task. In 

this paper, we will discuss some outstanding issues context-

aware application developers face and show how we have 

addressed a few of them. 

The rest of this paper is organised as follows: in section 2, 

we will discuss some of the challenges in designing context-

aware applications; in section 3, we will discuss related 

works; in section 4, we will introduce the Context-Aware E-

Pad (CAEP) and discuss its typical features; and finally, in 

section 5, we will give a brief conclusion.     

2. CHALLENGES IN DESIGNING CONTEXT-AWARE 

APPLICATIONS

Human-human interaction, besides the expressiveness and 

the richness of the language used, involves implicit 

understanding of the context that encompasses the subject of 

interaction. This is due to the fact that humans are fit with 

powerful sensing organs which enable them to perceive the 

physical world appropriately. Here we are not merely 

referring to the common catalogue of five senses – light, 

hearing, touch, taste, and smell. These hardly cover all that is 

taking place. There are other vital organs which sense muscle 

tension and pressure on joints and tendons; the human brain 

knows intuitively the tilt of a head, the bend of an elbow, the 

position of a foot; below the conscious level, automatic 

systems adjust the chemical components of blood, control air 

pressure in the lung and blood pressure in the arteries, and 

monitor organ stretch receptors [3]. 

Computers are relatively good to measure and report their 

internal states as well as the internal states of other computers. 

They are, however, greatly limited to measure and capture the 

context of its users as well as the physical environment in 

which they operate in. Employing sensors may augment their 

measuring capacity and may enhance their awareness of the 

external world. But awareness is more than just measuring. 

Awareness means making sense of the data measured.  

Our brain presents the world to us not as a collection of raw 

data, but wholly, conceptually, and meaningfully [3]. 

Likewise, computers must translate the huge amount of raw 

data that is collected from sensors and other context data 

sources in a way that is meaningful to a human user. 

Unfortunately, the richness and complexity of the world in 

which a mobile user and his devices operate make this process 

extremely overwhelming. Creating software or i.e. a system to 

capture a context, translate it to a desirable format, perform 

various manipulations and comparisons on it, and present it to 

the user in a meaningful way, is a difficult and time 

consuming software development task [4]. In addition, the 

challenge to potentially utilize a variety of hardware must be 

addressed. Besides, since context information can be gathered 

in a variety of ways, undoubtedly semantic conflicts may 

occur due to heterogeneity of context data sources. There are 

two types of semantic conflicts: representational and 

ontological. Representational conflict occurs when two 

context data sources use different terms to refer to the same 

context; ontological conflict occurs when two context data 

sources use the same term to refer to two different contexts. 

Therefore, resolving such plethora of semantic conflicts in 

order to enable interoperability is a significant challenge. 

Furthermore, we cannot capture all types of contexts by 

employing sensors. There are higher-level contexts, which 

abstract complex states of a situation. They are implicit by 

nature and focus on the essential aspects of an entity and 

ignore or conceal less-important or non-essential aspects. 

Higher-level contexts are composed of numerous atomic 

contexts1 and involve tedious reasoning procedures to resolve 

uncertainty due to inconsistent sensor readings and missing 

information.  Apart from the reasoning task, identifying every 

relevant atomic context that has the ability to describe some 

potential properties of the higher-level contexts has to be 

addressed by the application developer.  

In the next section we will discuss related work before we 

introduce our contribution. 

II. RELATED WORK

Cohen et al [5] defined and implemented a nonprocedural 

programming language called iQL for higher-level context 

composition. The language assists application developers to 

identify and bind heterogeneous data sources. An iQL

programmer expresses requirements for data sources instead 

of identifying specific sources; a runtime system discovers 

appropriate data sources, binds to them, and rebinds when 

properties of data sources change.  

Dey [1] proposes aggregators in his architecture for 

context-aware computing. Aggregators collect all relevant 

low-level contexts from the surrounding environment to 

characterise the situation of an entity as wholly as possible, 

where an entity can be a person, a device, or a place. Dey 

1 We use atomic contexts and lower-level contexts interchangeably; in both 

cases we mean context types that can directly be captured by employing 

sensors. 



identifies three essential low-level contexts: identity, location, 

and activity. So an aggregator searches context data sources 

that provide these low-level contexts. However, aggregators 

perform no actual higher-level context composition. It is up to 

the application to make sense of the set of lower-level 

contexts.   

Korpipää et al [6] propose a context recognition service that

is capable of composing higher-level contexts. It uses a naïve 

Bayesian classifier which reasons about a higher-level context 

by aggregating numerous simple context atoms. The context 

atoms are selected based on their ability to describe some 

potential properties of the higher-level context. Other criteria 

include feasibility of measuring or recognising the context 

chosen as accurately and unambiguously as possible. Among 

its most important tasks, the framework manages uncertainty 

of sensor readings through the use of probability based 

inference and fuzzy membership.  

Using the framework, a mobile device recognises whether it 

is outdoors or indoors; whether a sound is from a car, a water 

tap, rock music, classical music, an elevator, a speech, or from 

some other source. For the first two higher-level contexts, 

namely, indoors and outdoors, 14 atomic contexts describing 

the environment’s light, humidity, and temperature were used, 

while 47 audio-based atomic context atoms were used to 

describe the remaining seven higher-level contexts. 

The approaches above identify and describe at design time 

the type of atomic contexts required for composition. In iQL

they were described as requirements; aggregators receive 

from the application a description of the type of context 

sources it binds; the naïve Bayesian classifier of context

recognition service requires an ontological description of the 

atomic contexts together with a vector of context atom 

confidence values. 

To decide atomic contexts at design time limits a 

composition assignment to those context atoms. Besides, 

application developers are forced to deal with lower-level 

context details, and to determine the way these atomic 

contexts should be organised and reasoned about. 

We strive to free application developers from setting 

requirements for higher-level context compositions. Towards 

this end, the behaviour of the user plays a significant role. We 

associate the decisions of a user with a set of atomic contexts 

that have indirect influence on the decisions. Furthermore, 

related decisions are organised in such a way that an implicit, 

higher-level context can be inferred from them. 

3. CONTEXT-AWARE E-PAD (CAEP) 

CAEP is a word processor and exhibits similar 

characteristics to that of other word processors: a new pad can 

be created; existing pads can be loaded, edited, deleted and 

exchanged with different participation levels. Participation 

levels determine, with which access rights a pad is dispatched 

to recipients and includes editing and saving rights. 

                                                                                                    

Figure 1: A snapshot of CAEP 

Unlike many word processors, however, CAEP is context-

aware in that it reacts to the context of a user to undertake a 

word processing task less obtrusively. 

The essential features of CAEP are summarised as follows: 

Whenever a user interacts with it, it associates the 

interaction (in the form of decisions) with the 

situation in which the interaction takes place. This 

situation is characterised by a set of atomic contexts 

which can directly be determined. 

From the association, it generates a user profile or a 

subpart thereof to reason about higher-level contexts 

in terms of correlated decisions. 

From repeated observation and an aggregate of 

associations, it learns the behaviour of its user in 

order to provide useful services in a proactive 

manner. 

Moreover, the user’s profile is useful for a semantic- 

based interaction between a user and the application. 

For instance, for people who have to deal with many 

files per day, remembering a file’s name is a 

nightmare. Using CAEP, accessing a file is fairly 

simple: all the user has to remember is a situation 

(context) that is related to a file. Internally, CAEP 

maps the context to a file name and helps the user 

narrow his searching space. 

In the two subsections following we discuss the features 

above in more detail2.

A. Reasoning about higher-level contexts in terms of 

user’s decisions 

One common feature shared by all context-aware 

applications is that they react to the context of the user. Here 

we use context loosely. It may apply to the state of devices, 

networks, places, as well as co-located people.  In most 

context-aware applications, this reaction to contexts entails 

one or more event-condition-action (ECA) rules. An ECA rule 

consists, primarily, an event (context), a condition (context 

parameter), and an action.  

We present a model of the introspected world by a set of 

well-formulated formulas of the first-order logic. Hence a 

typical ECA rule may look like: 

2 Due to space limitation, we do not discuss semantic-based interaction in 

this paper.  
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Rule (1) defines two predicates: temperature and heater to 

state a general rule that if the value of a temperature 

measurement descends below a certain threshold, a heater 

should be switched on. 

Now let us consider another formula as given by rule (2): 
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In rule (2), we want to load a pad for the user whenever he 

attends lecture y. In this case, the predicate lecture is a higher-

level context, which is an abstraction of a complex situation. 

Since by employing sensor information it cannot directly be 

concluded: lecture y, our approach to solve this, is by using a 

mechanism to reason about this implicit context using a set of 

atomic contexts. 

A simple inference rule may comprise a formula such as: 
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Defining our “world model” using the formulas and rule (3) 

at design time has two drawbacks. Firstly, the application is 

bound to react only to the context types: temperature and

humidity, thereby missing the chance to describe lecture in 

terms of other contexts. We do not mean, of course, that these 

two atomic contexts alone can describe the context in a lecture 

room. We rather mean that other context types may as well 

describe a lecture session instead of these two context types. 

Besides, here the availability of context data sources (or 

sensors) that deliver these context types is already assumed. 

Secondly, all the existential quantifiers must be predetermined 

either by the application developer or by the user himself. 

CAEP’s design concept frees both the application developer 

and the user from describing a higher-level context in terms of 

lower-level contexts. No specific rules are required at the side 

of the application at design time. Instead, the application 

“observes” for a set time as the user makes decisions3 to

associate every decision with a set of contexts that are 

acquired at the time the decision is made. Note that a decision 

is not associated with a specific set of atomic contexts. 

Decisions are the basic elements with which useful services 

are executed. Each decision corresponds to an action routine 

whose execution causes CAEP to take certain actions, 

transforming one world model to some other world model.  

3 Decisions in this context are loading, editing, creating, sending, and 

receiving a pad. External decision histories such as switching a mobile phone 

from a ring mode to a vibration mode are stored as the user’s profile and are 

accessible to CAEP. 

The observation time can be either an absolute temporal 

event or a relative temporal event. An absolute observation 

time corresponds to a unique time span on the time line with a 

clearly defined reference time and an offset time. A relative 

observation time corresponds to a unique time span on the 

time line, but in this case the reference event can be other than 

a temporal event. A relative observation time may be specified 

using any one of the decisions we mentioned earlier.  

During an observation time, CAEP associates a set of 

context atoms with every decision the mobile user makes. Our 

goal is to express a decision in terms of the situation this set of 

context atoms characterises. Hence, the set of context atoms 

should represent the situation as accurately as possible. To 

minimise erroneous conclusions about a situation, CAEP 

searches at runtime and binds to heterogeneous aggregators, 

since heterogeneous aggregators gather and aggregate context 

data from sources which are spatially and temporally 

diversified.  

Once the observation time is over, context types, which 

appear in the association repeatedly and which maintain 

predictable characteristics both with respect to their previous 

values as well as with respect to other context types, are taken 

as representative contexts to express a decision in terms of a 

complex situation.  

We will elaborate this by an example. Suppose we want 

CAEP to reason about its whereabouts inside a university 

campus in the absence of a GPS receiver or an indoor 

localisation system. Likely places are: lecture rooms, 

conference halls, offices, corridors, a library, a cafeteria, a 

gym, an amphitheatre, an outdoor tennis court, and so on. 

CAEP should gather and processes environmental contexts 

such as temperature, light intensity, sound pressure, humidity, 

etc., and together with empirical and heuristic context 

knowledge, reason about particular places. Moreover, we 

want CAEP to learn the user’s behaviour of loading a pad 

whenever he attends a particular lecture. 

Since the user does not set a specific rule, there is no need 

to know a priori, which context types should best describe the 

loading situation. Therefore, during the observation time, 

CAEP listens to a loading decision. When a decision occurs, it 

binds to available heterogeneous aggregators to gather context 

data characterising the situation. Equation (4) represents the 

semantics by which a decision is associated with a set of 

context atoms 
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 One reason to remain flexible in the use of atomic context 

sources is that since we expect resources to be pervasive, their 

states may potentially change over time. Context data sources 

may come, move, or their performance may deteriorate due to 

aging of sensors, depletion of battery power, channel 

dynamics, etc. Consequently, two associations may 



incorporate different sets of atomic contexts.  

Once representative context atoms are identified and 

associated with a decision, the result is saved as a loading 

profile or a subpart thereof so that it can be accessible to other 

applications as well. This rule-based profile is useful to 

associate additional correlated decisions to reason about more 

complex situations. 

Multiple correlated decisions increase CAEP’s capability to 

learn the behaviour of a mobile user. For instance, suppose the 

user switches his mobile phone from a ring mode to a 

vibration mode while he attends lecture y, at which time the 

decision to load pad x was also made. Assuming that the user 

habitually switches his mobile phone to vibration mode 

whenever he attends a lecture, this decision also entails similar 

associations during the observation time. Since both decisions

are related decisions, internally they will be mapped to the 

same sets of contexts. So a central profile administrator 

merges the two profiles as shown in equation 5. Table 1 

displays four associations for a loading decision during a one 

month observation time. 
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Because of a decision profile, both the application 

developer and the user are now shielded from the concern of 

lower-level context details. This is summarised by equation 

(6). As can be seen, the existential quantifiers are illuminated 

from the equation.  
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B. Learning user’s behaviour 

Contexts which appear often in associations and maintain 

relatively deterministic characteristics contribute significantly 

to learn the behaviour of the user; contexts which appear 

either infrequently or which maintain nondeterministic 

characteristics despite their frequent appearance, contribute 

little to learn the behaviour of the user. Even those contexts 

which exhibit deterministic characteristics are subject to 

uncertainty. We distinguish two types of uncertainties: 

uncertainty due to the inherent limitation of sensing elements 

and uncertainty due to the unpredictable nature of the user. 

We cannot control uncertainties due to sensing elements; but 

uncertainties due to the user’s unpredictable characteristics are 

studied in view of the aggregate associations and with respect 

to the higher-level context we are interested. For example, a 

user may not arrive at a lecture exactly on a set time; he may 

be sometimes late and sometimes early. Nevertheless, he may 

not be earlier or later than the duration of a lecture. 

Temporal contexts are very helpful to study habitual 

actions. If there is a continuously increasing time context 

associated with a user’s decision, and if this continuity 

exhibits some deterministic pattern, CAEP attempts to infer a 

habit using equation (5).   

To determine time pattern in the user’s loading behaviour, 

CAEP decomposes the temporal context in to two parts: time 

and day. As can be seen from the table, the second loading 

decision occurred 10 days after the first decision; the third 

decision occurred four days after the second and fourteen days 

after the first; the fourth decision occurred 7 days after the 

third, 11 days after the second, and 21 days after the first. 

Therefore, CAEP calculates a mean interval by considering 

two decisions as related decisions.  

Therefore:  
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Where li is the mean loading interval; i is the total number 

of decisions; j is a decision interval in days per j adjacent 

decisions; m is the number of all possible decision intervals; x

is the number of related decisions within a decision interval; x

is the breadth of a decision interval. Figure 4 graphically 

displays equation (5) for the scenario of table 1. 

TABLE I

DECISION-CONTEXT ASSOCIATION FOR LOADING A SPECIFIC E-PAD 

Date A set of low-level contexts 

1 [[context:time: Tuesday, September 21, 2004, 9:57:23 

AM][context:temperature:23][context:sound_pressure:3 

dB]][context:light_Intensity: 720 Lux][context:RH:50%]]

2 [[context:time: Tuesday, October 1, 2004, 10:10:23 AM] 

[context:Sound_pressure:6 dB][context:temperature:23] 

[context:Light_Intensity:9000 Lux][ context:RH:20%]]

3 [[context:time: Tuesday, October 5, 2004, 10:10:23 

AM][context:temperature:22][context: sound_pressure :3.86 

dB]][context:light_Intensity: 700 Lux] context:RH:45%]

4 [[context:time: Tuesday, October 12, 2004, 10:00:07 

AM][context:temperature:23][context: sound_pressure :3.98 

dB]][context:light_Intensity: 716 Lux] context:RH:48%]

RH = relative humidity; temperature is measured in degree centigrade. 20 

micropascal is used as a reference to measure sound pressure. 



Figure 4: Graphical representation of interval calculation for time variant 

contexts. 

Therefore equation (5) yields to: 
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CAEP used the environmental contexts to decide whether 

the decision was made inside a library, on a corridor, inside a 

cafeteria, in his own room, or in a lecture room. Table 2 

summarises the aggregate decision-context association. Note 

that lecture room is a higher-level context that was a result of 

the aggregation of decision-context associations of table 1. 

TABLE 2: A SUMMARY OF LOADING DECISION AND CORRESPONDING 

ASSOCIATION.

Context
Decision 

Place  Time  Day 

Load Lecture Room 10:02 AM{±7} Tuesday 

III. CONCLUSION

Reduction of obtrusiveness is a major goal in context-aware 

computing. Whereas enriching applications with context 

information reduces the explicit input a user has to provide for 

a computing task, there are, however, contexts, which cannot 

directly be captured by employing sensors or other context 

data sources. These are higher-level abstractions of a complex 

situation, and must be reasoned about in terms of numerous 

atomic contexts. Existing context-aware applications 

incorporate rules that dictate a composition procedure and 

identify at design time the type of atomic contexts, which 

potentially describe some properties of the higher-level 

context. In this paper we introduced a way to exploit runtime 

contexts instead of defining atomic contexts at design time. As 

a demonstration, we introduced the Context-Aware E-Pad 

(CAEP). CAEP associates a user’s interaction with a set of 

atomic contexts that are collected at runtime from a computing 

environment; where a computing environment encompasses 

persons, devices, places, and the application itself. By 

observing repeated decisions a user makes and by aggregating 

correlated decisions and runtime atomic contexts, CAEP (1) 

shields the user from the concern of lower-level context 

details; (2) reasons about higher-level contexts using the set of 

atomic contexts and previous context-decision associations; 

and (3) helps the user define additional higher-level contexts 

in terms of decisions. 
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