
Toward Open and Unified Link-Layer API

Tim Farnham, Alain Gefflaut, Andreas Ibing,

Petri Mähönen, Diego Melpignano, Janne Riihijärvi, and Mahesh Sooriyabandara

Abstract—This paper describes the motivation and first results

from the work carried out in the European GOLLUM-project

toward developing a open, extendible, and unified API for

accessing link-layer functionality and information. Key features

of this API will include a general querying mechanism based on

database technologies, and methods for setting up asynchronous

notifications regarding changes in link conditions, in a

technology-independent manner. Applications for such an

interface are numerous and cover domains such as mobility and

network cross-layer optimizations.

Index Terms—API, abstraction layer, link-layer events

I. INTRODUCTION

N the present-day wireless world application

programmers have to be very mindful of the platform they

are writing the applications on. A program designed to work

on a cellular phone or on a future smart mobile phone will

probably not work without great modifications on a PDA

equipped with a Bluetooth connection, or on a laptop using a

wireless LAN. Direct portability for even more embedded

devices would be almost unimaginable, and in particular most

automation and control systems radio link layers are

completely proprietary without any support from operating

systems and application programmers. In part this is because

of the large number of different operating systems in use.

While unification is progressing in this sector, great problems

remain on the other problem area, namely in the interface used

to access the wireless access devices (or air interfaces).

Even when using the same or compatible operating system

the methods used to access, say, a Bluetooth or

GSM/WCDMA link, and a Wireless LAN differ. This

Manuscript received February 6, 2005. This work was supported in part by

DFG, RWTH Aachen, and European Union (GOLLUM-project, IST-511567).

Andreas Ibing, Petri Mähönen and Janne Riihijärvi are with the

Department of Wireless Networks, Aachen University (RWTH),

Kackertstrasse 9, D-52072 Aachen, Germany (corresponding author is Janne

Riihijärvi, phone: +49 2407 575 7034; fax: +49 2407 575 7050; e-mail:

jar@mobnets.rwth-aachen.de).

Alain Gefflaut is with the European Microsoft Innovation Center (EMIC),

Ritterstrasse 23, D-52072 Aachen, Germany; email: alaingef@microsoft.com.

Tim Farnham and Mahesh Sooriyabandara are with the

Telecommunications Research Laboratory, Toshiba Research Europe Ltd, 32,

Queen Square, Bristol BS1 4ND, United Kingdom (e-mail: {tim.farnham,

m.sooriyabandara}@toshiba-trel.com).

Diego Melpignano is with dept. of Advanced System Technology at

STMicroelectronics v. Cardano, 1 - 20041 - Agrate Brianza - ITALY (email:

diego.melpignano@st.com).

difference becomes even greater when many of the small,

embedded radios are considered. The situation becomes even

more difficult if the application (or middleware) should

somehow intelligently respond to some events or changes in

the wireless channel. The necessary mechanisms are usually

simply not there, and even in the cases that they are available,

they again are different form one technology to the other.

With this background the necessary development seems

clear: a unified API of sufficient generality and extendibility

and corresponding embedded middleware, together with an

embedded software reference implementation should be

developed to unify access and information retrieval from

various wireless and wired technologies. This is precisely

what the GOLLUM-project aims to do.

II. IDEA OF UNIFIED LINK-LAYER API

The purpose of the GOLLUM project is to propose and

develop a software Application Programmers’ Interface (API)

that will hide network standards heterogeneity behind a

common set of functionality applicable to all types of

networks. We call such an API a Unified Link Layer API

(ULLA). We believe that such an API is a big step in the

direction toward intelligent radio aware software that will be

able to accommodate multiple radio standards in a seamless

way. The ULLA will help to resolve the complexity and

interoperability problem related to the large number of

different APIs and methods used for accessing communication

interfaces, especially in the embedded domain. It will provide

real and useful triggers, handles for different smart, context

sensitive and link/network aware applications; enabling the

development of “cognitive applications”.

As a concept this is a well-known paradigm and goal. The

problem is that no really acceptable and useful reference API

has been provided in the public domain. ULLA will also

provide abstraction and extendibility to permit different

underlying wireless interfaces and networking technologies

that exist now and will emerge in the future. Important

emerging technologies are composite multi-mode radio and

Software Defined Radio (SDR), and the flexibility of these

devices to operate in different modes of operation and

dynamically reconfigure will be made available through

ULLA.

The ULLA provides an abstraction from specific link

technologies to the applications or other link users (where link

users can include any higher layer protocols, middleware or

I

application software). It achieves this by regarding a link to be

a generic means of providing a communication service. Links

are made available and configured through link providers to

permit abstraction from specific platforms and technologies.

The following high level requirements capture the main

functionalities of ULLA.

1) Notify of appropriate link changes and statistics

Only inform the link users of events that the link users are

interested in and with appropriate timeliness and granularity.

For example, an application could be interested in the periodic

link statistics or significant performance change events.

Examples of statistics are average packet loss rate over a

specific period of time or average latency for packet

transmissions. Significant events to one application could be a

specific increase or decrease in bandwidth or error rate. To

other applications latency variations may be more important,

such as the disruption caused by handover events.

2) Process link events

Events from the link providers need to be processed in

order to determine whether to forward them to link users or

store them and/or perform statistical operations on the event

information.

For example, the link events could be generated frequently

and many events may not be of interest to the applications, but

statistics regarding the events may have been requested, such

as averages or repeated events (for example, packet loss burst)

lengths. Therefore, the event information needs to be stored

and processed to form the notifications to the applications.

3) Provide link information and configure links

The commands to configure links need to be processed to

determine which link provides the corresponding command,

and to issue a “not supported” response if necessary. It is also

necessary to determine which link provider operations to

invoke, for example, to connect or disconnect a specific link.

It should therefore be possible for link providers to register

with ULLA in order to specify which operations and attributes

can be accessed.

Applications may require detailed information prior to

selecting and configuring specific links and therefore, the

selection and retrieval of link related information (attributes)

should be made possible by the ULLA.

III. STATE-OF-THE-ART

There were, in the past, several attempts to provide a

uniform and simplified access to link layers. Through the

Linux Wireless Extensions (LWE) [8], Linux proposes a

uniform interface to control and configure wireless network

devices. The LWE is implemented as an extension of the

socket interface and features the ability to deliver network

events to user level applications. LWE is, however limited to

802.11 based network drivers and does not provide any way to

be dynamically extended. Also the set of supported events is

constrained to simple things such as Link up or down. The

Windows NDIS (Network Driver Interface Specification)

extends this idea to all network drivers by providing a generic

framework and interface allowing applications to query and

set Object Identifiers (OIDs) representing specific attributes of

a network, such as connection status or bandwidth. Still the

NDIS interface does not deal with link layers that are not

implemented as NDIS network drivers (Bluetooth, modems).

Moreover, the interface provided to applications is low level

since it can be compared to I/O controls allowing attributes to

be queried and set.

To provide a uniform access model to modems embedded

in mobile phones, manufacturers have extended the basic set

of commands called “Hayes commands” or “AT commands”,

originally specified to allow applications to use PSTN lines to

interchange information and to reach remote information

resources. With the rise of GSM/GPRS system, the AT

commands specification has been enriched with the aim of

allowing the control and management of the capabilities being

provided by the new devices. The AT interface now supports

configuration as well as event notifications and has become

the de-facto standard to manage modems embedded in phones.

However due to the number of supported commands the AT

interface stays cumbersome to use and is limited to modem

like devices. Some higher level APIs such as the Windows

Telephony API (TAPI) have been built over the AT command

set in order to simplify the access to modem like devices.

These interfaces are still dedicated to a single type of devices,

though.

Similarly, several research projects have tried to provide an

interface enabling applications to retrieve information or

configure link layers in a way simpler than the existing

interfaces. Odyssey [6] is a framework built on NetBSD and

aims to enable application-aware adaptation to resources

availability and modification. Applications collaborate with

the Odyssey framework by communicating resource

expectations that are expressed in term of lower and upper

bounds. The Odyssey framework is then responsible for

monitoring the resources and for notifying the application as

soon as the resources have left the requested bounds.

Even if Odyssey shares some of the goals defined for the

ULLA (notify application of appropriate link changes), it

suffers from a non portable interface since it is based on the

Virtual File System interface of NetBSD. It also does not

provide any function to control link layers. Finally, the

number of available monitored resources is limited (6) and the

extensibility to other resources is poor. CME [7] is another

middleware architecture for network-aware adaptive

applications where application notifications are available. The

proposed architecture takes, however, another approach by

delegating the control of the link layers to a centralized

Connection Controller whose decisions are based on policies

registered by applications. This is different from the proposed

ULLA since the ULLA is not meant to decide which link layer

should be used and how. Also CME does not address issues

such as extensibility or the ability to control the link layers

directly from application level. It finally provides a very

limited set of notifications for applications.

IV. EXAMPLE APPLICATION DOMAINS

In the following we discuss some application areas that

would benefit from the existence of the ULLA API.

A. Connection Manager (Always Best Connected)

At present, due to the limitations in the IP stack, most

mobile devices can only handle a single active connection at a

time (per link). Connection manager is typically understood as

the agent responsible for deciding on the user of the link, but

at present the existing connection managers have to operate on

a very limited amount of information (essentially driven by

profiles and simple inferences from URIs, for example).

The existence of ULLA would allow development of much

more intelligent connection management schemes based on

information inferred from both the link-layer, and end-to-end

connection. This could even include implementation of actual

hand-off schemes, for switching connection from one

interface to another, either using Mobile IP (see below for

further discussion), or any of the various transport or

application layer schemes. Also, using ULLA, the connection

management implementation could be independent of

particular link-layer technologies, and also partially

transportable between operating systems.

B. Unified Cross-Layer Optimization

In recent years, a variety of solutions for wireless cross-

layer optimization (CLO) have been proposed. With CLO

multiple parameters at different layers of the protocol stack

are jointly optimized to meet application requirements.

However, these solutions are often developed in an ad hoc

fashion limiting their widespread use as standard mechanisms.

Therefore, the ability to control radio “knobs” ([1]) in an

intelligent way requires that interfaces are defined to expose

controllable parameters. By providing a uniform way to access

a wide variety of link-layer parameters in a technology-

independent way, ULLA would be an important enabling

technology for CLO. We believe that ULLA could help

optimizing network operations across the protocol stack.

At the network layer ULLA could be used to optimize

mobility solutions by providing preliminary notifications

when the link quality falls below a threshold, so that the

handover process can be anticipated. This would help to

reduce handoff latency. In ad-hoc networks link-layer

information could be used for routing optimization by

selecting the network interface to use in multi-homed

terminals.

Transport protocols like TCP can be adversely affected by

the wireless link error and delay patterns, leading to

throughput reduction and energy waste in a mobile terminal

[1]. Error control at the link layer may interfere with end-to-

end flow control at the transport layer. A joint tuning of

parameters seems therefore desirable. Information provided by

ULLA related to handoffs, network disconnection and packet

losses could be used to differentiate congestion problems from

packet losses, and improve timer management in TCP (see, for

example, [4]) and other protocols sensitive to jitter and other

changes in network characteristics.

Adaptation to changing link characteristics can be effective

at the application layer, as shown in [1]. In multimedia

streaming scenarios, source coding parameters can be

dynamically varied, based on link statistics; PHY/MAC

parameters can also be controlled accordingly. In [2] a CLO

example is presented that uses real-time transcoding in a

Wireless LAN environment. Delay constrained applications

(like wireless VoIP) may want to enforce robustness by

adding FEC streams ([3]), when the packet error rate goes

above an acceptable level. Applications could also use the

ULLA notifications to delay their network requests until the

required network characteristics are fulfilled (bandwidth,

latency…).

C. Context-sensitive Applications

Considerable research effort has emerged for creating

frameworks for context-sensitive applications. In general,

context sensitivity can be taken to be adaptation from the part

of the terminal or application to changes in environment,

network conditions, location of the user (logical or physical),

and so on. However, actual implementation of context-

sensitivity has turned out to be extremely difficult, and it has

even been argued [5] that “generic artificial intelligence” is

necessary to make the concept work.

We see ULLA as being one enabling technology for

building generic context management systems. It would allow

receiving information about the user context that the

network(s) could provide through a unified interface,

something that is impossible with present-day technologies.

The context ULLA could provide would, for example, include

location information (either in terms of absolute or relative

coordinates in case of cellular systems or ultra-wideband

links, or in logical terms using the information about the

networks detected in the case of WLANs, for example),

information about user mobility, and about other devices

surrounding the user.

V. PRELIMINARY ARCHITECTURE

On top of providing a uniform API, the architecture of the

ULLA has been designed to fulfil the following requirements.

(1) Extensibility: the proposed architecture should be able to

easily integrate new link layer technologies, possibly

providing new features. (2) Platform independence: the

proposed architecture should be able to be integrated on

multiple software and hardware platforms (platform

independence). (3) Scalability: the proposed architecture

should be light enough to be used on very limited platforms

such as sensor devices. (4) Battery life friendly: the proposed

architecture should not be a major source of battery drain.

The approach taken in the design of the ULLA is that it

should provide an abstract view of the link layers to the

ULLA clients. Using an abstract representation allows the

ULLA to provide a uniform way to access the wide range of

existing link layers independently of their implementation. In

order to manipulate these abstractions, a specific query

language should be used. In the following, a ULLA query

specifies a request made by an application to retrieve

information about a link layer. A notification request is used

to specify a condition that should trigger an asynchronous

notification. Finally a command is a request specifying an

action that should be executed to modify a link layer state.

Queries and request notifications both use the ULLA query

language. The following paragraph gives an overview of the

basic elements composing the ULLA architecture.

A. Detailed Description of the Architecture

Figure 1 describes the ULLA architecture. The architecture

is composed of four main components.

Fig. 1: Basic ULLA architecture.

The ULLA Query Processing Engine (UQPE) is

responsible for parsing the requests made by ULLA clients

(queries, notification requests and commands). The handling

of a request depends on its type. If the request is a query, the

UQPE parses the request and uses the ULLA storage to return

the requested information. If the request is a notification

request, the UQPE stores the requests in the ULLA storage so

that it can be later on evaluated. Finally, if the request is a

command, the request is forwarded to the corresponding

ULLA Link Layer Adapter.

To provide abstraction of the existing link layers, we use an

object oriented design. The ULLA storage is used to store

class definitions (representing link definitions) as well as

instances of these classes (representing discovered links). Link

definitions are written with an Interface Definition Language

(IDL) and expose a set of attributes that can be queried (in this

sense, a class definition is similar to a DB schema). A link

definition also specifies a set of methods available to modify

the state of a link layer (commands). Instance of class

definitions are created when new link layers are discovered.

The ULLA archive storage is an optional component of the

architecture. Its purpose is to provide a way to store historical

information about the link layers in order to provide statistical

values for ULLA clients. Access to the ULLA archive storage

is realized through the UQPE.

Obviously today’s operating systems won’t support the

ULLA expected interface. To keep the ULLA platform

independent and enable a quick integration in existing

systems, we introduce the notion of ULLA Link Layer

Adapters (LLAs). A LLA is a proxy interface on the existing

driver that implements an interface known by the ULLA

(methods and queries), enabling the ULLA to forward queries

and method calls to the driver through the LLA. Upon

starting, a LLA registers, to the ULLA, the interface that it

implements. In addition, LLAs are used to send update

requests resulting from notification queries made by

applications (see paragraph on battery life). LLAs push

modifications of attributes through events that are sent to the

UQPE. LLAs are also used to report link discovery to the

ULLA. In such a case, a new class using the class definition

supported by the LLA, is created in the ULLA storage.

Because LLAs are tightly coupled with the link layer

implementation, they will probably have to be hand written. In

the future we expect to see ULLA enabled drivers that will

integrate the functionality provided by the LLAs.

B. Extensibility

Easy extensibility is probably the most important

requirement on the ULLA, in particular in a field where new

standards appear at a rapid pace. The ULLA provides

extensibility by supporting link class inheritance. We

envisage that a default ULLA_Link class will provide all

common attributes and methods generic for all link layers.

More specific attributes can be defined in daughter classes

inherited from the ULLA_Link class. From an application

point of view, it should always be possible to access a link

layer using only the attributes defined by the ULLA_Link

class. If an application wishes to use more advanced feature of

a link, it needs to get the inherited class describing this link.

C. Battery life

As presented in the architecture description, the ULLA

storage maintains a cache version of the attributes provided by

known link layers (bandwidth, Signal Strength…). The main

issue we have now is updating these values while still limiting

battery consumption due to polling or code execution. To

reach this goal, the following strategy is used. All attributes

maintained in the ULLA storage have an associated timestamp

indicating the last time they were updated. When a query

request is performed, the validity of the requested attribute(s)

is specified in the query and passed to the UQPE. For each

requested attribute, the UQPE checks with the associated

attribute timestamp the validity of the attribute. If the attribute

is too old, a query is forwarded to the corresponding LLA to

retrieve the current version of the attribute. This “lazy

update” strategy enables the ULLA to keep the number of

LLA queries to the bare minimum required by applications.

Dealing with notification request is a little trickier.

Notification requests specify a condition that should be met

before notifying an application. A notification condition can

span over several attributes of several link layers. When such

a condition is received, the UQPE breaks it in a series of

update requests sent to the involved LLAs. Each LLA update

request specifies an attribute as well as a frequency or a

threshold that should be used to send an event back to the

UQPE. For example, the UQPE could request a LLA to send,

an update for the signal strength attribute, every 2 seconds or

if it changes more than x db. Internally the LLA is free to

implement this update request through polling or with the

support of the underlying driver that could provide some form

of asynchronous notification. Note that the UQPE is not aware

of the internal implementation of LLAs. It only receives

events from the LLA and these events trigger a re-evaluation

of the pending notification requests stored in the ULLA

storage.

Fig. 2: Mapping of request notification to LLA update requests.

D. Example Scenario

Potentially a large number of applications could utilise

information passed through ULLA to perform specific

adaptations to realise performance enhancements. For

example a video application could consider information about

changing bandwidth passed through ULLA to adapt and

optimise its performance. During start-up, the application

could request for notifications about bandwidth changes.

Notification from ULLA to the application may also contain

additional information about availability of alternate

transmission modes. Based on this information, application

could either adapt its operation by changing its coding

schemes and playback buffers, instructing ULLA to select

another mode of operation or performing both adaptations to

maintain user perceived quality. The final adaptation may

depend on the user preferences (on quality, economy, security

etc) and also application may consider and optimise for power

consumption as well as user perceived quality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the motivation, and basic

architecture of a Unified Link-Layer API. We believe that

such an API is an essential enabling technology toward

software radio, and more intelligent applications. Although

several attempts to design such an API have been documented

in the literature, none of the existing approaches really fulfils

the requirements we have derived. Especially simultaneously

achieving extendibility and technology-independence while

retaining simplicity has proved to be a hard problem.

The work in the project is now focusing on the specification

of the API exposed to the applications in terms of the “high-

level” commands. This will set out the generic frameworks for

making queries, subscribing to and for receiving notifications,

and for issuing commands to the link-layers. Our present “best

guess” is that the API offered to the application will be

primarily text-based. Queries, commands and notification

subscriptions would be performed via simple, fixed high-level

function calls that take as one of the arguments a specification

written in a specific query language that will be developed in

the next phase of the project. The reason for embracing such a

text based approach is the easy extendibility.

The exact structure of the query language is still under

discussion, though we believe something like a well-defined

subset of SQL will most likely be used as a basis. Parsers for

such query languages with very small footprint are already

available. Our viewpoint is to think the collection of link-layer

information essentially as a database, with additional labelling

of data with regard to staleness, update frequency, and other

such quantities.

Further steps to be taken in the near future are the possible

refinement of the architecture, and clarification of where some

of the functionalities reside. Toward the end of the project,

our aim is to have a fully working prototype implementation

of ULLA for a variety of platforms, including a scaled-down

implementation for sensor-type platforms.

ACKNOWLEDGMENT

The authors would like to acknowledge discussions with all

the members of the GOLLUM consortium.

REFERENCES

[1] M. Zorzi and R. Rao, “Perspectives on the Impact of Error Statistics on

Protocols for Wireless Networks”, IEEE Personal Communications, vol.

6, pp.32-40, Oct. 1999.

[2] G. Convertino, D. Melpignano, E. Piccinelli, F. Rovati, F. Sigona,

“Wireless Adaptive Video Streaming By Real-time Channel Estimation

And Video Transcoding”, in Proc. IEEE Inter. Conf. on Consumer

Electronics, Jan 2005.

[3] J. Rosemberg, H. Schulzrinne, “An RTP Payload Format for Generic

Forward Error Correction”, IETF RFC2733, Dec. 1999.

[4] W. T. Raisinghani, A. Kr. Singh and S. Iyer, “Improving TCP

performance over Mobile Wireless Environments using Cross-Layer

Feedback”, in Proc. ICPWC-2002, New Delhi, 2002, pp.81-85.

[5] T. Erickson, “Some Problems with the Notion of Context-Aware

Computing,” ACM Commun., vol. 45, no. 2, Feb. 2002, pp. 102–04.

[6] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, and

K.R. Walker, “Agile Application-Aware Adaptation for Mobility”, in

Proc ACM Symposium on Operating Systems Principles, Saint Malo,

France, Oct 1997.

[7] J. Sun , J. Tenhunen and J. Sauvola, “CME: a middleware architecture

for network-aware adaptive applications”, In Proc. 14th IEEE

International Symposium on Personal, Indoor and Mobile Radio

Communications, Beijing, China, 1:839 – 843

[8] http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.

Extensions.html; visited on 4.02.2005.

Notify when

1 Mbits/s < Bandwidth < 11 Mbits/s

AND

Data is encrypted

Update_req(Bandwidth, >1Mbit/s)

Update_req(Bandwidth, < 10Mbits/s)

Update_req(encryption, 2 sec)

