
Reconfiguration Management in Self-Organizing Systems beyond 3G

Athanasia Alonistioti, Christos Anagnostopoulos, Gerasimos Stamatelatos

Communication Networks Laboratory, Department of Informatics & Telecommunications,
University of Athens, Greece

Email: {nancy, bleu, makiss}@di.uoa.gr

Abstract - The main goals for the introduction of next generation

mobile systems are the integration of software based

communication concepts, provision of broadband access, seamless

global roaming and Internet/Data/Voice everywhere, utilizing

each time the most “appropriate” technology. Further, such a

dynamic environment will enable the delivery of situation-aware,

personalized multimedia services over heterogeneous, ubiquitous

infrastructures. The development, delivery and management of

mobile services are the subject of many research activities in both

the academia and industry. Reconfigurability and adaptability are

key aspects of the mobile systems beyond 3G. In addition,

reconfigurable mobile systems and networks introduce additional

requirements and complexity. This paper presents an object

oriented reconfiguration management metamodel and a number

of patterns that aim to model the abovementioned aspects.

Keywords: Reconfigurability, Reconfiguration Management, Self-

Organizing Systems, Metamodel.

I. INTRODUCTION & RELATED WORK

The issue of reconfigurability has been tackled in the past mainly

in the two edges of the OSI layer model, namely the physical and

the application. The physical layer related research has been carried

out so that devices can detect and use the available networks.

However, the research was limited to the use of different physical

layers to carry the information and no provision was made for the

interoperability with the application’s requirements. Furthermore,

several attempts have been made for the introduction of adaptive

protocols and respective design ([7]). Building on the knowledge,

from early software radio projects in the military domain, SDR

Forum has pioneered in exploring reconfigurability concepts in the

United States. However, being the vanguard of reconfigurability

developments and the first to define a software radio architecture [3]

[4], seems to have come at the expense of a rather focused view on

reconfigurability that addresses primarily the radio domain (RF

processing, down-conversion, RF processing, A/D conversion, etc)

[4]. On the application layer, research has been carried out on the

adaptation of the application or service according to the predefined

profiles of the user and the service in the MOBIVAS [5] platform

[6]. The user can discover different instances of the service

according to the profile and the terminal capabilities of his device.

In the IST-TRUST and SCOUT projects mobility and radio resource

management issues have been addressed [7]. Recently, OMG has

introduced the SBC group (Software Based Communications),

which addresses issues relevant to the integration of software

technologies to serve the solutions for flexible communication

systems [5]. Issues related to Software Radio have been addressed

in the joint SWRADIO FTF and SBC DTF meeting where OMG

adopted a draft PIM and PSM SWRadio Components specification

[8]. Joe Mitola has pioneered the concept of Software Radio and the

integration of object oriented technologies to support flexible

communication and cognitive systems [9], [10], [11]. The tackling

of the problem, since it was mainly in the two edge layers, physical

and application is neither efficient nor sufficient; therefore it cannot

provide a robust solution for achieving reconfiguration end-to-end.

Based on the above discussion, it is apparent that in the design of

fully reconfigurable networks and systems, the introduction of

advanced reconfiguration management functionality is necessary.

holistic solution for addressing reconfiguration management across

all layers is introduced as a Reconfiguration Management Plane (RMP).

RMP enhances reconfigurability control in order to address end-to-end

reconfiguration management aspects [2]. In this paper we introduce a

meta-model for reconfiguration related functionality specification and a

number of patterns that evaluate its significance in a mobile computing

environment.

The rest of this document is structured as follows: Section II depicts

our conceptual pattern elements using the Unified Modelling Language

(UML) and represents it through a class diagram. Section III defines

such model via the reconfiguration stereotypes, to evaluate the different

parameters of the reconfiguration algorithm (e.g., class-marks, triggers,

and context). Section IV refers to value added service creation pattern

that is related to service provision concepts (e.g., user profiles and

terminal capabilities). Section V introduces the personalized service

provision pattern and describes semantics with a certain usage of user

preferences. Section VI analyses the reconfiguration interpretation of

the defined patterns, indicating the role of reconfiguration. Finally,

conclusions and directions for further work in the area are provided in

Section VII.

II. DEFINITION OF RECONFIGURATION

We could envisage the notion of Reconfiguration as an abstract

process, which is based on how to efficiently adapt, apply and upgrade

the functionality that an entity supports, to any expected or potential

change/alteration of its state, situation and activity. In the basic

reconfiguration scheme, as presented in Figure 1 an Actor reconfigures

a Reconfigurable Entity composed by a certain number of discrete

Manageable Elements. Furthermore, the Actor maintains a

“manipulates” relation with each of these Manageable Elements

exploiting their functionality. Such an abstract definition is further

described by introducing several patterns and model elements that

interpret the notion of reconfiguration.

R e c o n f i g u r a b l e
E n t i t y

M a n a g e a b l e
E l e m e n t

s c o p e ds e t

A c t o r
e x p l o i t e r

r e c o n f i g u r e s

c o n t a i n s
R e c o n f i g u r a b l e

E n t i t y
M a n a g e a b l e
E l e m e n t

s c o p e ds e t

A c t o r

f u n c t i o n a l i t y

e x p l o i t e r

r e c o n f i g u r e s

c o n t a i n s

m a n i p u l a t e s

Figure 1. Essential Reconfiguration Scheme

III. PATTERN ELEMENTS

We refer to model elements that act in certain spaces of a

Reconfigurable environment. The spaces are predefined scenarios into

which model elements unfold their capabilities and communicate with

each other appropriately. A reconfiguration action derives the

functionality of such model elements and is aggregated to specific

algorithm in order a service perception or reconfiguration event to be

carried out. Such elements are assigned different roles in different

spaces. An element may be engaged to an activity for a certain space,

but it also may have been assigned another role in the same or in a

different space. In the UML syntax, the concept of inheriting different

roles in different spaces is modeled as taggedValues. Every element

attributes to predefined model pattern that maintains a set of

semantically ordered taggedValues, which address the role and any

additional information that an element provides in a space.

The aforementioned patterns extend the PatternClass,

PatternBehavior and PatternOperation stereotypes. PatternClass is

referred to as any function or algorithm, which plays different role into

different spaces (i.e., the multiple taggedValue pattern, with space-name

being set as “name” and role-name being set as “role”). PatternBehavior

stands for an activity that characterizes an element, such as an open

interface or the methods of an object. Further, PatternOperation

stands for an operation, which is fired/activated whenever certain

rules are applied (i.e., a decision maker or a trigger object may

implement a set of such operations).

In addition, the relations among such elements are fully defined

in a steady state once they are envisaged as stereotyped

Dependency. The sole dependency among them is collectively

called Reconfigurability, indicating that an element is reconfigured

by another or by itself (i.e. the degree of decision making and self

reconfiguration capabilities characterizes the concepts of cognitive

and self-organizing elements). We further refer to Constraints

among elements. Such Constraints restrict or control the

functionality of the elements, which can be envisaged as a special

kind of policies that a decision-making mechanism is abided by.

The elements are coefficients of stereotypes’ construction and

support the pattern-based design.

IV. RECONFIGURATION STEREOTYPES

We firstly introduce a set of stereotypes that declare the

behavioral attributes of the model elements. The stereotype

Provision is defined as a generic concept of service perception to

anyone that asks for it. A provision space may be secure and may

take into consideration the mobility pattern of the requester. The

mobility concept is just a trigger that labors the provision process

(i.e., service downloading for mobile users). Such attributes are

defined as taggedValues indicating the extension concept of the

PaternClass. The main stereotype of all the spaces is referred to as

Reconfiguration. Such stereotype inherits both the PatternClass and

the Provision stereotyped concepts and stands for an algorithmic

and functional point of view. The reconfiguration concept is more

extended than the provision one and is marked as transparent or not

(i.e., transparent taggedValue). Dependencies among atomics that

are stereotyped as Reconfiguration are also marked as

Reconfigurability. This dependency illustrates the strong

relationship among reconfiguration atomics that are due to

implement any reconfiguration process or algorithm (i.e., patch

downloading, protocol replacement, dynamic service provision).

Reconfigurability, as semantic dependency, may be implemented

as priority or time ordered messages from context detection atomics

(i.e., network monitoring systems, context managers, sensor

network information accumulators) to decision-making atomics.

Certain triggers that maintain rule-based like policies indicating the

specific time-stamp for triggering any decision-making system fire

this messaging scheme. Such atomics are stereotyped as Triggers

and are assumed to extend the operational nature of any

reconfiguration algorithm. The Trigger performs its task with a

predefined intention (i.e., the taggedValue description), which it

may be an urgent or an optional event. For instance, a terminal

handover process may trigger the running service to be adaptable to

such change by requesting from the base station the appropriate

protocol downloadable component.

The rules that stand for any kind of triggering may be explicitly

described and interpreted by every triggering atomic. The stereotype

policy is marked describing the case in which there exists an

interoperable and certifiable model for a policy-like model among

heterogeneous reconfiguration systems. The policies form the main

construction of knowledge that includes every rule for performing

such algorithms (e.g., from the implantation point of view such rules

cover the business logic of a distributed reconfiguration

framework).

The piece of system information that refers to the temporal or

static description of the objects is maintained into profiles. Any

atomic that holds the permanent or contextual information about

itself is self-described by the use of well-predefined profile models.

The profile atomic may be referred to user, equipment, service,

security, charging, or network elements each of which forms a

meaningful object for time and/or activity oriented status (i.e.,

context) monitoring. The profile tags a specializer (i.e., the monitored

element), a local attribute that indicates whether such information is

distributed among systems or is located physically in a single system,

(e.g., profile repositories) and static flag that signs the dynamic nature

of the stored information. A static profile stands for the steady attributes

of the profile and a dynamic profile is formed by the dynamic alteration

of such attributes. Section IV details the profile contextual information.

Once the profile atomic is a specializer of any element in mobile

computing environments, the notion of classification of the

reconfiguration feasibility that an element shares for is of high

importance. The definition of a classmark as a classification attribute is

mandatory. Such aggregated information feeds the decision making

atomic to perform intelligent actions. The classmark stereotype is a

pattern class indicating how “reconfigurable” an element may be and

whether certain actions may be performed, causing certain alterations to

the element’s functionality. The tag classmark for a certain element is

constructed by information that is gathered and collated by the different

sections of profiles, the various patterns describing the result of any

applied reconfiguration algorithm, and the contextual or behavioral

history. The reconfiguration capabilities are inherent part of this

classmark, in order to enable the characterization of the degree of

reconfiguration the element or e.g., equipment can undergo. The

classification of an element related to the classmark sign may conclude

(not absolutely) the following list:

Static classmark: Low level of reconfiguration capability. The

element (e.g., user equipment) may need to reboot its software

component in order to be adaptable to any request for

reconfiguration.

Quasi-static classmark: A middle static capability feature (e.g., the

running service may interrupt its connection but the user equipment is

just requesting for a better level of bandwidth).

Quasi-dynamic classmark: A middle dynamic capability feature (e.g.,

the running service is adaptable to any change).

Dynamic classmark: Fully reconfigurable element (e.g., the user

equipment may negotiate and take decisions about its contextual

state).

We introduce the role and the spaces of a Reconfiguration environment

as the service provision pattern and we extend such functionality to the

fully reconfiguration pattern.

V. VALUE ADDED SERVICE CREATION PATTERN

This section describes the service creation pattern from a business

model point of view. A value added service development involves

several roles, namely, the ApplicationProvider, the ContentProvider,

the ServiceProvider, and the ValueObject. Each of the roles has been

modeled as class, implementing the already described patterns. Figure 3

depicts the space of this pattern.

More specifically, the ValueObject class interprets and captures the

result of a value creation process (e.g., the software element of the

downloadable service). This pattern illustrates a step-by-step value

creation involving different roles and strong sense of specialization .The

value creation becomes more efficient once the involved roles

specialize in the part of the value creation process where they have the

greatest competence. In this case, the ValueObject is differentiated

according to the specialization of each individual role being involved in

every value creation process.

The ApplicationProvider class, stereotyped as provider, models the

role of software developer as a step of the composite value creation

process. The created value stands for the developed application, as

declared by the attribute application attributes to “ValueObject”. The

corresponding role is further described by the “creates” realization that

exists between ApplicationProvider and ValueObject classes. The

secure tagged value is set “true” indicating the requirement that every

single application development process must be carried out with

compliance to the adopted security constraints (i.e., security policies are

applied to any ValueObject concept). Additionally, the mobility tagged

value is set “true” indicating that the described value creation takes into

account the potential user’s mobility behavior. The ContentProvider

class, stereotyped as provider, models the role of content

repositories and maintenance as collectively declared by the

realization “maintains” existing between ContentProvider and

ValueObject classes. The created value, as a step towards the

composite value creation, stands for each autonomous unit of

content,, which is stored within the aforementioned repositories,.

The secure tagged value is also set “true” indicating that a content

unit development and maintenance process must be carried out in

compliance with the adopted security policies. Additionally, the

mobility tagged value is set “false” indicating that the described

value creation has no further relevance to the user’s mobility

behavior.

Finally, the ServiceProvider Class, also stereotyped as provider,

materializes the value added service provision role. ServiceProvider,

by composing the corresponding values created by the

ApplicationProvider and ContentProvider classes, finalizes the

value creation. This composing process is indicated by the

application and content attributes set to ValueObject as well as the

“cooperates” bi-directional associations that exist between

ServiceProvider and the rest of classes. Furthermore, such a

finalization is indicated by the “obtains/provides” realization that

links ServiceProvider and ValueObject.. The “true” secure tagged

value is set “true” indicating that the service provision process must

be accomplished in secure transaction. The ServiceProvider’s

mobility value must be the same with ApplicationProvider’s one.

Setting the mobility value “true”, indicates a full service provision

with respect to user’s mobility features. On the other hand,

ServiceProvider is not aware of the content adaptation regarding the

user’s mobility. This is indicated this by setting the

ContentProvider’s mobility to opposite value.

VI. PERSONALIZED SERVICE PROVISION PATTERN

This section describes the so–called Personalized Service

Provision Pattern that attempts to model the various service

provision processes (the SP0 space refers to personalized service

provision). A service provision process (i.e., service perception

space), is carried out in a personalized way, by considering set of

certain activities that involve context management, profile

management, software development, charging and privacy related

policies.

In the beyond 3G telecommunications systems , the requirement

for anywhere and any terminal, personalized access to services is to

be of high importance. By consuming flexible service provision

tasks, mobile users evaluate a single access point, through which the

discovery and optimal selection of a plethora of services are

performed and can be tailored to the service provision context (i.e.,

terminal capabilities, user location, and network characteristics) as

well as personal preferences [1].

The Personalized Service Provision Pattern is based on a

lightweight UML profile that models the various interactions among

certain roles, involved in the provision process.

The PersonalizationServiceProvider being stereotyped by the

Provision concept interprets the main role for the proposed

personalized service provision action. The tagged value secure is set

“true” declaring that security features assumingly are applied in

every individual service provision action, whilst the mobility one is

set “true” declaring that the certain mobility pattern (i.e., mobility

model, path prediction algorithms) must be taken into account in

such process. Such tagged values have already described in Section

III. PersonalizationServiceProvider is the final adopted role in the

service provision process that provides a value added service to end-

users as a result to various interactions and individual processes.

Such interactions and processes are described in this paper as

follows.

The UserInfo class, stereotyped as Profile, models information

that is related to the end user (i.e., consumer of the service or

VASP), having been indicated by the specializer tagged value by

setting it to “user” and the local one to “true”. Such information

stores, personal data for user identification (e.g., authorization data) as

well as description of user’s charging capabilities. The modelled

information may be either constant over the time or changeable.

Commonly, the UserPreferences class is stereotyped as profile and

maintains more specific information referred to a single user as

indicated by the specializer tagged value being set to “user” and the

local one being set to “true”. Such information may further hold the

user’s cost related preferences (e.g., charging profiles that may be

related to a maximum amount of money that a user is willing to pay for

a service. This information is characterized to be dynamic, as the tagged

value static is set to “false”. In this case, such information may be

obtained by monitoring procedures and changes rapidly. The

UserProfile class, stereotyped as profile, manages the end users’

profiles. Figure 4 illustrates the UserProfile class as a composition of

the corresponding UserInfo and UserPreferences classes, by acting as

profiles aggregator (i.e., this is declared by the tagged value static set as

“false”). The specializer tagged value is set to “user”, indicating how

the specific type of profile is managed. Furthermore, the static tagged

value set to “false” indicates that the managed information is dynamic.

The TerminalCapabilities class models the profile of specific user

equipment as the static value local set to “true”. More specifically, such

a profile is composed by the equipment’s attributes and capabilities,

such as processing, storing and displaying capabilities and is essential

for personalization purposes in service provision processes.

TerminalCapabilities is stereotyped as Profile”. The tagged value static

is set to true, declaring that the user equipment characteristics are either

constant over the time or change in a long-term basis.

The ServiceDescription class models the profile of a specific value

added service as declared by the tagged value specializer that is set to

“service” and the local one that is set to “true” is stereotyped as Profile.

A service profile is composed by characteristics and constraints of the

service such as qualifier, vendor, QoS indicators, and charging

information. Such information, which is of static nature, is indicated by

the static tagged value set to “false”.

The Privacy class, stereotyped as Policy, models the specific

regulation context, regarding the adapted privacy policies (i.e.

traceability, non repudiation, and secure transactions). The isDescriptive

tagged value is set to “true” indicating that the current privacy policies

exist in a descriptive way (i.e., declarative policy languages).

The Billing class, stereotyped as Policy, models the current

accounting, charging, and billing schemes that operate in any service

provision process. The PersonalizationProfileManager class,

stereotyped as Provision, maintains a personalizer role. Such role is a

significant one in every service provision process as it initiates and

coordinates the main action of personalization. As illustrated in Figure

4, PersonalizationProfileManager manages the static profiles acting as

aggregator. The performed management is closely related to gathering

the required information leading the personalization action and must be

carried out in a secure way, as indicated by the tagged value secure set

“true”. Furthermore, the tagged value mobility is set to “false” and is

related with the management for only static profiles.

On the other hand, the PersonalizationContextManager, also

stereotyped as Provision, maintains a context role. More specifically,

PersonalizationContextManager manages the dynamic profiles that are

involved in a service provision process, acting also as an aggregator.

The management relates to capturing and fusion of the dynamic-nature

information providing some necessary feedbacks. The secure tagged

value is also set to “true”, indicating the security features of the

performed actions. The mobility tagged value is also set to “true”,

declaring that this class aggregates and manages dynamic profiles.

PersonalizationContextManager maintains a role, which is

complementary to PersonalizationProfileManager’s one, as indicated by

the “interacts” bi-directional association that links the aforementioned

classes.

Finally, such class is the decision-making model element. It obtains

the required information for a personalized service provision

communicating with the PersonalizationProfileManager. Similar

interactions are described by the coherent cooperation of the bi-

directional association rules.

VII. RECONFIGURATION PATTERN

We introduce a reference model that relates to distinct meta-

model description of a reconfiguration supportive system. Such

system conforms to certain reconfiguration patterns into which well-

defined spaces, as depicted in Figure 5, (i.e., RC0 space refers to

informational driven reconfiguration and RC1 space refers to

activity driven reconfiguration) assign roles to any element. We

firstly, meet the notion of a ContextManager that gathers and

collectively composes relevant contextual information of distributed

resources. Such information relates to mobility data and to history

actions when it is referred to temporal data collation, and to profile

information when it is referred to atomic’s information. The former

informational set of resources are stereotyped as PatternBehavior

because indicate the information generated by performed activities

of any element, such as user’s service downloads, network elements

status and protocols states. The latter sets of resources are

stereotypes as profiles and maintain the time specific value of such

sets.

The ContextManager composes such information in order to feed

and initiate any trigger action defined and interpreted by the

RCTrigger component (i.e., stereotype Trigger with triggering

intention as a “notifier”). Such trigger coefficient just notifies the

system about any contextual alteration took place related to an

element (e.g., terminal status) or to a cluster of elements (e.g.,

terminals connected via the same network protocol). Applying

provision algorithms may initiate and render for provision actions

that in turn they could lead to reconfiguration actions monitored by

Trigger atomics. The RCTrigger fires the rules of the

reconfiguration knowledge base described in policy logics. The

fired actions are declared in the RCAction Trigger and inform

appropriately the decision-making component incorporated into the

ReconfigurationManager (maybe via certain communication

protocol forming the reconfiguration control signaling). Such

manager retains a “Reconfigurability” dependency with its

monitored LocalReconfigurationManagers that is considered the

overall supervisor of any reconfiguration action. Its monitored

managers, the so-called LocalReconfigurationManagers (LRMs) are

responsible for achieving and implementing the reconfiguration

commands and algorithms to any Component that are attached. The

LRM maintains partial knowledge of the attached Component (e.g.,

terminal, base station) and controls the downloading process

incorporating the software-downloading manager

SWDownloadManager. The latter retrieves the meta-data of the

downloadable software and the software itself. Such data could be

maintained to profile manager’s repository distributed or aggregated

to certain computation space. The Component that is supervised by

an LRM may be reconfigurable or not and respectively may be

classified according to its reconfigurability capability by certain

ClassificationStub (i.e., the collectively called classmark). Gathering

information from the Component’s profile, the runtime

Component’s context, its classmark tag, and any others

Components’ information related with the supervised one generates

any action, which the associated LRM has to apply.

VIII. USE CASE FOR RECONFIGURATION

In this scenario (see Figure 6), the case of a malfunctioning user

terminal is being considered. The Manufacturer undertakes the

RCTrigger role and develops a new parch, with reference to the

value creation process that has been described within Section V.

The Reconfiguration Control Manager (RCM), that undertakes the

ReconfigurationManager role, has implemented a certain interface

enabling Manufacturer to provide patch management. When

Manufacturer registers its new patch, the Reconfiguration Control

Manager (RCM) queries ContextManager with the appropriate

knowledge about the patch for a list of the user terminals that are

capable of performing the corresponding upgrade. ContextManager

derives the requested list by filtering the appropriate contextual

information and responds to RCM that notifies the corresponding

LRM(s), allocating the reconfiguration management. Each LRM

triggers DownloadManager to manage/lead every single downloading

process, and the patch in question is securely downloaded to the

corresponding user’s terminal, without any interference by the user side.

Finally, each user terminal installs the downloaded patch.

CONCLUSIONS AND FUTURE WORK

The evolution of reconfigurability notion has been heralded as main

concept for 4G mobile communications. In order to reach its full

potential, a consistent framework that deals with reconfigurability

challenges and control has to be introduced. In this paper we have

introduced a reference model which materializes these challenges, and

in the future our work will focus on extending the described metamodel

and model using more specific models. Such model develops a generic

framework to cope with the complexity of reconfigurability

management. This work will provide the basis for the evolution of End-

to-End Reconfigurability notions. The proposed model for

reconfiguration management addresses the effective policy based

reconfiguration triggering towards the network nodes and the

combination of adaptation triggering towards the end-user services in

order to achieve the optimal service provision and perception to the end

user in a transparent way. Our research focuses on innovative profile

definitions and interpretations, such as network profile, which they are

assumed to enrich the reconfiguration context deployed to a holistic

decision making mechanism for further efficient reconfigurable

applications.

ACKNOWLEDGEMENT

This work is partially funded by the Commission of the European

Communities, under the 6th Framework Program for Research and

Technological Development, within the project End-to-End

Reconfigurability (E2R). The authors would like to acknowledge the

contributions of their colleagues from E2R consortium.

REFERENCES
[1] Athanasia Alonistioti, Fotis Foukalas, and Nikos Houssos,

“Reconfigurability management issues for the support of flexible

service provision and reconfigurable protocols”, proc. SDR Forum

2003 technical conference, November 2003, Orlando, Florida

[2] N. Alonistioti, A. Glentis, F. Foukalas, and A. Kaloxylos,”RMP:

Reconfiguration Management Plane for the support of Policy

Based Network Reconfiguration”, proc. IEEE PIMRC 2004,

September 2004, Barcelona, Spain.

[3] The Software Defined Radio Forum, http://www.sdrforum.org/

[4] The Object Management Group, http://www.omg.org

[5] IST-MOBIVAS project, http://mobivas.cnl.di.uoa.gr

[6] N. Houssos, V. Gazis, A. Alonistioti, " Application transparent

Adaptation in wireless systems beyond 3G", 2nd International

Conference on Mobile Business (M-Business 2003), Vienna,

Austria,2003

[7] M. Dillinger, K. Madani, N. Alonistioti, “Software defined radio,

Architectures, Systems and Functions”, John Wiley & Sons, Ltd

ISBN: 0-470-85164-3

[8] http://www.omg.org/docs/dtc/04-05-04.pdf

[9] “Software Radio Architecture: Object-Oriented Approaches to

Wireless Systems Engineering”, Joseph Mitola, ISBN: 0-471-

38492-5, October 2000, Wiley.

[10] IEEE Personal Communications: Special issue on Software

Radios, Aug. 99, Vol. 6, No. 4.

[11] IEEE / JSAC Special issue on Software Radios, Apr. 99, Vol. 17,

No. 4

Trigger

<<taggedValue>>description : String=intention

<<taggedValue>> type : String= event

<<stereotype>>

Provision

<<taggedValue>> secure : Boolean= true

<<taggedValue>> mobility : Boolean= true

<<stereotype>>

Class

PatternClass

<<taggedValue>> pattern[0..*] : <name:string[instance:integer],role:string>

<<stereotype>>

<<stereotype>>

Reconfiguration

<<taggedValue>> transparent : Boolean = true

<<stereotype>>

Dependency

Reconfigurability

<<stereotype>>

<<stereotype>>

Operation

PatternOperation

<<taggedValue>> pattern[0..*] : <name:string[instance:integer],role:string>

<<stereotype>>

<<stereotype>>

Constraint

Policy

<<taggedValue>> isDescriptive : Boolean=true

<<stereotype>>

<<stereotype>>

Profile

<<taggedValue>>specializer : String

<<taggedValue>> local : Boolean =true

<<taggedValue>>static : Boolean= true

<<stereotype>>

<<stereotype>>
Classmark

<<taggedValue>> type : String=static

<<stereotype>>

Stereotypes'

Definitions

PatternBehavior

<<taggedValue>> depth= finite

<<taggedValue>> randomness = brownian

<<stereotype>>

Figure 2. Stereotype Patterns

RCAction

ComponentClassmark

Software

ReconfigurableComponent

isReconfigurable : Boolean

classifies

SWDownloadManager

targetElement

softwareCompoonent

retrieves
LocalReconfigurationManager

<<Reconfiguration[RC1,manager>,transparent=true>>

reconfigures

0..n1 0..n1

drives

ReconfigurationManager

<<Reconfiguration[RC1,manager>,transparent=true>>

0..n

1

0..n

1

cont...

1..n

1..n

ProfileManagerspecializes

triggers

Provision

<<taggedValue>> secure : Boolean = true

<<taggedValue>> mobility : Boolean = true

<<stereotype>>

disjoint

Device

Profile

<<taggedValue>> specializer : String

<<taggedValue>> local : Boolean = true

<<taggedValue>> static : Boolean = true

<<stereotype>>

manages

Policy

<<taggedValue>> isDescriptive : Boolean = true

<<stereotype>>

configures

RCTrigger

triggers

initiates

History

<<PatternBehavior[RC0,recorder],depth=finite,randomness=null>>

Mobility

<<PatternBehavior[RC0,tracking],depth=predefined,randomness=markov>>

RCContext

composes

composes

initiates

composes

composes

ContextManager

manages

Figure 5. Reconfiguration Pattern

Figure 3. Value Added Service Creation Pattern

ValueObject

ContentProvider

content :ValueObject

<<Provision[<SP1,provider>,secure=true,mobility=false]>>

maintains

ApplicationProvider

application : ValueObject

<<Provision[<SP1,provider>,secure=true,mobility=true]>>

ServiceProvider

application : ValueObject

content :ValueObject

<<Provision[<SP1,provider>,secure=true,mobility=true]>>

cooperates
cooperates

creates

obtains/provides

Service Provision

Pattern

ContextManager :
ContextManager

Manufacturer :
RCTrigger

RCM :
ReconfigurationManager

LRM :
LocalReconfigurationManager

UserTerminal :
ReconfigurableComponent

DonwnloadManager :
SWDownloadManager

1: ValueCreation(patch:Software)

2: RCActionQuery(patch:Software)

3: DeviceListQuery(patch:Software)

4: DeviceListUpdate(Device:ReconfigurableComponent,Classmark:ComponentClassmark, patch:Software)

5: DeviceListResponse(List)

6: RCInit(patch:Software)

7: DownloadTrigger(patch:Sostware)

8: Download(patch:Software)

9: SWInstallation(patch:Software)

Figure 6. Reconfiguration Use Case

PersonilizationServiceProvider

<<Provis ion[<SP2,personilizedProvider>,secure=true,mobility= true]>>

TerminalCapabilities

<<Profile["terminal",t rue,true]>>

Privacy

<<Policy[<SP2,privacy>,true]>>

B i lling

<<Policy[<SP2,billing>,true]>>

UserInfo

<<P rofile["user",true,true]>>

UserProfile

<<Profile["user",false,false]>>

PersonlizationProfileManager

<<Provis ion[<S P2,personilizer> ,secure=true,mobility=false]>>

coopera tes

ServiceDescription

<<Profile["service",false,false]>>

UserPreferences
<<Profile["user", true,false]>>

PersonalizationContextM anager

<<Provis ion[<SP2,context>,true,true]>>
int eracts

Personalized

Service

Provis.. .

Figure 4. Personalized Service Provision Pattern

