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ABSTRACT

We provide a novel analysis of the optimal number of users 
that should be allocated power in order to achieve the sum-
capacity of the MIMO broadcast channel, as well as the 
optimal power allocation and the optimal transmitter 
covariance matrices in the asymptotically high power region. 
We study cases where receivers are equipped with a single or 
with multiple antennas, and point out the fundamental 
differences between these systems. This analysis is then 
applied to multiple users scheduling algorithms for 
throughput maximization, with the additional goal of 
providing low-complexity solutions. We also provide a 
discussion of the similarities and differences with receive 
antenna selection algorithms and MIMO channels with co-
channel interference. 

I. INTRODUCTION

MIMO systems are envisioned to enable high-speed data 
transmission on the downlink of fourth generation wireless 
networks. When the base station is equipped with multiple 
transmit antennas, a scheduler takes advantage of the 
latency allowed with packet data communication and 
provides increased throughput by means of multiuser 
diversity. Recent information theoretic advances have 
proved that the nature of the MIMO broadcast channel 
(BC) requires to revisit scheduling algorithms to be able to 
transmit to more than one user at a time in each fading 
state in order to achieve sum-capacity [1][2][3][4]. The 
very first attempts at combining the advantages of MIMO 
systems with multiuser diversity used single-user 
scheduling strategies. However these cannot achieve 
spatial multiplexing gain if the receivers have a single 
antenna, and they can even suffer from channel hardening 
if no care is taken in the exploitation of spatial diversity 
jointly with multiuser diversity [5].  

We revisit scheduling algorithm strategies when the 
base station is equipped with multiple transmit antennas. 
Our analysis provides guidelines for the design of near-
optimal low-complexity scheduling algorithms for 
maximum throughput with optimal signaling, i.e. dirty-
paper coding [6]. We thus obtain design criteria for 
scheduling algorithms applicable with sub-optimal 
transmission schemes, such as transmitter channel 
inversion.  

We tackle the problem by exploring the following two 
fundamental questions. What is the optimal number of 
active users in any given fading state or channel 

realization? What are the optimal power allocation and 
transmit covariance matrices? Numerical methods exist 
that allow to obtain the optimal covariance matrices, but a 
more precise understanding of the underlying solution is 
still required. The underlying objective of throughput 
maximization with multiple antennas is to achieve the 
maximum spatial multiplexing gain available in MIMO 
systems. Hence, the nature of the problem largely depends 
on the number of antennas at each mobile user’s receiver. 

The scope of this paper is limited to throughput 
maximization. However in cellular systems fairness must 
be ensured to prevent some users, typically those close to 
the base station, to hold all the resources. The study 
presented here is applicable to groups of users with the 
same statistical channel conditions over a short period of 
time, in which case fairness in terms of throughput and 
delay will be provided statistically. One scenario one could 
think of is to group users is such a way and apply 
throughput maximization within the groups, while fairness 
is provided by some other means between groups of users. 
Proportionally-fair scheduling has been considered in a 
broader context [9], but due to the assumed short-term 
statistical equivalence of all user channels, it is not useful 
in this study.  

The remainder of the paper is organized as follows. In 
Section II we present the channel model. We briefly 
review recent advances on the MIMO BC in Section III. 
We provide a novel analysis of the optimal number of 
active users and their power allocation in the high power 
region in Section IV. We apply our analysis to the design 
of low-complexity maximum-throughput scheduling 
algorithms in Section V. Conclusions are given in Section 
VI. 

II. SYSTEM MODEL

We consider the downlink of a cellular system, in which 
the base station has N transmit antennas. There are K users 
in the sector served by the base station. User k is equipped 
with Mk receive antennas. We call this channel the 
(N,Mk,K) MIMO BC. The complex channel gains are 
assumed to be independent between users and between 
antenna elements. The channel remains constant in each 
time slot, and changes randomly from slot to slot (quasi-
static fading). The channel between the base station and 
user k is described by a matrix kH  of size Mk by N. The 
elements of kH  represent small-scale fading and they are 
modeled as i.i.d. complex Gaussian random variables with 



zero mean and unit variance. The AWGN variance at each 
receive antenna is normalized to one. The transmitter has a 
total power constraint P at each channel use. We assume 
that the transmitter and the mobile users perfectly know all 
channel complex fading gains. We define the channel 
matrix 1[ ]H H HT T T

N=  when Mk  = 1 for all users. 
The absence of path loss and shadow fading makes this 
model applicable for groups of users with approximately 
the same SNR averaged over small-scale fading over 
several time slots. When shadow fading and path loss are 
accounted for, more elaborate scheduling strategies must 
be applied, such as proportionally-fair scheduling. As 
shown in [9], the insights obtained in the analysis of 
throughput maximization with the simple channel model 
considered here are still relevant in the analysis of systems 
assuming more complete channel models. 

III. BACKGROUND ON THE MIMO BROADCAST CHANNEL

The MIMO BC is a degraded broadcast channel. It was 
recently proved that dirty-paper coding achieves the 
capacity region of that channel [4]. Dirty-paper coding is a 
theoretical random coding technique for interference 
cancellation at the transmitter of a non-causally known 
interference source [6]. In particular, the sum-capacity of 
the MIMO BC is achievable by dirty-paper coding with 
successive encoding at the transmitter and optimal transmit 
covariance matrices. These optimal matrices can be 
obtained numerically through efficient algorithms [7]. The 
problem is in general solved on the dual sum-power 
MIMO multiple-access channel (MAC) where it is convex. 
The optimal covariance matrices obtained for the sum-
power MIMO MAC can then be transformed to give the 
optimal covariance matrices on the MIMO BC [3], such 
that the rate vectors achieved on both channels are the 
same. The transmit covariance matrices for the MIMO BC 
depend on the chosen encoding order. The power allocated 
to a given user is equal to the trace of its transmit 
covariance matrix, and there is no conservation of the 
power allocation between the MIMO MAC and the MIMO 
BC. Thus it is not sufficient to study the optimal power 
allocation on the sum-power MIMO MAC. However, a 
user that is allocated no power on either channel is also 
allocated no power on the dual channel. Thus, the optimal 
number of active users remains the same. 

We briefly review the MAC to BC transformations [3]. 
Successive decoding is used on the MIMO MAC. The 
decoding order is the following: user 1 is decoded first, 
user 2 is decoded second, and so on until user K is 
decoded last. The same rate vector is achieved on the 
MIMO BC using the covariance matrices obtained with the 
MAC to BC transformations when user 1 is encoded last, 
user 2 is encoded second to last, and so on with user K
being encoded first. The optimal covariance matrix of size 

i iM M×  of user i on the MIMO MAC is Pi . It does not 
depend on the decoding order chosen on the MAC. The 
rate vector achievable on the MAC is determined by the 
decoding order. The reversed encoding order must be used 
on the BC in order to achieve the same rate vector, with 

the optimal covariance matrix of size N N×  of user i on 
the MIMO BC given by 

1 2 * 1 2 1 2 * 1 2B F G A P A G F Bi i i i i i i i i i
− −= , (1) 

where the singular value decomposition of the effective 
channel is 

1 2 1 2 *B H A F G*
i i i i i i
− − = . (2) 

Fi  and Gi  are unitary matrices, and i  is a diagonal 
matrix with nonnegative main diagonal entries. Let IN  be 
the identity matrix of size N N× . Ai  and Bi  represent the 
interference experienced by user i on the BC and on the 
MAC respectively: 

( )1 *

1
A I H H

i

i

i M i k ik

−

=
= +  (3) 

*

1
B I H P H

K

i N k k kk i= +
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IV. ASYMPTOTICALLY OPTIMAL NUMBER OF ACTIVE 

USERS AND POWER ALLOCATION

A. Single-antenna receivers 

This section is devoted to studying the asymptotically 
optimal power allocation required to achieve the sum-
capacity of the (N,1,K) MIMO BC in the limit when the 
total transmit power becomes large. On the dual sum-
power MIMO MAC the covariance matrix of user i is a 
scalar ip . Define 

lim i
i

P

p
r

P→∞
= .  (5) 

In order to prove our results, we make the following 
assumptions: 

There are at least as many users as transmit 
antennas: K N≥ .

At least N users are allocated a non-vanishing 
fraction of the total transmit power on the dual 
sum-power MIMO MAC. We number these users 
such that 0ir >  for , , 1i K K N= − + .

These assumptions are reasonable. As long as there are 
at least as many users as transmit antennas, it is only 
possible to exploit the N dimensions available in the 
MIMO channels by allocating a non-vanishing fraction of 
the total transmit power to at least N users in the high 
power region. In fact, it is even possible that more than N
users are allocated a non-vanishing fraction of the total 
transmit power in order to achieve the sum-capacity of the 
dual sum-power MIMO MAC [8]. After MAC to BC 
transformations of the MAC power allocation we obtain 
the optimal BC transmit covariance matrices 1, , K .
We can prove that [9]: 

( )
lim 0i

P

Tr

P→∞
=  if i K N≤ −  (6) 

( )
lim i

i
P

Tr
r

P→∞
>  if i K N> −  (7) 

Therefore only N users are allocated a non-vanishing 
fraction of the total transmit power at the sum-capacity in 



the high power region on the MIMO BC. Furthermore we 
also prove the following property of the optimal BC 
covariance matrices of these N users. Let the rank-one 
optimal covariance matrix of user i be: 

( )v v*
i i i itr= , (8) 

where vi  is the transmit beamforming vector of user i and 
( )i itrπ = . We prove that for a given j > K – N [9]: 

*lim 0H vj i
P→∞

=  for all i such that K N i j− < < . (9) 

This result tells us that asymptotically in the high power 
region on the (N,1,K) MIMO BC, the optimal transmit 
beamforming vector of user i, who is among the first N
users to be encoded, becomes asymptotically orthogonal to 
the channel matrices of all other users that are allocated an 
asymptotically non-vanishing fraction of the total transmit 
power and that are encoded prior to user i.

As a consequence of the above property on the (N,1,N)
MIMO BC, we can express the asymptotic rates achieved 
by the N users in the high power region and we can solve 
for the first-order asymptotic value of the sum-capacity in 
a simple way:  

1 1

I H H
i

N N
BC BC *
sum i M i i i

P P
i i

lim C lim R log
→∞ →∞= =

= ≈ + . (10) 

The optimization over the covariance matrices with the 
orthogonality constraint can be reformulated as: 

( )
1

1
1

1
v v

H v v H
N
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P , ,
i, ,

lim C max log
π π

π
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1

N

ii
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=
=  and 0iπ ≥ , 1i , ,N=

 and 1i , ,N∀ = : 0H v*
j i , j i= ∀ >  and 1vi = . (11) 

Solving the above problem leads to the QR decomposition 
of the channel matrix H = RQ and waterfilling power 
allocation. Let the (i,i) diagonal element of the upper 
triangular matrix R be iir , then 

( )2
2

1 1

1N N
BC
sum ii

P
n inn

lim C N log P N log N log r
r→∞ = =

≈ + − +  (12) 

As a first order approximation, the asymptotically optimal 
power allocation on the MIMO BC, given an arbitrary 
encoding order, is uniform over the N users that are 
allocated a non-vanishing fraction of the total power in the 
high power region. Our proof is valid for any N.

The asymptotic optimality of uniform power allocation 
in the high power region had been shown for N = 2 in [1] 
where the transmission strategy used a QR decomposition 
and dirty-paper coding. Here we prove that not only QR 
decomposition with dirty-paper coding is asymptotically 
optimal, but it is the first-order asymptotically optimal 
procedure to achieve the sum-capacity of the (N,1,K)
MIMO BC in the high power region for any N. As a 
consequence of the orthogonality property we deduced that 
uniform power allocation is optimal on the (N,1,N) MIMO 
BC in the high power region. We can thus directly prove 
that the asymptotically optimal power allocation on the 
dual sum-power MIMO MAC is also uniform for any N,
which was previously known only for large N [10]. 

We now show some numerical results to illustrate our 
findings. We consider a fixed channel realization and we 
let the total transmit power increase to very large values. 
We observe the fraction of the total power allocated to 
each user both on the dual MIMO MAC and on the MIMO 
BC. We consider one realization of the (3,1,8) MIMO BC. 
Figure 1(a) shows the optimal power allocation on the 
MIMO MAC as a function of the total transmit power in 
reference to the noise level. The power allocated to each 
user is normalized to the total transmit power. The power 
allocation is independent of the encoding order. Only users 
{1,2,5,6} are allocated a non-vanishing fraction of the total 
transmit power in the high power region on the MIMO 
MAC. Since there are 3 base station antennas, after MAC 
to BC transformations with encoding order 8 to 1, only 
users {2,5,6} are still allocated a non-vanishing fraction of 
the total transmit power in the high power region on the 
MIMO BC as shown in Figure 1(b). The rate achieved by 
user i for the set of optimal covariance matrices 1, , K

and the encoding order K to 1 is given by: 

( )
( )

*

*
log

I H H

I H H

i

i

M i j ij iBC
i

M i j ij i

R
≤

<

+
=

+
  (13) 

These rates are shown in Figure 1(c). User 1 achieves a 
constant non-zero rate at high power, which becomes 
asymptotically negligible with respect to the sum-capacity. 

B. Multiple-antenna receivers 

With N antennas at each receiver only N one-
dimensional channels are allocated a non-vanishing 
fraction of the total transmit power on the MIMO BC when 
the total transmit power goes to infinity. These N one-
dimensional channels all belong to the same user, as long 
as that user is allocated a non-vanishing fraction of the 
total transmit power on the dual MIMO MAC and its 
MAC covariance matrix is full rank asymptotically, and 
that user is encoded first by dirty-paper coding. Thus we 

0 5 10 15 20 25 30
0

0.5

1
(a) Fraction of power allocated to each user on the MIMO MAC

0 5 10 15 20 25 30
0

0.5

1
(b) Fraction of power allocated to each user on the MIMO BC

0 5 10 15 20 25 30
0

10

20

30

Total power in reference to the noise level (dB)

(c) Rates achieved by each user on the MIMO BC

User 1 

User 2 

User 5 

User 6

User 6

User 6

User 5 

User 5 

User 2 

User 2 

User 1 

User 1 

Fig. 1. (3,1,8) MIMO BC optimal power allocation and users 
rates with encoding order 8 to 1. 



proved [9] that asymptotically in the high power region, 
only one user is allocated a non-vanishing fraction of the 
total transmit power. The latter two assumptions can 
always be satisfied as long as at least one user has a full-
rank channel matrix, which occurs almost certainly in a 
rich scattering environment.  

Let ( )PK K
P
lim tr r P

→∞
= , where 0Kr ≠  is a constant. Then 

we can prove that [9]: 
1 1

IK N
P
lim

P N→∞
=  (14) 

( )1
0j

P
lim tr

P→∞
=  for 1 1j , ,K= − . (15) 

The optimal power allocation on the BC is very 
different than that on the MAC after MAC to BC 
transformations. Even though several users could be 
allocated a non-vanishing fraction of the total transmit 
power on the MIMO MAC, only one will be allocated a 
non-vanishing fraction of the total transmit power on the 
MIMO BC. However, one must be careful in concluding 
that transmitting to only one user is sufficient to achieve 
the sum-capacity. We can only say that the ratio of the rate 
achieved by user K to the sum-capacity tends to one as the 
total transmit power goes to infinity, but the convergence 
is slow due to the logarithmic growth of the sum-capacity 
with power. Moreover, simulations show that the 
asymptotic result only occurs at very large values of the 
total transmit power. As the power is large and increases, 
but as it is still below the threshold where only one user is 
allocated power on all its N eigenmodes, several one-
dimensional channels are allocated power such that this 
power increases with the total transmit power until the total 
transmit power reaches the threshold, and these one-
dimensional channels belong to more than one user. 
Beyond that threshold, all the additional power is allocated 
to only one user.  

We consider a realization of the (4,4,4) MIMO BC.  
Figure 2 shows the optimal power allocation on the MIMO 
MAC, and on the MIMO BC with encoding order 4 to 1, 
as well as the users rates, as a function of the total transmit 
power in reference to the noise level. All four users are 

allocated a non-vanishing fraction of the total transmit 
power on the MIMO MAC, but after MAC to BC 
transformations only user 4 will be allocated a non-
vanishing fraction of the total transmit power in the high 
power region. We notice that at 150 dB, the rates of users 
2 and 3, which remain constant, are not negligible 
compared to the sum-capacity. They will only become 
negligible at much higher values of the total transmit 
power. We can take a closer look at the power allocation 
by observing the ratio of the eigenvalues of the optimal 
covariance matrices to the transmit power. After MAC to 
BC transformations with the encoding order 4 to 1, we see 
in Figure 3 that the power allocation progressively shifts 
from eigenmodes of users 1, 2 and 3 to all of the fourth 
user’s eigenmodes in the high power region.  

In general when users are equipped with different 
numbers of receive antennas, only N one-dimensional 
channels are allocated a non-vanishing fraction of the total 
transmit power in the high power region, and these N one-
dimensional channels belong to the J users that are 
encoded first by dirty-paper coding such that these users 
are allocated a non-vanishing fraction of the total transmit 
power on the dual sum-power MIMO MAC and  

2 1
K K
k K J k K Jk kM N M= − + = − +≤ ≤ . (16) 

The proofs of the above results lie in the incremental 
asymptotic rank of the interference matrices B Ii N−  that 
are allocated infinite power in the successive encoding 
process. This is similar in nature to the problem of co-
channel interference in MIMO systems [11]. However on 
the MIMO BC there is additional cooperation at the 
transmitter that allows to cope with this interference, so 
that even if users are equipped with one receive antenna it 
is still possible to allocate infinite power to N users, and 
that other users achieve a constant rate.  

V. N-USER SCHEDULING ALGORITHMS

As seen in [8] it is necessary and sufficient to transmit to 
N users at a time with any number of receive antennas per 
user in the medium power region in order to lose only a 
marginal amount of spectral efficiency relative to the sum-
capacity. It might also be required to transmit to no more 
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than N users at a time due to constraints of linear spatial 
multiplexing schemes or for complexity reduction. Optimal 
N-user scheduling by exhaustive search of groups of N
users among K incurs a combinatorial complexity, which 
makes it impractical with a large number of users and even 
a moderate number of transmit antennas. We consider the 
following scheduling algorithms to select N users in each 
time slot: 

Random N-user scheduling: N users are randomly 
selected.  

Single-User Rates (SUR-N) scheduling: the N users 
with the largest individual capacities are selected. 

SUR-(N+1) scheduling: first select the N+1 users with 
the largest individual capacities, then the N users that 
offer the largest sum-capacity by exhaustive search.  

Gorokhov’s receive antenna selection algorithms [12]: 
by treating each user as a different antenna in a single 
receiver with multiple antennas, Gorokhov’s low-
complexity algorithms allow to select N receive 
antennas out of K and to limit the capacity loss.  

With 4 transmit antennas and 15 users with a single 
receive antenna each, random N-user scheduling achieves 
only 75% of the sum-capacity at 10 dB as shown in Figure 
4.b. It performs even worse at 0 dB. It is unable to exploit 
multiuser diversity. Other strategies such as round-robin 
scheduling that also do not exploit multiuser diversity 
perform poorly. Scheduling users independently of one 
another is also not a good solution as seen with SUR-N
scheduling. The performance is improved with SUR-(N+1) 
scheduling with an increase in complexity. As a 
consequence of the asymptotic analysis we can conclude 
that the (N,N) open-loop cooperative MIMO capacity is a 
good approximation of the sum-capacity of the (N,1,N)
MIMO BC in the high power region. Hence, receive 
antenna selection algorithms, such as proposed in [12], are 
applicable for maximum-throughput joint N-user 
scheduling on the (N,1,N) MIMO BC in the high power 
region. Moreover, due to their inherent interference-
avoidance properties they also perform well in the low and 
medium power regions as seen in Figure 4.  

VI. CONCLUSION

We have shown that in the high power region of the 
MIMO broadcast channel with N transmit antennas, it is 
asymptotically optimal to allocate a non-vanishing fraction 
of the total transmit power to N users if users are equipped 
with single receive antennas, or to only one user if users 
are equipped with N receive antennas. In the single receive 
antenna case an additional orthogonality property was 
proved as a first order approximation of the sum-capacity, 
which showed that the channel between the N users that are 
allocated a non-vanishing fraction of the total power is 
completely orthogonalized by the joint action of dirty-
paper coding and optimal beamforming. We observed that 
in the medium power region it is best to transmit to N users 
simultaneously in each fading state to approach the sum-
capacity. As a consequence of this fact and of a high power 
approximation of the sum-capacity, receive antenna 
selection algorithms provide an efficient way of scheduling 
N users with low-complexity and near-optimal throughput.  
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