
Abstract—In this paper we examine the role of configuration 

data in the context of the E2R project’s modem configuration 

control module. We briefly describe the system architecture 

and then define what we mean by configuration data, 

configuration languages and configuration documents. After 

classifying the types of configuration data required by a 

software radio system, we take a look at how the data can be 

packaged in a document and how the rules of a language can 

be enforced. We recommend using the eXtensible Markup 

Language (XML) as the meta-language, overcoming concerns 

regarding processing and memory efficiency. We go on to show 

an example of how XML schema technology and the Unified 

Modelling Language can be used together to specify the data 

model, and the syntax of the resulting language. In addition we 

examine mechanisms for local storage of XML documents in a 

constrained environment, such as a radio terminal.  

Index Terms—configuration control, configuration data, 

configuration language, XML 

I. INTRODUCTION

HIS paper discusses reconfigurable radio from the 

perspective of the data required to configure such a 

radio to operate with different Radio Access Technologies 

(RATs). Many different types of configuration data are 

required during the complex configuration process. It is 

therefore essential that these important components are fully 

understood in order to find standard solutions to the 

regulation, verification, packaging, transport and storage of 

this data. 

To achieve this we have taken a system level view using 

the software (SW) radio architecture of the IST End-to-End 

Reconfigurability (E2R) [1] project, as the target system, 

and 802.11a WLAN modem as an example RAT. 

We describe the E2R architecture in Section II, while in 

section III, we define the meaning of ‘configuration data 

types’ and determine what types are required to configure a 

modem using the E2R configuration control architecture. 

Using this classification as a starting point we go on, in 

section IV, to consider practical implementation issues, 

including how to package data during download, how to 

enforce a set of agreed rules for formatting the data, using 

so-called configuration languages, and finally how to store 

and retrieve configuration data using a local database. 

II. E2R CONFIGURATION AND CONTROL ARCHITECTURE

The E2R project envisages a layered approach to the radio 

equipment SW architecture as depicted in Fig. 1. Running 

vertically are three notional levels of abstraction; the highest 

level is functionality abstraction, followed by system

abstraction and the lowest level of all, hardware (HW) 

abstraction. These levels provide a guide to the concepts 

being manipulated by the SW modules. These modules are 

arranged according to a number of domains (shown as 

packages), which overlap the abstraction levels in the figure. 
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Fig. 1.  Layered SW architecture for E2R reconfigurable radio equipment. 

The Configuration Management Module (CMM) has 

overall authority for managing the reconfiguration, 

including responsibility for decision making, and 

collaborating with the network management entities. The 

CMM interacts with Configuration Control Modules (CCM) 

[2]. 

Each CCM controls the reconfiguration process for a 

subsystem, including the Protocol Stack (PS), baseband 

modem, Radio Frequency (RF) subsystem and Execution 

Environment (EE). CCMs interact with HW using a 

combination of logical and physical device drivers, which 

provide two-step hardware abstraction. The logical device 

drivers provide the necessary bridge between a HW device 

and its specific use in the currently configured system. As in 

traditional systems device drivers are specific to particular 

HW devices, here called Configurable Execution Modules 

(CEMs), and are loaded into the EE. The central role of 

CCMs during configuration makes them an important target 

for, interpreter of, and dispatcher of configuration data. 
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III. CONFIGURATION DATA TYPES

In a SW radio system we need to understand what 

configuration data is required by the architecture, and to 

classify its different forms. The term ‘configuration’ has 

many meanings in the SW radio community. To gain an 

understanding of the different configuration data types we 

have classified them according to their target, i.e. the entity 

that is being configured by them, and by their level of 

abstraction. Table I lists, in order of decreasing abstraction, 

the principal types of configuration data needed to configure 

an E2R SW modem, using the architecture described above. 

TABLE I

PRINCIPAL CONFIGURATION DATA TYPES OF A SW MODEM

Configuration Data Abstraction Target Form 

baseband algorithm 

inc. deadlines (a) 

functional SW modem data-flow graph & 

RT constraints 

signal-process (b) functional SW modem data-flow graph & 

RT constraints 

signal-process 

parameters (c) 

functional signal-process list: parameter - 

value pairs 

signal-process 

spatial

configuration (d) 

system SW modem & 

baseband

algorithm 

list: process to 

processor 

mappings 

signal-process 

temporal 

configuration (e) 

system SW modem & 

baseband

algorithm 

schedule: process 

executions

logical/physical 

device driver (f) 

system/HW 

abstraction

CCM/EE binary executable 

µ-processor task (g)  n/a µ-processor binary executable 

digital logic (h)  n/a reconfigurable 

logic device 

binary bitstream 

implementation 

arguments (i) 

n/a task arguments, 

HW registers 

list: argument - 

value pairs 

At the highest level of abstraction are data types that 

describe the required radio functionality. Each baseband 

application, i.e. RAT modem, is described as a hierarchical 

communicating signal-process, arranged as a data-flow 

graph (a). Sub-processes, i.e. component signal-processes 

such as forward error correction, are similarly described (b). 

Modem signal-process functionality often includes 

mandatory real-time constraints, and so the description must 

be capable of specifying the deadlines. In addition, signal-

processes can themselves be configured using a list of 

parameters, such as the polynomial values for a 

convolutional encoder. These constitute a further type of 

functional configuration data (c). Configuration data types 

(a), (b) and (c) are implementation independent and are 

required by the CMM and CCM in the early stages of 

deciding what RAT to implement and how it should be 

implemented. 

Moving lower, to the system abstraction level, are two 

configuration data types that begin to tie the abstract 

functionality to a particular implementation. Firstly, the 

spatial configuration (d) maps the signal-processes to the 

processors that will execute them. Secondly, the temporal 

configuration (e) provides the precise schedule for 

execution of each process on its host processor, ensuring 

that all deadlines are met. These configuration data types 

can be predefined for known RATs and HW architectures, 

or calculated dynamically where possible. In both cases the 

CCM requires this information in order to build a practical 

system implementation. The CCM’s subsystem wide 

approach to implementing the required functionality, gives 

rise to the System Abstraction Layer (SAL). 

The SAL and Hardware Abstraction Layer (HAL) are 

configured using a configuration data type commonly 

known as a driver (f). The remaining configuration data 

types listed in the table are application specific. These 

include tasks (g), such as an executable for an interleaver 

running on a DSP, and digital logic (h), such as a 

convolutional encoder bitstream targeted to an FPGA. The 

final configuration types are implementation arguments (i). 

These are analogous to abstract signal-process parameters, 

except that they target the process implementations, (e.g. 

values for program arguments and FPGA registers) and may 

contain additional values specific to the implementation. 

Note that our discussion has been restricted to baseband 

application functionality. Similar arguments can be 

constructed for PS and RF functions. 

The table lists three configuration data types with known 

binary formats. These are applications (µ-processor task, 

reconfigurable logic bitstream) and drivers, which all run on 

physical devices. The remaining types are more abstract 

with less well-defined container formats. In the following 

sections we discuss how the storage, transportation and 

interpretation of components containing instances of these 

types, can benefit from a common and potentially 

standardized approach to the format of the container. 

IV. IMPLEMENTATION CONSIDERATIONS

A. Configuration Language and Data Model 

When configuration data is packaged in a container, for 

transportation or storage, the configuration language

defines the syntax of the data description. In principal there 

can be a configuration language for each configuration data 

type. In reality many of the previously identified types share 

common concepts and so it is possible that a coherent set of 

related and overlapping languages can be developed based 

on a single data model. For example, signal-processes are 

concepts that are common to baseband algorithm functional 

descriptions, signal-process parameters and task schedules.  

The data model, therefore, is all-important and should be 

independent of the physical file format of the container. 

When selecting the latter two possibilities arise. Firstly, 

highly optimized binary formats can be developed and 

standardized specifically for SW radio configuration data. 

Alternatively, the formats can be based on industry standard 

metadata formats, such as the eXtensible Markup Language 

(XML). 

While the first option will certainly be the most efficient, 

the second provides access to a wealth of existing 

knowledge and technologies for searching and manipulating 

packaged data. In fact the best solution may be to limit the 

latter to non-real-time domains and the higher levels of 

abstraction, e.g. the CMM and the highest parts of the CCM. 

In this scenario optimized formats would be developed only 

for the lower or real-time layers, such as the SAL and the 

HAL. The CMM or CCM would be responsible for mapping 

or translating from one format to the other. 

The current state-of-the-art for configuration data 

supports the use of XML, at least at higher levels of 

abstraction. Many IST reconfigurability projects have 



favoured XML, including CAST [3], TRUST [4] and 

SCOUT [5]. The Joint Tactical Radio System’s Software 

Communication Architecture [6] also uses XML, with a 

single data model. The Vanu Radio Description Language 

[7], perhaps the only configuration language in practical use 

today, uses a proprietary text-based language, although an 

automated transformation to XML is available for the 

purpose of analysis. Given that XML has already been 

widely adopted to convey SW radio configuration data, we 

intend to continue this tradition in E2R. In the following 

section we delve a bit deeper into XML and related 

technologies. In particular we highlight both its advantages 

and disadvantages and how the latter may be overcome. We 

also take a look at how data models can be formally 

captured in an XML configuration language. 

B. XML Meta-Language 

XML is a meta-language for developing markup 

languages, standardized by the World Wide Web 

Consortium (W3C) [8]. The original target applications 

were web-based services. XML has become widely used in 

recent times, with application in many non web-based 

domains.   

XML markup languages are text-based, which, for simple 

languages, are easily human readable in much the same way 

that the Hyper-Text Markup Language (HTML) can be read 

by a web designer. Like HTML, XML-based languages use 

tags to define elements, including hierarchical sub-elements, 

and element attributes. (Unlike HTML, XML elements can 

represent data items as well as formatting information.) In 

XML terminology an XML file is a data container known as 

a document.

The use of plain text makes XML languages user 

friendly, however the downside is that XML documents are 

overly verbose and wasteful of space. A simple and 

common solution is to compress the XML using generic 

techniques. These dramatically reduce the size of an XML 

document, although at the expense of a processing 

overhead. Typically compression can reduce an XML 

document by a factor of 0.05. Proprietary XML 

compression utilities, such as XMill [9] can further reduce 

XML documents, e.g. to 0.025 for XMill, by taking into 

account the nature of the XML language. There is an 

ongoing discussion in the industry as to whether XML 

should have an accompanying, efficient, binary format. In 

fact at least two standards bodies, [8], [10] are currently 

working on just such a format. Initial results indicate that 

applications perform 2 to 3 times faster than those using 

uncompressed XML.  

The syntax or rules of an XML language are commonly 

defined by a schema, and there are at least two standard 

schema technologies [8], [11]. Schemas are used to validate 

documents that claim to be conformant with the language. 

Schemas are themselves written in XML and can be 

embedded in a document with the data, giving rise to the 

idea that XML is ‘self-documenting’.  

An important consideration, when using XML, is the 

parser which reads and interprets documents. There are 

three fundamental types of XML parser. Model parsers read 

the whole XML document and build a tree of element nodes 

in memory. This approach is memory intensive, but does 

give the client fast random access to elements. Push parsers

read the whole document and generate events for each 

element encountered. This approach makes efficient use of 

memory, since the client only need respond to the events 

and hence elements of interest, although random access to 

elements becomes difficult. Pull parsers gain the 

advantages of both a model and push parser, without the 

disadvantages. Greater control of the parsing process is 

given to the client using iterators. These allow the client to 

read any part of the document in small chunks. 

For each type of parser, standard and de facto Application 

Programmer Interfaces (API) have emerged. For model 

parsers the API is the Document Object Model (DOM) [8], 

and for push parsers it is the Simple API for XML (SAX) 

[12]. Pull parsers are a recent development that has arisen 

within the Java community, and two APIs currently 

dominate; the Streaming API for XML (StAX) [13] and the 

common XML Pull API [14]. 

Although parsers for XML were initially developed for 

desktop and server systems with plenty of resources, several 

proprietary parsers with reduced footprints have been 

successfully applied in constrained embedded systems. 

Some of these are shown in Table II.  

TABLE II

XML PARSERS FOR EMBEDDED SYSTEMS

Name Type API Lang. Size 

Fusion RT [15] push SAX C 15kb 

TinyXML [16] model DOM C++ 12kb 

XML Parser [17] model/push  Java 6kb 

kXML 2/3 [18] pull Xml Pull/StAX Java 9/?kb 

Xparse-J [19] model  Java 6kb 

The memory footprints are all well below 50kb. For 

parsers that don’t conform to a standard API, the developers 

have been able to further reduce the code size to values just 

above 6kb. Note that these parsers won’t feature advanced 

XML technologies. Of course, the size of the parser is not 

the only factor to consider, since in many cases the 

document size is likely to dominate. This is why a memory 

efficient parsing mechanism is critical and why the pull 

method is particularly suitable. It is also important to 

minimize the number of parser instances, for example if 

necessary the CMM and CCMs could share a single parser 

service.

C. Schema Example 

In this section we take a look at an example XML schema 

for baseband algorithm configuration data. 

To encourage understanding and model reuse we have 

developed the data model for the schema in the Unified 

Modelling Language (UML), using a UML profile and 

automated schema generation tools advocated by David 

Carlson [20]. Several UML tools, including [21] and [22] 

also support a graphical approach to the development of 

XML schemas.  

Fig. 2 shows the UML class diagram for our data model. 

The principal classes used to define baseband algorithms are 

Process, Channel, and Port. These representations of 

behaviour, communication and connectivity map by default 

to XML elements. The <<XSDattribute>> stereotype 

implies the use of an XML attribute, e.g. the units for real-



time constraints. Other stereotypes from the UML profile 

also shown include <<enumeration>> for enumerations and 

<<XSDsimpleType>> for XML schema simple types, such 

as double. In addition the UML profile makes full use of 

specialization (e.g. process is a type of component) and 

associations (e.g. processes can contain sub-processes). 

cd Algorithm Data Model

«XSDsimpleType»

XSD Datatypes::

double

RTConstraint

+ «XSDattribute» units:  UnitsOfTime

«enumeration»

UnitsOfTime

+ ms:  integer

+ us:  integer

+ ns:  integer

«enumeration»

DataType

+ frame:  integer

+ complex:  integer

ChanReference

+ «XSDattribute» reference:  IDREF

OutputPortInputPort

ChannelPort

+ «XSDattribute» dataType:  DataType

Process

+ deadline:  RTConstraint [0..1]

Component

+ «XSDattribute» name:  ID

0..*

+input

0..*

+output

0..*

+subChannel

+subProcess 0..*

+inputChannel +outputChannel

Fig. 2.  UML class diagram: a data model for algorithm configuration. 

These mappings can be seen in Fig. 3, an extract from the 

XML Schema automatically generated by the hyperModel 

tool [20], showing the Port and InputPort entities. 

<!-- Port -->    

   <xs:element name="Port" type="Port" substitutionGroup="Component"/> 

   <xs:complexType name="Port">

      <xs:complexContent> 

         <xs:extension base="Component">

            <xs:attribute name="dataType" type="DataType" use="required"/> 

         </xs:extension> 

      </xs:complexContent> 

   </xs:complexType> 

<!-- Input Port --> 

   <xs:element name="InputPort" type="InputPort" substitutionGroup="Port"/>

   <xs:complexType name="InputPort">

      <xs:complexContent> 

         <xs:extension base="Port">

            <xs:sequence> 

               <xs:element name="inputChannel" type="ChanReference"/> 

            </xs:sequence> 

         </xs:extension> 

      </xs:complexContent> 

   </xs:complexType> 

Fig. 3.  Excerpt from the generated XML Schema. 

Finally, for completeness, Fig. 4 is part of a document 

that conforms to the schema, showing the interconnections 

between three processes in an 802.11a transmitter algorithm, 

and the algorithm’s real-time deadline. 

<?xml version="1.0" encoding="UTF-8"?> 

<Process ID="802.11aTxBaseband"

      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

      xsi:noNamespaceSchemaLocation="AlgorithmSchema.xsd"> 

 <deadline units="us">10</deadline> 

<!-- algorithm channels --> 

 <subChannel name="Ch1"/> 

 <subChannel name="Ch2"/> 

<!-- other channels ... --> 

<!-- algorithm processes --> 

 <subProcess name="Interleave">

<!-- inputs not shown --> 

  <output dataType="frame" name="InterleaveOutPort">

   <outputChannel reference="Ch1"/> 

  </output> 

 </subProcess> 

 <subProcess name="Mapper">

  <input dataType="frame" name="MapperInPort">

   <inputChannel reference="Ch1"/> 

  </input> 

  <output dataType="complex" name="MapperOutPort">
   <outputChannel reference="Ch2"/> 

  </output> 

<!-- mapper sub-processes (modulator, symbol generation etc)  

    and sub-channels not shown --> 

 </subProcess> 

 <subProcess name="IFFT">

  <input dataType="complex" name="IFFTInPort">

   <inputChannel reference="Ch2"/> 

  </input> 

<!-- outputs not shown --> 

 </subProcess>  

</Process>

Fig. 4.  Excerpt from a conformant XML document for a simple algorithm. 

It is easy to see that the XML document specifies an 

algorithm data-flow equivalent to that shown schematically 

in Fig. 5. 

802.11aTxBaseband

Interleav e

InterleaverOutPort :

fram e

M apper

M apperInPort :

fram e

M apperOutPort :

com plex

IFFT

IFFT InPort :

com plex

Ch1 Ch2

deadl ine = 10 µs

Fig. 5.  UML composite structure diagram: example algorithm data-flow. 

D. Database and Document Storage 

This section discusses how XML configuration 

documents can be stored in a local database and how useful 

content can be efficiently retrieved. This database stores the 

configuration data that can be sets of configuration values 

(e.g. set of filter coefficients) or configuration files (e.g. 

object code for a DSP or a bitstream for an FPGA). 

The configuration document (XML) is used to transfer 

data between applications or between databases. The main 

challenge is how to store the information that is included in 

the XML description. The XML schema has to be used to 

generate a database structure. Two approaches are 

commonly used (see also Table III): 

1) Table-based mapping: A mapping used by many 

middleware products, which transfer data between an XML 

document and a relational database. The XML document is 

modelled as a single table or a set of tables. The advantage 

of this table-based mapping is the simplicity. It is useful for 

applications transferring one table at a time. The 

disadvantage is it does not preserve physical structure and it 

only works with a small subset of XML documents. 

2) Object-relational mapping: This mapping is also 

known as object-based mapping. It is used by XML-enabled 

relational databases as well as in some middleware products. 

Data in the XML document are structured as a tree of 

objects specific to the defined data. This mapping schema 

supports a wider spectrum of possibilities and is more 

flexible. This makes it the better choice for the XML 

mapping in a terminal environment.  
TABLE III

MAPPING XML TO TABLE AND OBJECT MODELS

XML Table Object 

<rx_filter>

<coef1>10</coef1>

<coef2>100</coef2>

<coef3>155</coef3>

</rx_filter>

Table rx_filter 

coef1  coef2   coef3

….      ….      …. 

10       100      155 

….  ….       …. 

object rx_filter { 

coef1 = 10 

coef2 = 100 

coef2 = 155 

}

Besides the mapping mechanism, the content of the 

database also has to be handled efficiently. For searching or 

maintaining information in a database it is very helpful to 

have some additional standardized content fields with 



keywords added to the real data. This approach of “data 

about data” or “information describing the content” is the 

basic idea of metadata. Metadata describes the content, 

structure, quality, condition and other characteristics of the 

data. Metadata are used in many different applications that 

have to deal with information overload, e.g. internet search 

engines or VCX IP Storebuilder [23].  

The Resource Description Framework (RDF) [8] is a 

formal data model from the W3C for machine 

understandable metadata used to provide standard 

descriptions of web resources. It is derived from XML and 

is similar in intent to the Dublin Core [24], but broader in its 

scope and purpose. The advantage of RDF is the 

extensibility of schemata, bringing about an unprecedented 

level of automation and support for statements about any 

resources. RDF can be extended to fulfil the requirements of 

the database in a constrained terminal environment. 

As we are proposing the RDF as the data model we need 

also a way of accessing information that mirrors the 

flexibility of RDF. The query language should scan the RDF 

information model directly and should not care how the 

information is stored. One approach is RDF Query (RDFQ) 

[25], which is used for knowledge discovery, rather than for 

knowledge management or manipulation.    

The RDFQ vocabulary provides definitions of templates, 

which can be matched against actual resource descriptions. 

The results of an RDFQ query are an RDF graph containing 

either the concise bounded descriptions of all resources 

matched by one or more of the specified target templates. 

Further it could include a set of variable binding 

declarations expressed using the Result Set Vocabulary. 

Any number of queries can be submitted in the same 

request. Also any number of templates can be specified as 

part of the same query. The results of all matched templates 

and queries specified in the input request are merged 

together in the results. A typical RDFQ query corresponds 

to the request: "Tell me everything you know about the 

resources which have the following characteristics..." 

V. CONCLUSION

We began this paper by outlining the E2R reconfigurable 

equipment architecture, focusing on its layers of abstraction 

and their interaction with functional domains. We have 

shown that CCMs occupy a critical point in this architecture 

where required function meets HW to deliver a system. 

Here configuration data is stored, interpreted, manipulated 

and exchanged, creating an impact at all levels. 

Following a classification of configuration data, 

according to target and abstraction level, we examined 

practical ways to validate and package configuration data, 

for data types that don’t have a known format. For these we 

recommend a single, coherent and implementation 

independent metadata model. We have selected XML as our 

data container, since it is a well-supported and standard 

technology, which has been previously employed in this 

role, and which supports data model validation through the 

creation of configuration language schemas. Although XML 

is known to be processor intensive and memory inefficient, 

we believe these issues can be overcome by carefully 

selecting the parser type and parser implementation, and by 

employing document compression. If necessary we 

recommend restricting XML to the CMM and highest levels 

of the CCM, using more optimal formats for the lower real-

time domains. To illustrate our proposals we have shown an 

example UML data model with an automatically generated 

XML schema, defining the rules for a configuration 

language. The data-flow of a simple baseband algorithm 

was presented as an example XML document that conforms 

to the schema and hence the data-model’s rules. 

Finally, we have considered how XML data should be 

stored in a local database and how that data could be 

queried. We recommend mapping the XML data to the 

database using object-based mapping. This is the most 

flexible solution, one which integrates well with our object-

oriented approach. In addition we believe that the RDF 

concept for database meta-data content and database 

parameterised queries will also be highly complementary 

and beneficial. 

We intend to make further investigations using a 

simulation environment to measure performance, and to 

discover the memory and computational requirements. 
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