
Abstract—In this paper we examine the role of configuration

data in the context of the E2R project’s modem configuration

control module. We briefly describe the system architecture

and then define what we mean by configuration data,

configuration languages and configuration documents. After

classifying the types of configuration data required by a

software radio system, we take a look at how the data can be

packaged in a document and how the rules of a language can

be enforced. We recommend using the eXtensible Markup

Language (XML) as the meta-language, overcoming concerns

regarding processing and memory efficiency. We go on to show

an example of how XML schema technology and the Unified

Modelling Language can be used together to specify the data

model, and the syntax of the resulting language. In addition we

examine mechanisms for local storage of XML documents in a

constrained environment, such as a radio terminal.

Index Terms—configuration control, configuration data,

configuration language, XML

I. INTRODUCTION

HIS paper discusses reconfigurable radio from the

perspective of the data required to configure such a

radio to operate with different Radio Access Technologies

(RATs). Many different types of configuration data are

required during the complex configuration process. It is

therefore essential that these important components are fully

understood in order to find standard solutions to the

regulation, verification, packaging, transport and storage of

this data.

To achieve this we have taken a system level view using

the software (SW) radio architecture of the IST End-to-End

Reconfigurability (E2R) [1] project, as the target system,

and 802.11a WLAN modem as an example RAT.

We describe the E2R architecture in Section II, while in

section III, we define the meaning of ‘configuration data

types’ and determine what types are required to configure a

modem using the E2R configuration control architecture.

Using this classification as a starting point we go on, in

section IV, to consider practical implementation issues,

including how to package data during download, how to

enforce a set of agreed rules for formatting the data, using

so-called configuration languages, and finally how to store

and retrieve configuration data using a local database.

II. E2R CONFIGURATION AND CONTROL ARCHITECTURE

The E2R project envisages a layered approach to the radio

equipment SW architecture as depicted in Fig. 1. Running

vertically are three notional levels of abstraction; the highest

level is functionality abstraction, followed by system

abstraction and the lowest level of all, hardware (HW)

abstraction. These levels provide a guide to the concepts

being manipulated by the SW modules. These modules are

arranged according to a number of domains (shown as

packages), which overlap the abstraction levels in the figure.

Configuration Control

CCM

Logical Device Driver

*

Configuration Management

CMM

Execution Environment

Physical Device Driver

HW

CEM

Hardware

Abstraction

System

Abstraction

Functionality

Abstraction
CCM Service IF

Fig. 1. Layered SW architecture for E2R reconfigurable radio equipment.

The Configuration Management Module (CMM) has

overall authority for managing the reconfiguration,

including responsibility for decision making, and

collaborating with the network management entities. The

CMM interacts with Configuration Control Modules (CCM)

[2].

Each CCM controls the reconfiguration process for a

subsystem, including the Protocol Stack (PS), baseband

modem, Radio Frequency (RF) subsystem and Execution

Environment (EE). CCMs interact with HW using a

combination of logical and physical device drivers, which

provide two-step hardware abstraction. The logical device

drivers provide the necessary bridge between a HW device

and its specific use in the currently configured system. As in

traditional systems device drivers are specific to particular

HW devices, here called Configurable Execution Modules

(CEMs), and are loaded into the EE. The central role of

CCMs during configuration makes them an important target

for, interpreter of, and dispatcher of configuration data.

The Role of Configuration Data and a

Configuration Control Module in an End-to-End

(E
2
R) Software Radio System

Rollo Burgess, Toshiba Research Europe Ltd, Bristol, UK,

Stefan Mende, Nokia Research Center, Bochum, Germany

T

III. CONFIGURATION DATA TYPES

In a SW radio system we need to understand what

configuration data is required by the architecture, and to

classify its different forms. The term ‘configuration’ has

many meanings in the SW radio community. To gain an

understanding of the different configuration data types we

have classified them according to their target, i.e. the entity

that is being configured by them, and by their level of

abstraction. Table I lists, in order of decreasing abstraction,

the principal types of configuration data needed to configure

an E2R SW modem, using the architecture described above.

TABLE I

PRINCIPAL CONFIGURATION DATA TYPES OF A SW MODEM

Configuration Data Abstraction Target Form

baseband algorithm

inc. deadlines (a)

functional SW modem data-flow graph &

RT constraints

signal-process (b) functional SW modem data-flow graph &

RT constraints

signal-process

parameters (c)

functional signal-process list: parameter -

value pairs

signal-process

spatial

configuration (d)

system SW modem &

baseband

algorithm

list: process to

processor

mappings

signal-process

temporal

configuration (e)

system SW modem &

baseband

algorithm

schedule: process

executions

logical/physical

device driver (f)

system/HW

abstraction

CCM/EE binary executable

µ-processor task (g) n/a µ-processor binary executable

digital logic (h) n/a reconfigurable

logic device

binary bitstream

implementation

arguments (i)

n/a task arguments,

HW registers

list: argument -

value pairs

At the highest level of abstraction are data types that

describe the required radio functionality. Each baseband

application, i.e. RAT modem, is described as a hierarchical

communicating signal-process, arranged as a data-flow

graph (a). Sub-processes, i.e. component signal-processes

such as forward error correction, are similarly described (b).

Modem signal-process functionality often includes

mandatory real-time constraints, and so the description must

be capable of specifying the deadlines. In addition, signal-

processes can themselves be configured using a list of

parameters, such as the polynomial values for a

convolutional encoder. These constitute a further type of

functional configuration data (c). Configuration data types

(a), (b) and (c) are implementation independent and are

required by the CMM and CCM in the early stages of

deciding what RAT to implement and how it should be

implemented.

Moving lower, to the system abstraction level, are two

configuration data types that begin to tie the abstract

functionality to a particular implementation. Firstly, the

spatial configuration (d) maps the signal-processes to the

processors that will execute them. Secondly, the temporal

configuration (e) provides the precise schedule for

execution of each process on its host processor, ensuring

that all deadlines are met. These configuration data types

can be predefined for known RATs and HW architectures,

or calculated dynamically where possible. In both cases the

CCM requires this information in order to build a practical

system implementation. The CCM’s subsystem wide

approach to implementing the required functionality, gives

rise to the System Abstraction Layer (SAL).

The SAL and Hardware Abstraction Layer (HAL) are

configured using a configuration data type commonly

known as a driver (f). The remaining configuration data

types listed in the table are application specific. These

include tasks (g), such as an executable for an interleaver

running on a DSP, and digital logic (h), such as a

convolutional encoder bitstream targeted to an FPGA. The

final configuration types are implementation arguments (i).

These are analogous to abstract signal-process parameters,

except that they target the process implementations, (e.g.

values for program arguments and FPGA registers) and may

contain additional values specific to the implementation.

Note that our discussion has been restricted to baseband

application functionality. Similar arguments can be

constructed for PS and RF functions.

The table lists three configuration data types with known

binary formats. These are applications (µ-processor task,

reconfigurable logic bitstream) and drivers, which all run on

physical devices. The remaining types are more abstract

with less well-defined container formats. In the following

sections we discuss how the storage, transportation and

interpretation of components containing instances of these

types, can benefit from a common and potentially

standardized approach to the format of the container.

IV. IMPLEMENTATION CONSIDERATIONS

A. Configuration Language and Data Model

When configuration data is packaged in a container, for

transportation or storage, the configuration language

defines the syntax of the data description. In principal there

can be a configuration language for each configuration data

type. In reality many of the previously identified types share

common concepts and so it is possible that a coherent set of

related and overlapping languages can be developed based

on a single data model. For example, signal-processes are

concepts that are common to baseband algorithm functional

descriptions, signal-process parameters and task schedules.

The data model, therefore, is all-important and should be

independent of the physical file format of the container.

When selecting the latter two possibilities arise. Firstly,

highly optimized binary formats can be developed and

standardized specifically for SW radio configuration data.

Alternatively, the formats can be based on industry standard

metadata formats, such as the eXtensible Markup Language

(XML).

While the first option will certainly be the most efficient,

the second provides access to a wealth of existing

knowledge and technologies for searching and manipulating

packaged data. In fact the best solution may be to limit the

latter to non-real-time domains and the higher levels of

abstraction, e.g. the CMM and the highest parts of the CCM.

In this scenario optimized formats would be developed only

for the lower or real-time layers, such as the SAL and the

HAL. The CMM or CCM would be responsible for mapping

or translating from one format to the other.

The current state-of-the-art for configuration data

supports the use of XML, at least at higher levels of

abstraction. Many IST reconfigurability projects have

favoured XML, including CAST [3], TRUST [4] and

SCOUT [5]. The Joint Tactical Radio System’s Software

Communication Architecture [6] also uses XML, with a

single data model. The Vanu Radio Description Language

[7], perhaps the only configuration language in practical use

today, uses a proprietary text-based language, although an

automated transformation to XML is available for the

purpose of analysis. Given that XML has already been

widely adopted to convey SW radio configuration data, we

intend to continue this tradition in E2R. In the following

section we delve a bit deeper into XML and related

technologies. In particular we highlight both its advantages

and disadvantages and how the latter may be overcome. We

also take a look at how data models can be formally

captured in an XML configuration language.

B. XML Meta-Language

XML is a meta-language for developing markup

languages, standardized by the World Wide Web

Consortium (W3C) [8]. The original target applications

were web-based services. XML has become widely used in

recent times, with application in many non web-based

domains.

XML markup languages are text-based, which, for simple

languages, are easily human readable in much the same way

that the Hyper-Text Markup Language (HTML) can be read

by a web designer. Like HTML, XML-based languages use

tags to define elements, including hierarchical sub-elements,

and element attributes. (Unlike HTML, XML elements can

represent data items as well as formatting information.) In

XML terminology an XML file is a data container known as

a document.

The use of plain text makes XML languages user

friendly, however the downside is that XML documents are

overly verbose and wasteful of space. A simple and

common solution is to compress the XML using generic

techniques. These dramatically reduce the size of an XML

document, although at the expense of a processing

overhead. Typically compression can reduce an XML

document by a factor of 0.05. Proprietary XML

compression utilities, such as XMill [9] can further reduce

XML documents, e.g. to 0.025 for XMill, by taking into

account the nature of the XML language. There is an

ongoing discussion in the industry as to whether XML

should have an accompanying, efficient, binary format. In

fact at least two standards bodies, [8], [10] are currently

working on just such a format. Initial results indicate that

applications perform 2 to 3 times faster than those using

uncompressed XML.

The syntax or rules of an XML language are commonly

defined by a schema, and there are at least two standard

schema technologies [8], [11]. Schemas are used to validate

documents that claim to be conformant with the language.

Schemas are themselves written in XML and can be

embedded in a document with the data, giving rise to the

idea that XML is ‘self-documenting’.

An important consideration, when using XML, is the

parser which reads and interprets documents. There are

three fundamental types of XML parser. Model parsers read

the whole XML document and build a tree of element nodes

in memory. This approach is memory intensive, but does

give the client fast random access to elements. Push parsers

read the whole document and generate events for each

element encountered. This approach makes efficient use of

memory, since the client only need respond to the events

and hence elements of interest, although random access to

elements becomes difficult. Pull parsers gain the

advantages of both a model and push parser, without the

disadvantages. Greater control of the parsing process is

given to the client using iterators. These allow the client to

read any part of the document in small chunks.

For each type of parser, standard and de facto Application

Programmer Interfaces (API) have emerged. For model

parsers the API is the Document Object Model (DOM) [8],

and for push parsers it is the Simple API for XML (SAX)

[12]. Pull parsers are a recent development that has arisen

within the Java community, and two APIs currently

dominate; the Streaming API for XML (StAX) [13] and the

common XML Pull API [14].

Although parsers for XML were initially developed for

desktop and server systems with plenty of resources, several

proprietary parsers with reduced footprints have been

successfully applied in constrained embedded systems.

Some of these are shown in Table II.

TABLE II

XML PARSERS FOR EMBEDDED SYSTEMS

Name Type API Lang. Size

Fusion RT [15] push SAX C 15kb

TinyXML [16] model DOM C++ 12kb

XML Parser [17] model/push Java 6kb

kXML 2/3 [18] pull Xml Pull/StAX Java 9/?kb

Xparse-J [19] model Java 6kb

The memory footprints are all well below 50kb. For

parsers that don’t conform to a standard API, the developers

have been able to further reduce the code size to values just

above 6kb. Note that these parsers won’t feature advanced

XML technologies. Of course, the size of the parser is not

the only factor to consider, since in many cases the

document size is likely to dominate. This is why a memory

efficient parsing mechanism is critical and why the pull

method is particularly suitable. It is also important to

minimize the number of parser instances, for example if

necessary the CMM and CCMs could share a single parser

service.

C. Schema Example

In this section we take a look at an example XML schema

for baseband algorithm configuration data.

To encourage understanding and model reuse we have

developed the data model for the schema in the Unified

Modelling Language (UML), using a UML profile and

automated schema generation tools advocated by David

Carlson [20]. Several UML tools, including [21] and [22]

also support a graphical approach to the development of

XML schemas.

Fig. 2 shows the UML class diagram for our data model.

The principal classes used to define baseband algorithms are

Process, Channel, and Port. These representations of

behaviour, communication and connectivity map by default

to XML elements. The <<XSDattribute>> stereotype

implies the use of an XML attribute, e.g. the units for real-

time constraints. Other stereotypes from the UML profile

also shown include <<enumeration>> for enumerations and

<<XSDsimpleType>> for XML schema simple types, such

as double. In addition the UML profile makes full use of

specialization (e.g. process is a type of component) and

associations (e.g. processes can contain sub-processes).

cd Algorithm Data Model

«XSDsimpleType»

XSD Datatypes::

double

RTConstraint

+ «XSDattribute» units: UnitsOfTime

«enumeration»

UnitsOfTime

+ ms: integer

+ us: integer

+ ns: integer

«enumeration»

DataType

+ frame: integer

+ complex: integer

ChanReference

+ «XSDattribute» reference: IDREF

OutputPortInputPort

ChannelPort

+ «XSDattribute» dataType: DataType

Process

+ deadline: RTConstraint [0..1]

Component

+ «XSDattribute» name: ID

0..*

+input

0..*

+output

0..*

+subChannel

+subProcess 0..*

+inputChannel +outputChannel

Fig. 2. UML class diagram: a data model for algorithm configuration.

These mappings can be seen in Fig. 3, an extract from the

XML Schema automatically generated by the hyperModel

tool [20], showing the Port and InputPort entities.

<!-- Port -->

 <xs:element name="Port" type="Port" substitutionGroup="Component"/>

 <xs:complexType name="Port">

 <xs:complexContent>

 <xs:extension base="Component">

 <xs:attribute name="dataType" type="DataType" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

<!-- Input Port -->

 <xs:element name="InputPort" type="InputPort" substitutionGroup="Port"/>

 <xs:complexType name="InputPort">

 <xs:complexContent>

 <xs:extension base="Port">

 <xs:sequence>

 <xs:element name="inputChannel" type="ChanReference"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Fig. 3. Excerpt from the generated XML Schema.

Finally, for completeness, Fig. 4 is part of a document

that conforms to the schema, showing the interconnections

between three processes in an 802.11a transmitter algorithm,

and the algorithm’s real-time deadline.

<?xml version="1.0" encoding="UTF-8"?>

<Process ID="802.11aTxBaseband"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="AlgorithmSchema.xsd">

 <deadline units="us">10</deadline>

<!-- algorithm channels -->

 <subChannel name="Ch1"/>

 <subChannel name="Ch2"/>

<!-- other channels ... -->

<!-- algorithm processes -->

 <subProcess name="Interleave">

<!-- inputs not shown -->

 <output dataType="frame" name="InterleaveOutPort">

 <outputChannel reference="Ch1"/>

 </output>

 </subProcess>

 <subProcess name="Mapper">

 <input dataType="frame" name="MapperInPort">

 <inputChannel reference="Ch1"/>

 </input>

 <output dataType="complex" name="MapperOutPort">
 <outputChannel reference="Ch2"/>

 </output>

<!-- mapper sub-processes (modulator, symbol generation etc)

 and sub-channels not shown -->

 </subProcess>

 <subProcess name="IFFT">

 <input dataType="complex" name="IFFTInPort">

 <inputChannel reference="Ch2"/>

 </input>

<!-- outputs not shown -->

 </subProcess>

</Process>

Fig. 4. Excerpt from a conformant XML document for a simple algorithm.

It is easy to see that the XML document specifies an

algorithm data-flow equivalent to that shown schematically

in Fig. 5.

802.11aTxBaseband

Interleav e

InterleaverOutPort :

fram e

M apper

M apperInPort :

fram e

M apperOutPort :

com plex

IFFT

IFFT InPort :

com plex

Ch1 Ch2

deadl ine = 10 µs

Fig. 5. UML composite structure diagram: example algorithm data-flow.

D. Database and Document Storage

This section discusses how XML configuration

documents can be stored in a local database and how useful

content can be efficiently retrieved. This database stores the

configuration data that can be sets of configuration values

(e.g. set of filter coefficients) or configuration files (e.g.

object code for a DSP or a bitstream for an FPGA).

The configuration document (XML) is used to transfer

data between applications or between databases. The main

challenge is how to store the information that is included in

the XML description. The XML schema has to be used to

generate a database structure. Two approaches are

commonly used (see also Table III):

1) Table-based mapping: A mapping used by many

middleware products, which transfer data between an XML

document and a relational database. The XML document is

modelled as a single table or a set of tables. The advantage

of this table-based mapping is the simplicity. It is useful for

applications transferring one table at a time. The

disadvantage is it does not preserve physical structure and it

only works with a small subset of XML documents.

2) Object-relational mapping: This mapping is also

known as object-based mapping. It is used by XML-enabled

relational databases as well as in some middleware products.

Data in the XML document are structured as a tree of

objects specific to the defined data. This mapping schema

supports a wider spectrum of possibilities and is more

flexible. This makes it the better choice for the XML

mapping in a terminal environment.
TABLE III

MAPPING XML TO TABLE AND OBJECT MODELS

XML Table Object

<rx_filter>

<coef1>10</coef1>

<coef2>100</coef2>

<coef3>155</coef3>

</rx_filter>

Table rx_filter

coef1 coef2 coef3

…. …. ….

10 100 155

…. …. ….

object rx_filter {

coef1 = 10

coef2 = 100

coef2 = 155

}

Besides the mapping mechanism, the content of the

database also has to be handled efficiently. For searching or

maintaining information in a database it is very helpful to

have some additional standardized content fields with

keywords added to the real data. This approach of “data

about data” or “information describing the content” is the

basic idea of metadata. Metadata describes the content,

structure, quality, condition and other characteristics of the

data. Metadata are used in many different applications that

have to deal with information overload, e.g. internet search

engines or VCX IP Storebuilder [23].

The Resource Description Framework (RDF) [8] is a

formal data model from the W3C for machine

understandable metadata used to provide standard

descriptions of web resources. It is derived from XML and

is similar in intent to the Dublin Core [24], but broader in its

scope and purpose. The advantage of RDF is the

extensibility of schemata, bringing about an unprecedented

level of automation and support for statements about any

resources. RDF can be extended to fulfil the requirements of

the database in a constrained terminal environment.

As we are proposing the RDF as the data model we need

also a way of accessing information that mirrors the

flexibility of RDF. The query language should scan the RDF

information model directly and should not care how the

information is stored. One approach is RDF Query (RDFQ)

[25], which is used for knowledge discovery, rather than for

knowledge management or manipulation.

The RDFQ vocabulary provides definitions of templates,

which can be matched against actual resource descriptions.

The results of an RDFQ query are an RDF graph containing

either the concise bounded descriptions of all resources

matched by one or more of the specified target templates.

Further it could include a set of variable binding

declarations expressed using the Result Set Vocabulary.

Any number of queries can be submitted in the same

request. Also any number of templates can be specified as

part of the same query. The results of all matched templates

and queries specified in the input request are merged

together in the results. A typical RDFQ query corresponds

to the request: "Tell me everything you know about the

resources which have the following characteristics..."

V. CONCLUSION

We began this paper by outlining the E2R reconfigurable

equipment architecture, focusing on its layers of abstraction

and their interaction with functional domains. We have

shown that CCMs occupy a critical point in this architecture

where required function meets HW to deliver a system.

Here configuration data is stored, interpreted, manipulated

and exchanged, creating an impact at all levels.

Following a classification of configuration data,

according to target and abstraction level, we examined

practical ways to validate and package configuration data,

for data types that don’t have a known format. For these we

recommend a single, coherent and implementation

independent metadata model. We have selected XML as our

data container, since it is a well-supported and standard

technology, which has been previously employed in this

role, and which supports data model validation through the

creation of configuration language schemas. Although XML

is known to be processor intensive and memory inefficient,

we believe these issues can be overcome by carefully

selecting the parser type and parser implementation, and by

employing document compression. If necessary we

recommend restricting XML to the CMM and highest levels

of the CCM, using more optimal formats for the lower real-

time domains. To illustrate our proposals we have shown an

example UML data model with an automatically generated

XML schema, defining the rules for a configuration

language. The data-flow of a simple baseband algorithm

was presented as an example XML document that conforms

to the schema and hence the data-model’s rules.

Finally, we have considered how XML data should be

stored in a local database and how that data could be

queried. We recommend mapping the XML data to the

database using object-based mapping. This is the most

flexible solution, one which integrates well with our object-

oriented approach. In addition we believe that the RDF

concept for database meta-data content and database

parameterised queries will also be highly complementary

and beneficial.

We intend to make further investigations using a

simulation environment to measure performance, and to

discover the memory and computational requirements.

ACKNOWLEDGMENT

This work has been performed within the framework of

the EU funded project E2R. The authors would like to

acknowledge the contributions of their colleagues from the

E2R consortium.

REFERENCES

[1] IST-2003-507995 E2R Project, http://www.e2r.motlabs.com.

[2] C. Dolwin, S. Mende, J. Brakensiek “The Role of the Configuration

Control Module in an End to End Reconfigurable System,” Software

Defined Radio Technical Conference, November 2004

[3] “WP 4.1 Report on WP4.1 Research & Developed Technology,” IST-

1999-10287 CAST Project deliverable.

[4] “D3.2.2 Specification and Simulation of Re-configurable Baseband

Architecture,” IST-1999-12070 TRUST Project deliverable.

[5] “D3.2.2 - Recommendations for API Definitions and Management of

Core Software in Terminals,” IST-2001-34091 SCOUT Project

deliverable

[6] “Software Communications Architecture Specification, JTRS 5000,

SCA V3.0,” Joint Tactical Radio System (JTRS) Joint Program

Office, August 27th 2004.

[7] J. Chapin, V. Lum, S. Muir, “Experiences Implementing GSM in

RDL (The Vanu Radio Description Language™),” MILCOM 2001,

October 2001.

[8] W3C, XML, (Binary, Schema, DOM, RDF), www.w3.org/XML/

[9] XMill, AT&T Research, www.research.att.com

[10] ITU, Fast Infoset Recommendation, asn1.elibel.tm.fr/xml/finf.htm

[11] Relax NG Schema, www.relaxng.org/

[12] Simple API for XML, www.saxproject.org/

[13] StAX, Java Community Process, www.jcp.org

[14] XML Pull, xmlpull.org/

[15] Unicoi Fusion real-time XML parser,

www.unicoi.com/fusion_web/fusion_xml_sax_microparser.htm

[16] TinyXML, www.grinninglizard.com/tinyxml/

[17] Argosy TelCrest, XML Parser,

www.argosytelcrest.co.uk/xmlparser/index.html

[18] kXML, kxml.org/

[19] Xparse-J, www.webreference.com/xml/tools/xparse-j.html

[20] XML Modeling.com, David Carlson, www.xmlmodeling.com/

[21] Enterprise Architect, Sparx Systems, www.sparxsystems.com.au

[22] Magicdraw UML, www.magicdraw.com/

[23] VCX IP Storebuilder,

www.thevcx.com/vcx/vcx_main.nsf/weball/ip_storebuilder

[24] Dublin Core Metadata Initiative, dublincore.org

[25] RDF Query, swdev.nokia.com/rdfq/RDFQ.html

