
Abstract— Mobile devices are moving towards the use of
multiple heterogeneous radio interfaces (multimode
functionality). At present, multimode capabilities are limited in
that they tend to use just one radio interface at a time due to an
inability to select and handover individual user applications
between different interfaces as they become available. By taking
the radical step of automatically selecting applications to transfer
between active interfaces based on application requirements and
interface capabilities, we immediately increase the network
resources available to the mobile device, and also allow individual
applications to run on the interface or interfaces that best suit
them. This paper presents in detail a general theory for assessing
an interface’s conformance to an application’s requirements. A
proof of concept demonstrator is discussed briefly and the paper
concludes that the theory provides a practical solution for
optimising the simultaneous usage of multiple interfaces.

Index Terms— Artificial intelligence, Communication
equipment, Communication system software, Mobile
communication, Multimode Terminal, QoS, Wireless LAN

I. INTRODUCTION

Over the past few years, the range of wireless network
services and technologies has increased rapidly. Conventional
single interface mobile terminals are now evolving into
multimode terminals, which include more than one interface
technology such as Cellular, WLAN and Bluetooth1 [1,2].

Converged devices available within the public market are
relatively primitive, in that although separate radio interfaces
are present there is minimal interaction between these
interfaces in terms of support for active applications using
different interfaces [3]. Largely such devices are based on the
legacy “handover” model, where the terminal uses just one
interface at a time. The prototypes that have appeared which
allow multiple interfaces to be used simultaneously, have
focused on the radio aspects of the simultaneous usage and
rely on the user to manually switch applications between
interfaces [4]. However, manual switching does not make the
best use of the available resources and is inconvenient for the
user. Given a choice of different wireless technologies via
which to communicate, the user needs the terminal to adapt
automatically and dynamically to the performance and
availability of the interfaces, whilst still being able to influence
the automatic behaviour if desired. This has been referred to as
smart terminal behaviour.

We have developed an architecture that allows a terminal to
have this smart behaviour, for example, when a new interface

1 The Bluetooth trademarks are owned by Bluetooth SIG, Inc.
© Bluetooth SIG, Inc. 2004.

becomes available, automatic assessment of which, if any,
running applications may benefit from using the new interface.
The next section of this paper gives a brief overview of a key
function of the architecture which enables smart behaviour.
Next, the artificial intelligence behind the core of this function
(how to assess an interface’s suitability for use by an
application) is discussed in detail; this is the main focus of the
paper. Following on we discuss some QoS issues which
present an obstacle to employing the presented theory in a real
terminal. We then briefly discuss a proof of concept
demonstrator which was developed to evaluate the theory in a
live wireless environment.

II. ARCHITECTURE

Over the past few years we have developed a reference
architecture for use within mobile terminals. This architecture
supports a number of functions beyond those needed in a
conventional unimode terminal. One of the key functions
required to support smart behaviour in a converged terminal is
Session Transfer Management (STM).

STM monitors and assess the suitability of the interfaces
available for a given application according to the application’s
QoS requirements and also the user’s preferences (such as
cost). The interface through which a user can provide their
preferences is implementation specific, but should enable the
user to change preferences easily whilst maintaining the
sophistication of the algorithm. When STM detects that the
application may not be on the most suitable interface, it can
trigger the application to change interfaces. There are several
possible triggers for this function, including a new interface
becoming available that may better suit some of the active
applications, an interface’s QoS changing, or an interface
becoming inactive.

Within STM we have defined an algorithm that compares
how well each of the available interfaces suits the QoS (and
other) requirements of applications. This is called the
conformance calculation.

III. CONFORMANCE CALCULATION

The conformance calculation identifies the most suitable
interface for a given application.

In order to calculate how well an interface conforms to the
requirements of each application it must assess how well the
interface conforms to each of the separate requirements that an
application has. It must then combine each of those
assessments of conformance to individual requirements, into a
single assessment of conformance.

An interface’s conformance is scored on a scale of 0.0 to

Optimising Simultaneous Interface Usage In A Converged Multimode Terminal

Alessandra Pandolfi†, Abigail Surtees*, Robert Finking* and Stephen McCann*
† Siemens AG, Haidenauplatz 1, 81617 Munich, Germany

*Roke Manor Research Ltd, Old Salisbury Lane, Romsey, SO51 0ZN, United Kingdom

1.0. A score of 0.0 indicates that the interface does not
conform to the applications requirements at all – the
application cannot run on this interface. A score of 1.0
indicates that the interface is fully conformant to the
application’s requirements. To keep the combining function
simple all the assessments of the conformance of the interface
to the individual requirements are also scored from 0.0 to 1.0.
We begin by looking at the end product and work backwards
from there.

A. The Interface’s Conformance

 The interface’s conformance is determined by combining
together the assessments of the conformance of the interface to
each requirement.

The initial consideration is whether to combine each of the
individual scores into a set or to reduce them to a single
overall score. Handling of sets is more processor and memory
intensive, which is an issue in the low resource environment
found in a typical multimode terminal (MT). More importantly
however, using a set would require the calculation of the
Pareto Set (a set of sets), which whilst giving a “correct” result
may not be particularly useful; since the number of interfaces
available is small, it is highly likely that the Pareto set will
contain multiple “optimal” choices and may even contain all
available interfaces. This would not aid the decision making
process. Therefore we prefer a function which produces a
single conformance value for the interface.

We will consider three possible combining functions,
assessing whether they have the following two properties:

• to yield 0.0 if any essential requirement is not met, and
• to yield 1.0 if all the requirements are fully satisfied.
A technique often used for combining multiple parameters

into a single figure is a weighted mean. However this does not
have the desired properties outlined above. If an essential
requirement is not met, the overall conformance would not
necessarily be 0.0.

A very simple function, which does have the desired
properties, is minimum. It is also an intuitive function to use in
that an interface is no better than its least conformant aspect.
However minimum suffers from only taking into account the
worst attribute of the interface. Hence an interface scoring 0.6
on all requirements can not be distinguished from one which
scores 0.6 on just one, but 1.0 on all the rest.

Multiplication has the desired properties, is simple and
unlike minimum gives significance to all requirements, not just
the least conformant one, which allows it to distinguish
between cases which minimum can not. So, the assessments of
the conformance of the interface to the individual requirements
are multiplied together to give a conformance value (C)
between 0.0 and 1.0:

∏
=

=

=
ni

i
iPC

0

 (1)

where n is the number of requirements/preferences
expressed by the application/user and Pi is the conformance of
the interface to the ith requirement/preference.

B. Types of Requirement

In general applications have two kinds of requirement or
preference, those which are a choice from a number of options
(e.g. bearer type) and those which relate to some value (e.g.
cost, bandwidth).

Requirements which relate to discrete choice will allow
one option to be picked from a list (e.g. "GPRS", "UMTS",
"WLAN", "default"). Each option has a score associated with
it.

For some discrete requirements a “none” option will be
needed. For example, the MT may not always have network
connectivity, so it makes sense to give a score for interface
“none” for each application. For most applications, this score
would be zero. However, not all applications need network
connectivity in order to be useful (e.g. e-mails can be
written/read offline), hence they may have a non-zero score.

The conformance score for discrete requirements is
therefore obtained from a simple lookup table.

In its simplest form, a requirement related to a value could
be described by an acceptable lower limit, below which the
conformance is 0.0 and above which it is 1.0. However, this
makes poor use of the information available, effectively
reducing the value to a single bit. An improvement is to
specify an upper limit also, beyond which there is no
appreciable increase in benefit. There is then a continuum of
conformances between the two limits.

Note that higher values are not always better (e.g. the more
bandwidth the better, the lower the cost the better), but for the
ease of description within this document we will always treat
bigger as better.

The lower limit is always a fixed value (e.g. “minimum
bandwidth”). The upper limit either may be fixed (e.g.
"maximum useful bandwidth"), or may be relative to the best
value currently available on any interface (e.g. "best available
bandwidth").

Because of the continuous nature of value requirements
and the fact that there are two limits involved, calculating the
conformance to the requirement is non-trivial.

C. Assessing Conformance to Numeric Requirements

The calculation used for numeric preferences is more
complex than for discrete preferences, so we will build up the
components of the formula in parts in order that the
mathematics behind the formula may be understood.

The basis for the numeric preference calculation is a simple
linear function. The function reflects the current value of the
parameter in question against two values, the lowest
acceptable value (the lower limit, l) and the largest useful
value (the upper limit, u).

A check is made if the value of the interface exceeds the
upper limit, in which case the conformance is 1.0, or if the
value of the interface is worse than the lower limit, then the
score is 0.0.

If the value falls between the limits then a simple linear
calculation is done. That is, if l is the lower acceptable limit, u
is the upper target value and n is the value supplied by the

interface, the conformance of the network to this preference is:

)(

)(

ii

ii
i lu

ln
P

−
−

= (2)

0

0.2

0.4

0.6

0.8

1

l u
Parameter Value (n)

C
on

fo
rm

an
ce

 (
P

)

Fig. 1. Graph of requirement conformance function (2)

With (2), any given requirement can ultimately reduce the
conformance of an interface to zero, since all individual
requirements are combined into a product (see (1) above). It
may be that a particular requirement is desirable, but not
absolutely necessary e.g. low delay for file transfers. In that
case, it should only be given an importance of say 25%,
meaning that even in the worst case it would still have a
conformance of 0.75 (75%). To reflect this in the formula it is
necessary to add an importance weighting. The formula
becomes:

��
�

�
��
�

�

−
−

−=
)(

)(
1

ii

ii
ii lu

nu
wP (3)

0

0.2

0.4

0.6

0.8

1

l u
Parameter Value (n)

C
on

fo
rm

an
ce

 (
P

)

w = 0.8

w = 0.3

Fig. 2. Example graphs of requirement conformance function (3). If w = 1 the
graph would be identical to Fig. 1.

Where w is the weighting of that particular requirement
(0.25 in the above example). An importance weighting of 0
means “not at all important”, it will not affect the conformance
calculation. An importance weighting of 1 means “essential”;
without meeting the acceptable limit for this preference, the
interface isn’t useable. With a weighting of 1, the formula is
identical to (2).

This simple linear calculation is a good starting point,
however in practice applications vary in how well they
perform relative to the upper and lower limits. Consider

bandwidth for example. Some applications don't perform very
well until they get close to their target bandwidth, although
they can manage with less. Other applications perform close to
optimum as soon as their minimum acceptable bandwidth is
available and only improve in performance slightly as they
approach their target bandwidth. A simple way of reflecting
this emphasis on one limit or the other (l or u), is to raise the
linear calculation to a power, γ :

i

ii

ii
ii lu

nu
wP

γ

��
�

�
��
�

�

−
−

−=
)(

)(
1 (4)

0

0.2

0.4

0.6

0.8

1

l u
Parameter Value (n)

C
on

fo
rm

an
ce

 (
P

)
� = 1.5

� = 0.25

Fig. 3. Example graphs of requirement conformance function (4); w = 1. If �
= 1 the graph would be identical to Fig. 1.

With a value of 1 for γ the formula is identical to (3) and so
gives equal emphasis to both limits. Values of γ between 0 and
1 (exclusive) emphasize achieving the lower limit, and values
greater than 1 emphasize reaching the target limit or failing
that, getting as close to the target value as possible.

A further refinement addresses the issue of cut-off at the
upper and lower limits. So far, we have forced the
conformance to be either 1 or 0 outside those limits. For some
applications the limits are “hard”, e.g. real time applications
like voice over IP are simply unusable below a minimum
bandwidth limit. For other applications, the limits are a good
guideline, but performance might be possible below the lower
limit or some benefit may be had beyond the upper limit. For
example web browsing falls into this category. Therefore a
mechanism is needed which reflects how “hard” the limits are.
A simple way to do this is to calculate a weighted mean of two
functions: the “hard” function described so far, and a “soft”
function. The weighting assigned to each, reflects how “hard”
or “soft” the behaviour is required to be.

The “soft” function chosen for this application is the
sigmoid [10] (sometimes called the “S-curve” or “standard
logistic function”), since it is simple, has a similar basic shape
to the limited linear functions we have discussed thus far, and
has no hard limits. The sigmoid is illustrated in Fig. 4 below as
a dotted line.

The sigmoid we use must have the same gradient at its
turning point as the limited linear functions ((2) to (4)). A
shallower gradient than this does not represent the limits well,
a steeper gradient than this conflicts with the basic limited
linear function, because in a sense, a steeper gradient is

“harder”. Moreover, keeping to the same gradient opens up the
possibility of specifying two separate hardnesses, one for the
upper half of the function and one for the lower half, without
introducing discontinuities. For example a streaming video
player may have a hard lower limit for bandwidth below which
it can’t operate at all, but may have a flexible upper limit. The
target bandwidth may be enough to guarantee no frame loss in
high motion sequences, but the player may be able to increase
the picture quality beyond the target level if it receives above
target bandwidth, which will be of interest to the user.

The basic form of the sigmoid function is:

Hxe
xf −+

=
1

1
)((5)

Where H is the steepness of the function. The sigmoid has a
turning point at x = 0 (i.e. the point at which the function is
linear). For the gradient of the sigmoid to match the gradient
of the linear function at the sigmoid’s turning point, we require
the gradient at the turning point to be 1 (since this is the
derivative of x, the basic linear function):

[]

() 1
1

1

1

1

2

=−�
�

	

�

�

+
−

=�
�

	

�

�

+

−
−

−

Hx
Hx

Hx

He
e

x
dx

d

edx

d

at the turning point where x = 0, we have:

() 41
2

1
2

=
=−�
�

	

�

�− HH (6)

Combining the “soft” function (6) with the “hard” function
(4) in a weighted mean gives our final formula:

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

�

�

≥
−
−

�
�
�

�

�

�
�
�

�

�

+

+

−−

≥
−
−≥

�
�
�

�

�

�
�
�

�

�

−
−+

+

−−

≥
−
−≥

�
�
�

�

�

�
�
�

�

�

−
−+

+

−−

−
−≥

�
�
�

�

�

�
�
�

�

�

+

−−

=

�
�
�

�
�
�
�

�
−

−
−

−

�
�
�

�
�
�
�

�
−

−
−

−

�
�
�

�
�
�
�

�
−

−
−

−

�
�
�

�
�
�
�

�
−

−
−

−

.1

1

1
1

,5.01
)(

1

1
1

,05.0
)(

1

1
1

,0

1

1
1

5.04

5.04

5.04

5.04

ii

ii
i

lu

nu

i
i

ii

ii

ii

iii

lu

nu

i
i

ii

ii

ii

iii

lu

nu

i
i

ii

ii

lu

nu

i
i

i

lu

nu
forh

e

h
w

lu

nu
for

lu

nuh

e

h
w

lu

nu
for

lu

nug

e

g
w

lu

nu
for

e

g
w

P

i

ii

ii

i

ii

ii

i

ii

ii

i

ii

ii

γ

γ

γ

γ

 (7)
Where the hardnesses of the upper (g) and lower (h) limits, are
between 0 and 1, with 0 indicating soft limits and 1 indicating
hard limits. Note that the time and space complexity for
evaluating this formula are both O(1).

0

0.2

0.4

0.6

0.8

1

l u
Parameter Value (n)

C
on

fo
rm

an
ce

 (
P

)

g=1, h=0.6
g=0, h=0 (sigmoid)
g=1, h=0.6, w=0.8, �=2

Fig. 4. Example graphs of requirement conformance function (7); w = 1 and

� = 1 unless otherwise stated. If all parameters are set to 1 the graph would be
identical to Fig. 1.

IV. QOS HARMONIZATION

When it comes to implementing any algorithm that deals
with QoS on a real mobile terminal [5] there is an immediate
difficulty: there is no one standard scheme used to describe
QoS. The conformance calculation is no exception. Users and
applications do not use the same scheme to describe their
required QoS, and the interface QoS capabilities are described
in terms that are technology specific.

The QoS parameters used by different QoS schemes vary
widely. One scheme may specify just a single parameter
related to bandwidth (e.g. mean bandwidth) another may
specify eight or ten whole groups of parameters. Even those
concepts which are common between two schemes may not be
specified in the same way. For example mean available
bandwidth may be specified by one scheme in bits per second,
and by another scheme in terms of packets per second, with the
mean packet size also being specified (in bytes). Without some
harmonization between the schemes the conformance
calculation will be dealing with different sets of parameters for
different interfaces, making them impossible to compare.

The issue of QoS harmonization has been addressed
previously, and is known to be a difficult problem to solve.
Work has been done in this area by research projects such as
BRAIN [6], and also within the IETF [7,8].

 There are three main approaches to solving the QoS
harmonization problem:

1. Instead of using QoS parameters directly, Use a
high level categorization leading to a number of
classes (like those specified in UMTS -
Conversational, Streaming, Interactive and
Background), which are defined by a variety of
QoS parameters (e.g. bandwidth, latency, jitter)
such that all QoS requirements fit into one category
or another. Some parameters will have to be
considered more important than others in order to
choose the category in all cases. This approach is
simple but inflexible and wastes information.

2. Employ an internal QoS model that is an

approximated subset of existing and proposed QoS
facilities. This allows the Multimode Terminal
(MT) to perform a direct comparison between
networks by describing them in a common way.

3. Allow each application and network to describe its
QoS parameters exactly using its native QoS
scheme. This heterogeneous scheme requires STM
to manage the differences in the way the
applications specify their QoS requirements and
the ways the different available networks describe
them, but does not discard information
unnecessarily. However it is highly complex and
impacts the entire MT architecture.

Because of the limitations of QoS classes the first approach
is rejected. Because of the difficulties inherent in the
heterogeneous solution and because even for that solution at
least a minimal internal QoS model is required, it is
recommended that the second approach be taken.

This leaves the issue of parameters that an application
specifies required values for, that are not described by a
particular interface. It is necessary for there to be a mechanism
for estimating unspecified values. There are a number of
approaches which may be taken:

• Assume the worst case,
• Use user specified defaults for the application,
• Use configured defaults for the interface,
• Use calculated default values, based on current

values of parameters that are available, or
• Use measured statistics.

The simplest and perhaps safest approach to take is to
assume the worst about the missing parameter. However, this
may stop a perfectly good interface being used simply because
that interface does not advertise a particular QoS parameter.

The second approach is a slightly better way of handling
unspecified parameters. Setting a default value gives the user
control. However, specifying a default for an application
means that the same default is applied to every interface; the
sensible default value may vary widely between interfaces.

An improvement is to have a default setting for each
interface. A combination of interface default values and user
configured application default values gives a fairly good, but
easy to implement way of dealing with missing parameters.

Taking a step beyond static default values, for some
parameters it is possible to make an intelligent guess at their
value, based on the values of the parameters that are available.

 Finally perhaps the most accurate approach is to measure
the actual performance of the interface. However this is a large
and complex topic and is beyond the scope of this paper.

V. PROOF OF CONCEPT

The conformance calculation was tested initially by building
a mathematical model in a spreadsheet. This gave the
confidence needed that the algorithm was capable of making
“smart” decisions on behalf of the user, and conversely that the
user could influence the algorithm’s behaviour in an intuitive

fashion by modifying the parameters ui, li, wi, �i, gi and hi.
A more thorough test was conducted by building a proof of

concept demonstrator system, which was deployed and tested
on both an ordinary laptop and also an iPaq running Familiar
Linux [11]. The processing requirements of the conformance
calculation were easily satisfied by the iPaq. The test platform
used two air interfaces, WLAN and GPRS, and ran two
applications, a web browser and a streaming video client.
Application requirements were entered for cost and bearer
type. As part of the test harness, there was also a monitoring
application which displayed graphically which application was
using which interface. User preferences are modified through
a configuration file, but a Gui is under development.

It was demonstrated that as the cost of each bearer varied,
the applications were moved between the two interfaces in an
intuitive and intelligent fashion. It was also demonstrated that
an application was automatically transferred from one bearer
to another if the bearer it was on became unavailable.

We conclude that the theory provides a practical solution for
optimising the simultaneous usage of multiple interfaces.

VI. FUTURE STEPS

Looking towards the future, it is hoped that the kind of
algorithm presented above will be implemented and adopted
within multimode terminals. Although the information
presented here is by no means definitive, it should become a
valuable aid for designers in designing smart software for
future terminals.

REFERENCES

[1] R. Janowski, “Software Radio Concept”,
http://3gsolutions.members.easyspace.com/soft_radio1.html , 2002

[2] S. McCann, W. Gröting, A. Pandolfi. E. Hepworth, “Next Generation
Multimode Terminals, 3G2004 Conference, October 2004

[3] G. Leijonhufvud, “Multi access networks and Always Best Connected,
ABC”, Ericsson Research, http://jungla.dit.upm.es/~ist-
mind/publications/abc-sld.pdf

[4] K Strohmenger et al, “Re-configurable Multi-mode Radio Architectures
for enhanced 3G Terminals”, EU IST-MuMoR,
http://www.nokia.com/library/files/docs/Re-configurable_ Multi-
mode_Radio_Architectuers_for_enhanced_3G_Terminals.pdf

[5] Dan Chalmers and Morris Sloman, “A Survey of Quality of Service in
Mobile Computing Environments”, IEEE Communications
Surveys & Tutorials, Volume 2, Number 2, 1999,
http://www.comsoc.org/livepubs/surveys/public/2q99issue/sloman.html

[6] Information Society Technologies, IST-1999-10050 BRAIN D2.2,
BRAIN architecture specifications and models, BRAIN functionality
and protocol specification, March 2001, http://jungla.dit.upm.es/~ist-
brain/deliverables/BRAIN%20Del%202.2.pdf

[7] Jerry Ash, Attila Bader, Cornelia Kappler, “QoS-NSLP QSPEC
Template”, December 2004, http://ietf.org/internet-drafts/draft-ietf-nsis-
qspec-02.txt

[8] J. Wroclawski, RFC 2210, “The Use of RSVP with IETF Integrated
Services“, September 1997, http://www.ietf.org/rfc/rfc2210.txt

[9] Kai Lehmann, “Exploiting QoS Characteristics of Heterogeneous
Wireless Networks”, August 2004, Department of Electronic
Engineering, School of Electronics and Physical Sciences, University of
Surrey, Guildford, Surrey, GU2 7XH, UK

[10] Eric W. Weisstein. "Sigmoid Function." From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/SigmoidFunction.html

[11] The Familiar Project, http://familiar.handhelds.org/

