
Abstract— Mobile devices are moving towards the use of 
multiple heterogeneous radio interfaces (multimode 
functionality). At present, multimode capabilities are limited in 
that they tend to use just one radio interface at a time due to an 
inability to select and handover individual user applications 
between different interfaces as they become available. By taking 
the radical step of automatically selecting applications to transfer 
between active interfaces based on application requirements and 
interface capabilities, we immediately increase the network 
resources available to the mobile device, and also allow individual 
applications to run on the interface or interfaces that best suit 
them.  This paper presents in detail a general theory for assessing 
an interface’s conformance to an application’s requirements.  A 
proof of concept demonstrator is discussed briefly and the paper 
concludes that the theory provides a practical solution for 
optimising the simultaneous usage of multiple interfaces. 

Index Terms— Artificial intelligence, Communication 
equipment, Communication system software, Mobile 
communication, Multimode Terminal, QoS, Wireless LAN 

I. INTRODUCTION

Over the past few years, the range of wireless network 
services and technologies has increased rapidly.  Conventional 
single interface mobile terminals are now evolving into 
multimode terminals, which include more than one interface 
technology such as Cellular, WLAN and Bluetooth1 [1,2]. 

Converged devices available within the public market are 
relatively primitive, in that although separate radio interfaces 
are present there is minimal interaction between these 
interfaces in terms of support for active applications using 
different interfaces [3]. Largely such devices are based on the 
legacy “handover” model, where the terminal uses just one 
interface at a time. The prototypes that have appeared which 
allow multiple interfaces to be used simultaneously, have 
focused on the radio aspects of the simultaneous usage and 
rely on the user to manually switch applications between 
interfaces [4]. However, manual switching does not make the 
best use of the available resources and is inconvenient for the 
user. Given a choice of different wireless technologies via 
which to communicate, the user needs the terminal to adapt 
automatically and dynamically to the performance and 
availability of the interfaces, whilst still being able to influence 
the automatic behaviour if desired. This has been referred to as 
smart terminal behaviour. 

We have developed an architecture that allows a terminal to 
have this smart behaviour, for example, when a new interface 

1 The Bluetooth trademarks are owned by Bluetooth SIG, Inc. 
© Bluetooth SIG, Inc. 2004. 

becomes available, automatic assessment of which, if any, 
running applications may benefit from using the new interface. 
The next section of this paper gives a brief overview of a key 
function of the architecture which enables smart behaviour. 
Next, the artificial intelligence behind the core of this function 
(how to assess an interface’s suitability for use by an 
application) is discussed in detail; this is the main focus of the 
paper. Following on we discuss some QoS issues which 
present an obstacle to employing the presented theory in a real 
terminal.  We then briefly discuss a proof of concept 
demonstrator which was developed to evaluate the theory in a 
live wireless environment. 

II. ARCHITECTURE

Over the past few years we have developed a reference 
architecture for use within mobile terminals. This architecture 
supports a number of functions beyond those needed in a 
conventional unimode terminal. One of the key functions 
required to support smart behaviour in a converged terminal is 
Session Transfer Management (STM). 

STM monitors and assess the suitability of the interfaces 
available for a given application according to the application’s 
QoS requirements and also the user’s preferences (such as 
cost). The interface through which a user can provide their 
preferences is implementation specific, but should enable the 
user to change preferences easily whilst maintaining the 
sophistication of the algorithm. When STM detects that the 
application may not be on the most suitable interface, it can 
trigger the application to change interfaces.  There are several 
possible triggers for this function, including a new interface 
becoming available that may better suit some of the active 
applications, an interface’s QoS changing, or an interface 
becoming inactive. 

Within STM we have defined an algorithm that compares 
how well each of the available interfaces suits the QoS (and 
other) requirements of applications. This is called the 
conformance calculation.  

III. CONFORMANCE CALCULATION

The conformance calculation identifies the most suitable 
interface for a given application. 

In order to calculate how well an interface conforms to the 
requirements of each application it must assess how well the 
interface conforms to each of the separate requirements that an 
application has. It must then combine each of those 
assessments of conformance to individual requirements, into a 
single assessment of conformance. 

An interface’s conformance is scored on a scale of 0.0 to 
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1.0. A score of 0.0 indicates that the interface does not 
conform to the applications requirements at all – the 
application cannot run on this interface. A score of 1.0 
indicates that the interface is fully conformant to the 
application’s requirements. To keep the combining function 
simple all the assessments of the conformance of the interface 
to the individual requirements are also scored from 0.0 to 1.0. 
We begin by looking at the end product and work backwards 
from there. 

A. The Interface’s Conformance 

 The interface’s conformance is determined by combining 
together the assessments of the conformance of the interface to 
each requirement. 

The initial consideration is whether to combine each of the 
individual scores into a set or to reduce them to a single 
overall score. Handling of sets is more processor and memory 
intensive, which is an issue in the low resource environment 
found in a typical multimode terminal (MT). More importantly 
however, using a set would require the calculation of the 
Pareto Set (a set of sets), which whilst giving a “correct” result 
may not be particularly useful; since the number of interfaces 
available is small, it is highly likely that the Pareto set will 
contain multiple “optimal” choices and may even contain all 
available interfaces. This would not aid the decision making 
process. Therefore we prefer a function which produces a 
single conformance value for the interface. 

We will consider three possible combining functions, 
assessing whether they have the following two properties: 

• to yield 0.0 if any essential requirement is not met, and 
• to yield 1.0 if all the requirements are fully satisfied. 
A technique often used for combining multiple parameters 

into a single figure is a weighted mean. However this does not 
have the desired properties outlined above. If an essential 
requirement is not met, the overall conformance would not 
necessarily be 0.0. 

A very simple function, which does have the desired 
properties, is minimum. It is also an intuitive function to use in 
that an interface is no better than its least conformant aspect. 
However minimum suffers from only taking into account the 
worst attribute of the interface. Hence an interface scoring 0.6 
on all requirements can not be distinguished from one which 
scores 0.6 on just one, but 1.0 on all the rest. 

Multiplication has the desired properties, is simple and 
unlike minimum gives significance to all requirements, not just 
the least conformant one, which allows it to distinguish 
between cases which minimum can not. So, the assessments of 
the conformance of the interface to the individual requirements 
are multiplied together to give a conformance value (C) 
between 0.0 and 1.0: 
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where n is the number of requirements/preferences 
expressed by the application/user and Pi is the conformance of 
the interface to the  ith requirement/preference. 

B. Types of Requirement 

In general applications have two kinds of requirement or 
preference, those which are a choice from a number of options 
(e.g. bearer type) and those which relate to some value (e.g. 
cost, bandwidth). 

Requirements which relate to discrete choice will allow 
one option to be picked from a list (e.g. "GPRS", "UMTS", 
"WLAN", "default"). Each option has a score associated with 
it. 

For some discrete requirements a “none” option will be 
needed. For example, the MT may not always have network 
connectivity, so it makes sense to give a score for interface 
“none” for each application. For most applications, this score 
would be zero. However, not all applications need network 
connectivity in order to be useful (e.g. e-mails can be 
written/read offline), hence they may have a non-zero score. 

The conformance score for discrete requirements is 
therefore obtained from a simple lookup table. 

In its simplest form, a requirement related to a value could 
be described by an acceptable lower limit, below which the 
conformance is 0.0 and above which it is 1.0. However, this 
makes poor use of the information available, effectively 
reducing the value to a single bit. An improvement is to 
specify an upper limit also, beyond which there is no 
appreciable increase in benefit. There is then a continuum of 
conformances between the two limits.  

Note that higher values are not always better (e.g. the more 
bandwidth the better, the lower the cost the better), but for the 
ease of description within this document we will always treat 
bigger as better. 

The lower limit is always a fixed value (e.g. “minimum 
bandwidth”). The upper limit either may be fixed (e.g. 
"maximum useful bandwidth"), or may be relative to the best 
value currently available on any interface (e.g. "best available 
bandwidth"). 

Because of the continuous nature of value requirements 
and the fact that there are two limits involved, calculating the 
conformance to the requirement is non-trivial. 

C. Assessing Conformance to Numeric Requirements 

The calculation used for numeric preferences is more 
complex than for discrete preferences, so we will build up the 
components of the formula in parts in order that the 
mathematics behind the formula may be understood. 

The basis for the numeric preference calculation is a simple 
linear function. The function reflects the current value of the 
parameter in question against two values, the lowest 
acceptable value (the lower limit, l) and the largest useful 
value (the upper limit, u). 

A check is made if the value of the interface exceeds the 
upper limit, in which case the conformance is 1.0, or if the 
value of the interface is worse than the lower limit, then the 
score is 0.0. 

If the value falls between the limits then a simple linear 
calculation is done. That is, if l is the lower acceptable limit, u
is the upper target value and n is the value supplied by the 



interface, the conformance of the network to this preference is: 

)(

)(

ii

ii
i lu

ln
P

−
−

=                                    (2) 

0

0.2

0.4

0.6

0.8

1

l                             u
Parameter Value (n )

C
on

fo
rm

an
ce

 (
P

)

   
Fig. 1.  Graph of requirement conformance function (2) 

With (2), any given requirement can ultimately reduce the 
conformance of an interface to zero, since all individual 
requirements are combined into a product (see (1) above). It 
may be that a particular requirement is desirable, but not 
absolutely necessary e.g. low delay for file transfers. In that 
case, it should only be given an importance of say 25%, 
meaning that even in the worst case it would still have a 
conformance of 0.75 (75%). To reflect this in the formula it is 
necessary to add an importance weighting. The formula 
becomes: 
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Fig. 2.  Example graphs of requirement conformance function (3). If w = 1 the 
graph would be identical to Fig. 1.

Where w is the weighting of that particular requirement 
(0.25 in the above example). An importance weighting of 0 
means “not at all important”, it will not affect the conformance 
calculation. An importance weighting of 1 means “essential”; 
without meeting the acceptable limit for this preference, the 
interface isn’t useable. With a weighting of 1, the formula is 
identical to (2). 

This simple linear calculation is a good starting point, 
however in practice applications vary in how well they 
perform relative to the upper and lower limits. Consider 

bandwidth for example. Some applications don't perform very 
well until they get close to their target bandwidth, although 
they can manage with less. Other applications perform close to 
optimum as soon as their minimum acceptable bandwidth is 
available and only improve in performance slightly as they 
approach their target bandwidth. A simple way of reflecting 
this emphasis on one limit or the other (l or u), is to raise the 
linear calculation to a power, γ : 
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Fig. 3.  Example graphs of requirement conformance function (4); w = 1. If �
= 1 the graph would be identical to Fig. 1. 

With a value of 1 for γ the formula is identical to (3) and so 
gives equal emphasis to both limits. Values of γ between 0 and 
1 (exclusive) emphasize achieving the lower limit, and values 
greater than 1 emphasize reaching the target limit or failing 
that, getting as close to the target value as possible. 

A further refinement addresses the issue of cut-off at the 
upper and lower limits. So far, we have forced the 
conformance to be either 1 or 0 outside those limits. For some 
applications the limits are “hard”, e.g. real time applications 
like voice over IP are simply unusable below a minimum 
bandwidth limit. For other applications, the limits are a good 
guideline, but performance might be possible below the lower 
limit or some benefit may be had beyond the upper limit. For 
example web browsing falls into this category. Therefore a 
mechanism is needed which reflects how “hard” the limits are. 
A simple way to do this is to calculate a weighted mean of two 
functions: the “hard” function described so far, and a “soft” 
function. The weighting assigned to each, reflects how “hard” 
or “soft” the behaviour is required to be. 

The “soft” function chosen for this application is the 
sigmoid [10] (sometimes called the “S-curve” or “standard 
logistic function”), since it is simple, has a similar basic shape 
to the limited linear functions we have discussed thus far, and 
has no hard limits. The sigmoid is illustrated in Fig. 4 below as 
a dotted line. 

The sigmoid we use must have the same gradient at its 
turning point as the limited linear functions ((2) to (4)). A 
shallower gradient than this does not represent the limits well, 
a steeper gradient than this conflicts with the basic limited 
linear function, because in a sense, a steeper gradient is 



“harder”. Moreover, keeping to the same gradient opens up the 
possibility of specifying two separate hardnesses, one for the 
upper half of the function and one for the lower half, without 
introducing discontinuities. For example a streaming video 
player may have a hard lower limit for bandwidth below which 
it can’t operate at all, but may have a flexible upper limit. The 
target bandwidth may be enough to guarantee no frame loss in 
high motion sequences, but the player may be able to increase 
the picture quality beyond the target level if it receives above 
target bandwidth, which will be of interest to the user. 

The basic form of the sigmoid function is: 
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Where H is the steepness of the function. The sigmoid has a
turning point at x = 0 (i.e. the point at which the function is 
linear). For the gradient of the sigmoid to match the gradient 
of the linear function at the sigmoid’s turning point, we require 
the gradient at the turning point to be 1 (since this is the 
derivative of x, the basic linear function): 
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at the turning point where x = 0, we have: 

( ) 41
2

1
2

=
=−�
�

	


�

�− HH                              (6) 

Combining the “soft” function (6) with the “hard” function 
(4) in a weighted mean gives our final formula: 
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Where the hardnesses of the upper (g) and lower (h) limits, are 
between 0 and 1, with 0 indicating soft limits and 1 indicating 
hard limits. Note that the time and space complexity for 
evaluating this formula are both O(1). 
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Fig. 4.  Example graphs of requirement conformance function (7); w = 1 and 

� = 1 unless otherwise stated. If all parameters are set to 1 the graph would be 
identical to Fig. 1. 

IV. QOS HARMONIZATION

When it comes to implementing any algorithm that deals 
with QoS on a real mobile terminal [5] there is an immediate 
difficulty: there is no one standard scheme used to describe 
QoS. The conformance calculation is no exception. Users and 
applications do not use the same scheme to describe their 
required QoS, and the interface QoS capabilities are described 
in terms that are technology specific. 

The QoS parameters used by different QoS schemes vary 
widely. One scheme may specify just a single parameter 
related to bandwidth (e.g. mean bandwidth) another may 
specify eight or ten whole groups of parameters. Even those 
concepts which are common between two schemes may not be 
specified in the same way. For example mean available 
bandwidth may be specified by one scheme in bits per second, 
and by another scheme in terms of packets per second, with the 
mean packet size also being specified (in bytes). Without some 
harmonization between the schemes the conformance 
calculation will be dealing with different sets of parameters for 
different interfaces, making them impossible to compare. 

The issue of QoS harmonization has been addressed 
previously, and is known to be a difficult problem to solve.  
Work has been done in this area by research projects such as 
BRAIN [6], and also within the IETF [7,8]. 

 There are three main approaches to solving the QoS 
harmonization problem: 

1. Instead of using QoS parameters directly, Use a 
high level categorization leading to a number of 
classes (like those specified in UMTS - 
Conversational, Streaming, Interactive and 
Background), which are defined by a variety of 
QoS parameters (e.g. bandwidth, latency, jitter) 
such that all QoS requirements fit into one category 
or another.  Some parameters will have to be 
considered more important than others in order to 
choose the category in all cases. This approach is 
simple but inflexible and wastes information. 

2. Employ an internal QoS model that is an 



approximated subset of existing and proposed QoS 
facilities. This allows the Multimode Terminal 
(MT) to perform a direct comparison between 
networks by describing them in a common way. 

3. Allow each application and network to describe its 
QoS parameters exactly using its native QoS 
scheme. This heterogeneous scheme requires STM 
to manage the differences in the way the 
applications specify their QoS requirements and 
the ways the different available networks describe 
them, but does not discard information 
unnecessarily.  However it is highly complex and 
impacts the entire MT architecture. 

Because of the limitations of QoS classes the first approach 
is rejected. Because of the difficulties inherent in the 
heterogeneous solution and because even for that solution at 
least a minimal internal QoS model is required, it is 
recommended that the second approach be taken. 

This leaves the issue of parameters that an application 
specifies required values for, that are not described by a 
particular interface. It is necessary for there to be a mechanism 
for estimating unspecified values. There are a number of 
approaches which may be taken: 

• Assume the worst case, 
• Use user specified defaults for the application, 
• Use configured defaults for the interface, 
• Use calculated default values, based on current 

values of parameters that are available, or 
• Use measured statistics. 

The simplest and perhaps safest approach to take is to 
assume the worst about the missing parameter. However, this 
may stop a perfectly good interface being used simply because 
that interface does not advertise a particular QoS parameter. 

The second approach is a slightly better way of handling 
unspecified parameters. Setting a default value gives the user 
control. However, specifying a default for an application 
means that the same default is applied to every interface; the 
sensible default value may vary widely between interfaces.  

An improvement is to have a default setting for each 
interface. A combination of interface default values and user 
configured application default values gives a fairly good, but 
easy to implement way of dealing with missing parameters. 

Taking a step beyond static default values, for some 
parameters it is possible to make an intelligent guess at their 
value, based on the values of the parameters that are available. 

 Finally perhaps the most accurate approach is to measure 
the actual performance of the interface. However this is a large 
and complex topic and is beyond the scope of this paper. 

V. PROOF OF CONCEPT

The conformance calculation was tested initially by building 
a mathematical model in a spreadsheet. This gave the 
confidence needed that the algorithm was capable of making 
“smart” decisions on behalf of the user, and conversely that the 
user could influence the algorithm’s behaviour in an intuitive 

fashion by modifying the parameters ui, li, wi, �i, gi and hi. 
A more thorough test was conducted by building a proof of 

concept demonstrator system, which was deployed and tested 
on both an ordinary laptop and also an iPaq running Familiar 
Linux [11]. The processing requirements of the conformance 
calculation were easily satisfied by the iPaq. The test platform 
used two air interfaces, WLAN and GPRS, and ran two 
applications, a web browser and a streaming video client. 
Application requirements were entered for cost and bearer 
type. As part of the test harness, there was also a monitoring 
application which displayed graphically which application was 
using which interface.  User preferences are modified through 
a configuration file, but a Gui is under development. 

It was demonstrated that as the cost of each bearer varied, 
the applications were moved between the two interfaces in an 
intuitive and intelligent fashion. It was also demonstrated that 
an application was automatically transferred from one bearer 
to another if the bearer it was on became unavailable. 

We conclude that the theory provides a practical solution for 
optimising the simultaneous usage of multiple interfaces. 

VI. FUTURE STEPS

Looking towards the future, it is hoped that the kind of 
algorithm presented above will be implemented and adopted 
within multimode terminals.  Although the information 
presented here is by no means definitive, it should become a 
valuable aid for designers in designing smart software for 
future terminals. 
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