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Abstract— This paper demonstrates a generation method for 

-correlated integer-valued sequences using modified linear

feedback shift registers. We start from the well-known fact that 

M-sequence generation by conventional linear feedback shift

registers approximates the Bernoulli map. Changing the next 

state map in such a way that it approximates the tent map, leads 

to sequences with nearly two-valued autocorrelation functions.

The proposed method can be extended to the approximation of 

arbitrary maps in order to generate sequences with given

autocorrelation properties.

I. INTRODUCTION

Pseudorandom (PR) sequences or pseudo noise (PN) 

sequences are the best known class of digital sequences. The

interest in pseudorandom sequences and their applications

began to emerge in the 1950s [1]. PR sequences have found

various applications in civil and military fields, for example,

in radar and synchronization systems, channel estimation,

crypto-graphy, system identification, test, measurement, as the 

basis of the noise generators, etc. Nowadays, they are widely

used for practical application in modern cellular

communication systems.

Digital sequences have been classified under three main

categories [1]: binary, non-binary and other types.

The category of binary sequences can be taken as the most

frequently used class of sequences. 

Non-binary sequences became practical implementations by 

embedding in powerful digital signal processing devices. In 

many aspects, they possess properties, which are superior to

those of binary sequences, with quaternary sequences being a 

typical case [1]. 

The third category of other types includes sequences, which

have been considered to meet specific application 

requirements. For example, for image processing systems, as 

radar and pulse compression waveforms, in frequency-

hopping spread-spectrum systems etc.

We will distinguish two most important application areas of

PR sequences:
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1. Applications requiring specified autocorrelation

properties;

2. Applications requiring sets of sequences with

specified cross-correlation properties. 

In terms of communication systems, sequences with specified 

autocorrelation properties conform to synchronization tasks.

In general, there are three synchronization problems: carrier,

symbol, and frame synchronization [1]. It is common in

practice to use a transmission preamble to generate the 

required timing reference point for a data frame. The preamble

sequence, which is used for this purpose, has to be detected by

means of a matched filter. 

II. BINARY PN SEQUENCES

Pseudorandom or pseudo noise sequences are used in data

scrambling as well as for spread-spectrum modulation. Data

scrambling is achieved by changing the data sequence 

“randomly” before transmission. At the receiver, the

scrambled sequence is “changed back” to the original data

sequence. The two concepts, “randomness” and “changed

back”, are the key ideas involved in understanding CDMA

techniques. Two fundamental requirements on a random

sequence, or more precisely, a pseudo-random sequence, are

the following [2]

It must be reproducible at the receiver; 

It must be reproduced in synchronism with the

scrambling sequence at the transmitter.

As a matter of principle the following general definition of

“pseudo” randomness is possible: A deterministic signal is

called a pseudorandom signal, if there is sufficient similarity

between its properties and given parameters of the random

signal. But, upon closer inspection, they can be shown to have 

certain regularities.

The following three properties or randomness criteria are 

correct especially for a binary sequence that is qualified as a 

pseudorandom sequence:

1. The balance property. In a complete period of a PN

sequence, the number of 1s differs from the number

of 0s by at most 1. 

2. The run property. There are (2n - 1 + 1)/2 = 2n-1 runs

consecutive 1s or 0s, and half of the runs are of 

length 1, 1/22 of the runs are of length 2, 1/23 of the

runs are of length 3, etc.
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3. The correlation property. If a complete sequence is 

compared with any shift of the sequence, the number

of agreements minus the number of disagreements is

always -1, i.e. the periodic autocorrelation function is

two-valued.

The most important method of generating pseudorandom

binary sequences is by means of a linear feedback shift 

register (LFSR). The output sequence of an LFSR sequence

generator with m stages will always be periodic. An output

sequence of shift register with maximal period N = 2m-1 is 

called a maximal length sequence or M-sequence.

M-sequences satisfy all three required randomness properties.

A primitive polynomial
1 2

1 2 1 1m m m

m mp x x p x p x p x  of degree m is 

needed as a basis to construct an M-sequence. The sum is 

calculated modulo-two, i.e. the polynomial is calculated over 

GF(2) and all pi take values of either 0 or 1. 

The operation of an LFSR can be described by a dynamic

matrix equation:

1ny B yn
,        (1)

where the vector ,0 ,1 , 1

T

n n n n my y y y  is the state of the 

LFSR at time n, B is a transition matrix such that

1 2 1 1

1 0 0 0

0 1 0 0

0 0 1 0

m mp p p

B       (2)

The output of the shift register is . In other words, the

LFSR generates an infinite sequence . In 

order to generate an M-sequence, an initial loading

, 1n my

, 1, 0,1, 2,...n my n

0 0y

has to be specified. 

III. NON-BINARY SEQUENCES

For the generation of discrete non-binary sequences we

introduce the transformation
1

,

0

m

n i

i

z n iy ,       (3)

where i  are some weighting coefficients. It is clear that the

statistical properties of the sequence , 0,1,2,...nz n  depend 

on the coefficients and properties of the M-sequence.

We study the special case with . Then (3) gives the 

binary expansion of the decimal number  which takes 

values from the set 

2i

i

nz

0,1,2,..., 2 1mZ .

Taking into account (1) and (2), an arbitrary primitive

polynomial p(x) defines a unique permutation of elements in 

Z. Let us take, for example, two primitive polynomials
4 3

1 1p x x x  and 4

2 1p x x x  with m = 4. Using 

(2) we easily get two matrices  and and calculate vector-

states of the LFSRs by (1). Then the filtering (3) forms the 

following sequences: 

1B 2B

(1)

1 , 0,1,...,15 1,3,7,15,14,13,10,5,11,6,12,9, 2, 4,8nZ z n

(2)

2 , 0,1,...,15 1, 2, 4,9,3, 6,13,10,5,11,7,15,14,12,8nZ z n

respectively.

We note that 
( )i

nz are one dimensional processes, the lag 

one or next state plots of
( ) ( )

1,i i

n nz z  are given in Fig. 1 and 

Fig. 2, respectively.

Fig. 1. Next state plots of decimal sequences and .
(1)

nz
(2)

nz

The plots demonstrate that there is a first order map linking

successive values. It holds true for arbitrary primitive

polynomials p(x). We demonstrate this map for the

polynomial
18 7 1p x x x  which is used in the downlink

scrambling code generator of the 3GPP standard [3]:

Fig. 2. Next state plot of values nz  for 
18 7 1p x x x .

We note that the plotted map being rescaled to the unit 

interval for the asymptotic case gives the Bernoulli 

shift map

m

1 2  mod 1n nz z       (4)

This mapping has been carefully investigated in the field of 

chaos theory [4], ergodic theory and information theory [6].

2
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This map is characterized by an uniform invariant

probabilistic measure (i.e.  is uniformly distributed over the

unit inter-val) and exponentially decaying autocorrelation 

function [5]:

nz

1
2

12

n

zc n        (5)

An idea to use chaotic maps for a generation of the digital 

sequences with prescribed statistical properties has been firstly

discussed in [7] and a plenty of the important results on this 

topic have been already presented in [e.g. 8,9,10] . Here we

continue to develop this idea. 

Fig. 3 shows the normalized autocorrelation function of a

decimal M-sequence which is numerically obtained for m = 

18.

Fig. 3. Autocorrelation function Cz(k) for small values of k.

Thus we establish that the filtering (3) of a binary M-sequence

produces a uniformly distributed decimal M-sequence with 

exponentially decaying autocorrelation function: 
11, 0,2 1,2 2,...

lim
2 , otherwise

m m

z km

k
C k

IV. APPROXIMATION OF ARBITRARY NEXT STATE MAPS

For different application reasons we define the following 

problem: how can a known binary M-sequence generation 

scheme be modified in order to provide -correlation of 

decimal M-sequences. 

For this purpose we introduce a vector ,0 ,1 ,

T

n n n n Nx x x x

such that , i.e. .
,

0,

1,

n

n i

n

if i z
x

if i z
,

0

N

n n

i

z i x i

Then nx  is the decimal position code of the integer .
nz

Then for any dynamical system (1) with a transition matrix B

a new dynamical system

1n nx A x      (6)

can be derived. Matrix A has dimension  and can be 

easily constructed from the next state plot of successive values 

of as shown in Fig. 2. This is done by filling the matrix A 

with ones at those positions where a point in the next state 

map occurs and with zeros at the remaining positions. 

2 2m m

nz

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

A

1

1

1

1

1

1

1

1

1

1

1

1

1

1 5

1 4

1 3

1 2

1 1

1 0

9

8

7

6

5

4

3

2

1

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

1

In terms of the theory of dynamical systems (1) and (6) are

topologically equivalent. A homeomorphism conjugated to 

these dynamical systems is given by the matrix whose 

rows are the consecutive m Rademacher sequences. So, for m

= 4 this matrix is

2mm

0 1 0 1 0 1 0 10 1 0 1 0 1 0 1

0 0 11 0 0 1 10 0 11 00 11

0 0 0 0 111 10 0 00 1111

0 0 0 0 0000 11 1 11111

C .

In other words, the iterates of both dynamical systems (1) and 

(6) are related for all n through: 

ny C xn      (7) 

From this we derive the relationships 

1

1 1

n n

n n

y B y B C x

y C x C A

n

nx

finally leading to an equation

B C C A      (8) 

It allows us in principle to construct either matrix A for a 

given B or otherwise matrix B for a given A.

From the theory of chaotic maps it is known that for example

the tent map

1

2 0

2 1 0.5 1

n n

n

n n

z z
z

z z

0.5
   (9) 

is an ideal generator of -correlated real-valued sequences. 

We expect this property for a decimal M-sequence generator 

based on a triangular type of matrix A.

Let us show this for m = 4. We fix a “tent” like matrix A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

A

1

1

1

1

1

1

1

1

1

1

1

1

1 5

1 4

1 3

1 2

1 1

1 0

9

8

7

6

5

4

3

2

1

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

1

1

3
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which defines the following sequence given in Fig. 4: 

, 1,...,15 1,2,5,10,11,9,12,6,13,4,8,14,3,7,15nZ z n

Fig. 4. Approximation to the tent map by a decimal-valued

sequence Z.

Then matrix B can be computed from (8) as 

0 1 0 0

1 0 0 1

0 1 0 1

0 0 11

B ,      (10)

which defines a new scheme for the LFSR.

For an arbitrary m the approach can be extended and then the 

transition matrix B which approximates the tent map can be 

written in the following form

1,1 1,2 1, 1 1,

1 0 0 1

0 1 0 1

0 0 1 1

m mb b b b

B ,    (11) 

In order to ensure the generation of an M-sequence the 

characteristic polynomial of B given by
1 2

1,1 1,1 1,2

1,1 1,2 1, 1

1,1 1,2 1, 1 1,

det 1 1

1 ...

...

m m

m

m m

B x I x b x b b x

b b b x

b b b b

m

(12)

with I being the identity matrix, has to be a primitive

polynomial of degree m [11]. Comparing the polynomial (12) 

to a primitive polynomial p(x) leads to an equation system for

the coefficients of the first row of matrix B:

1,1 1

1,2 2 1

1,3 3 2

1, 1 1 2

1, 1

1m

m m

m m

m

m

b p

b p p

b p p

b p p

b p

     (13)

We illustrate this method for the previously mentioned

primitive polynomial
18 7 1p x x x  used for scrambling

in UMTS.  From (13) we get  and all other 
1,1 1,11 1,12 1b b b

1, 0ib . Then (1) defines a new dynamic equation for the 

states of an LFSR and (3) generates a sequence of decimal

valuess , 0,1,..., 262143nZ z n with the next state plot of 

their successive values 1,n nz z  shown in figure 5. 

Fig. 5. Next state plot of the approximated tent map for 

polynomial degree m = 18. 

A normalized autocorrelation function from a computational

experiment is depicted in Fig. 6 

Fig. 6. Autocorrelation sequence of the M-sequence generated 

by the map in Fig. 5. 

For an increasing number of stages of the modified shift 

register, the approximation of the tent map becomes closer to 

the continuous-valued case and thus also the statistical 

properties of the generated integer sequences converge to 

those of their continuous-valued counterparts. Using the 

periodicity of decimal M-sequences the normalized auto-

correlation function in the asymptotic case  can be 

written as 

m

4
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11, 0,2 1,2 2,...

0, otherwise

m m

z

k
C k  . 

V. GENERALIZATION ASPECTS

For arbitrary nonlinear one-dimensional maps generating m-

bit decimal numbers there exist

2 1 !m

PN N !

different possible m-sequences. For a consistent comparison

the all-zero state is excluded from the sequence. Thus, the 

number NP represents all permutations of the numbers 1, …, 

N.

If the generation method is restricted to the linear scheme (1) 

than the number of possible m-sequences is reduced. There

exist [12] 
1

0

2 2
m

m i

L

i

N

different regular, i.e. invertible, binary m m matrices over 

GF(2). Each matrix B, which generates an M-sequence, is 

regular and can be conjugated with an arbitrary regular matrix

R into a new matrix [12] 
1B R B R

which again generates an M-sequence. Since all regular 

matrices B can be conjugated to each other, NL is also the 

number of different m-sequences which can be generated by

the linear equation (1).

The reduced number of possible m-sequences in the linear

case makes it difficult to construct the position code matrices

A for the approximation of arbitrary maps. While it is still

feasible to construct a matrix A for a nonlinear generation 

scheme, the additional conditions for such a matrix A which 

guarantee the existence of a matrix B by equation (8) are still 

unknown.

VI. CONCLUSION

A method to obtain transition matrices for the recursive 

generation of integer sequences with desired autocorrelation 

properties is proposed. Using the approximation of certain 

next state maps allows to exploit the known properties of 

continuous-value sequences. The paper has demonstrated this 

method using the well-known tent map in order to generate -

correlated sequences. Further consideration is necessary in 

order to extend the shown approach for the approximation of

arbitrary continuous maps.
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