
A Bidirectional List-Sequential (BI-LISS) Equalizer
for Turbo Schemes

Christian Kuhn
Lehrstuhl für Nachrichtentechnik (LNT), Technische Universität München (TUM)

80290 München, Germany
Phone: +49 (89) 289 23477, Fax: +49 (89) 289 23490

Email: christian.kuhn@tum.de

Abstract— In the context of coded transmission over in-
tersymbol interference channels we investigate a bidirectional
list-sequential equalizer (BI-LISS) suitable for turbo schemes.
Especially for channels with an unmanageable high number
of states for a trellis based APP equalization this sequential
algorithm shows almost optimal performance with much smaller
complexity. Generally, the list-sequential (LISS) equalizer is
based on a decoding technique for convolutional codes with
high memory, namely sequential decoding. We introduce a BI-
LISS equalizer which leads to a further reduction of the work
amount and provides the possibility of parallel processing. For
this purpose two independent LISS equalizers are employed
working in the forward and the backward direction respectively.

I. INTRODUCTION

For coded transmission over channels introducing intersym-
bol interference (ISI) receivers based on the turbo principle
[1, 2] are known to achieve a performance close to theoretical
limits. The equalizer and decoder components have to be
soft-in/soft-out algorithms calculating a posteriori probabilities
(APP) for the individual bits. In particular for channels with
a long delay spread a trellis based APP equalizer suffers
from a high computational load and has to be replaced with
an algorithm of reduced complexity that approximates the
a posteriori probabilities. Following the ideas of sequential
decoding for convolutional codes with high memory [3] a
tree based list-sequential (LISS) equalizer suitable for that
task was introduced in [4]. Therefore, a modified Fano metric
[5] is applied for exploring an equalizer tree taking into
account the a priori information and an appropriate length bias
for channels with memory. The tree-searching is performed
using the stack algorithm [6] in order to find a subset of
the most probable sequences transmitted. A soft-output is
derived from those sequences contained in the stack after
carrying out a soft augmentation. This technique makes fully
use of the a priori information to improve the soft-output.
Basically, sequential algorithms show a variable detection
effort. Poor channel conditions reduce the effectivity of the
stack algorithm and it stops far away from the end of the
tree when the stack is filled up. Due to the soft augmentation
we are able to mitigate this problem for the unidirectional
LISS equalizer but further improvement can be achieved
using a bidirectional list-sequential (BI-LISS) equalizer. In
sequential decoding originally all implementations aim at the
hard decided maximum likelihood path to be found after

a maximum number of branch extentions. A bidirectional
sequential decoding algorithm for that purpose is suggested
in [7] searching the tree from the forward direction with
a forward decoder and independently from the backward
direction with a backward decoder. Decoding stops whenever
either the forward or the backward decoder reaches the end
of its tree. Another bidirectional approach also working with
a forward and a backward decoder is presented in [8]. This
decoding algorithm is successful when two appropriate partial
paths of forward and backward decoder, respectively, merge in
a common encoder state. Accordingly, the BI-LISS equalizer
performs a forward and a backward LISS equalization each
with a soft augmentation and therefore the classical problem
of not finding a merging path after a finite number of branch
extentions becomes obsolete in a turbo scheme.

The paper is organized as follows: In Section II the
system model and basic definitions are introduced. Section
III describes the BI-LISS equalizer in detail. In Section IV
simulation results are presented for the BI-LISS equalizer and
the unidirectional LISS equalizer. Finally, concluding remarks
are given in Section V.

II. SYSTEM MODEL

We consider the communications system depicted in Fig. 1.
Binary data is encoded by an outer FEC encoder typically
using a terminated or tailbited convolutional code. After in-

mapperencoder
FECdata

channel
ISI

FEC
decoder

estimate
data

BI−LISS

−

−

Π

Π

xm,n sn

wn

Le (x̂m,n)

yn

L (x̂m,n)

L (xm,n)

Π
−1

Fig. 1. Transmission system with iterative detection.

terleaving subblocks xN
1 = (x1, . . . ,xn, . . . ,xN)T extend-

ing from time 1 to N with the vector elements xn =
(x1,n, . . . , xm,n, . . . , xM,n) of length M and the binary dig-
its xm,n = {+1,−1} are formed. Each bit sequence xn

is mapped on a complex valued symbol sn(xn) from the
2M -ary signal constellation, leading to the symbol vector

sN
1 = (s1, . . . , sn, . . . , sN)T of length N which is appended

by L terminating symbols and transmitted over the ISI
channel. The receiver observes the symbol vector yN+L

1 =
(y1, . . . , yn, . . . yN+L)T extending from time 1 to N +L with
elements

yn =

L∑
l=0

hlsn−l + wn (1)

where h = (h0, h1, . . . , hL)T is the discrete time impulse
response of the channel with memory L and unit energy,
i.e.

∑L
l=0 |hl|2 = 1. The receiving process is corrupted

by complex-valued additive white Gaussian noise (AWGN)
with i.i.d. noise samples wn satisfying the probability density
function (pdf)

p(wn) =
1

2πσ2
w

e
−

|wn|2

2σ2
w . (2)

At the receiver we perform iterative equalization and decod-
ing. According to the turbo principle reliability information
about the code bits is interchanged between the soft-in/soft-
out (SISO) components. The first one is represented by the
equalizer which obtains a posteriori information about the
interleaved code bits L(x̂m,n) using the received symbols
yN+L

1 together with the a priori information L(xm,n) for
all individual bits. Only the extrinsic information Le(x̂m,n)
is passed to the outer SISO decoder after deinterleaving.
Normally, this decoder component applies the BCJR algorithm
or one of its approximations [9]. The extrinsic part of the
soft decoder output is fed back and serves after interleaving
as a priori input for the equalizer during the next iteration
which is carried out using the same set of received data.
When convergence is reached the iterative process stops and
the receiver delivers the data estimates.

III. LIST-SEQUENTIAL TURBO EQUALIZATION

A. APP soft-output

Within the considered turbo scheme the equalizer has to
generate the a posteriori log-likelihood ratio (LLR)

L(x̂m,n) = ln
P

(
xm,n = +1|yN+L

1

)
P

(
xm,n = −1|yN+L

1

)
= ln

∑
∀xN

1
:xm,n=+1 eln P(xN

1 |yN+L

1)

∑
∀xN

1
:xm,n=−1 eln P(xN

1
|yN+L

1)
(3)

for each xm,n which can be split up into extrinsic and a priori
parts

L(x̂m,n) = ln
p

(
yN+L

1 |xm,n = +1
)

p
(
yN+L

1 |xm,n = −1
) + ln

P (xm,n = +1)

P (xm,n = −1)

= Le(x̂m,n) + L(xm,n). (4)

These LLRs can efficiently be calculated operating on a trellis
using the finite state machine properties of the channel. For
channels with high memory and/or large symbol alphabets the
number of 2ML channel states causes an unmanageable high
computational complexity. The basic idea is now to approxi-
mate the a posteriori LLRs using the observation that the vast

majority of the candidates xN
1 contributes a negligible amount

to the total probability when evaluating the marginalization in
(3).

B. APP path metric

In order to find a subset of the most probable candidates
we use a modified stack algorithm exploring an equalizer tree,
referred to as main stack algorithm. Evaluating (3) only for
those xN

1 requires their corresponding APP metric values in
the log-domain which can be stated as

Λ
(
xN

1

)
= lnP

(
xN

1 |yN+L
1

)
(5)

= ln p
(
yN+L

1 |xN
1

)
+ lnP

(
xN

1

) − ln p
(
yN+L

1

)
.

Note that the channel part ln p
(
yN+L

1 |xN
1

)
as well as the

a priori part lnP
(
xN

1

)
of the metric can be computed

recursively in n for a given sequence xN
1 due to statistically

independent noise samples wn and code bits xm,n, respec-
tively. Based on these properties the so-called length bias
part of the metric ln p

(
yN+L

1

)
can also be determined in a

sequential manner. Given the initial and final channel state, the
computation of (5) can be started either form the beginning of
the block

⇀

Λ (xn
1) =

⇀

Λ
(
xn−1

1

)
+ ln p

(
yn|xn

n−L

)
+ lnP (xn)

− ln p
(
yn|yn−1

1

)
(6)

in the forward direction with
⇀

Λ
(
x

1
1

)
= ln p

(
y1|x

1
1−L

)
+

ln P (x1) − ln p (y1) or from the end of the block

↼

Λ
(
xN

n

)
=

↼

Λ
(
xN

n+1

)
+ ln p

(
yn+L|xn+L

n

)
+ lnP (xn)

− ln p
(
yn+L|yN+L

n+L+1

)
(7)

in the backward direction with
↼

Λ
(
x

N

N

)
= ln p

(
yN+L|x

N+L

N

)
+

ln P (xN) − ln p (yN+L). These metric calculations are carried
out on a tree structure while performing branch extensions.
For a full length path xN

1 we calculate its APP metric (5)
employing either the full length forward or the full length
backward metric value

Λ
(
xN

1

)
=

⇀

Λ
(
xN

1

)
+

N+L∑
n=N+1

[
ln p

(
yn|xn

n−L

) − ln p
(
yn|yn−1

1

)]

=
↼

Λ
(
xN

1

)
+

L∑
n=1

[
ln p

(
yn|xn

n−L

) − ln p
(
yn|yN+L

n+1

)]
.

During the main stack algorithm we perform metric computa-
tions independently in the forward and backward direction for
paths in the corresponding equalizer trees (see Fig. 3, solid
paths). In detail the channel part of the branch metric can be
expressed as

ln p
(
yn|xn

n−L

)
= −

∣∣∣yn − ∑L
l=0 hlsn−l

∣∣∣2
2σ2

w

− ln(2πσ2
w) (8)

and for the a priori part of the branch metric we have

lnP (xn) =

M∑
m=1

[
xm,n

L(xm,n)

2

− ln
(

e+L(xm,n)/2 + e−L(xm,n)/2
)]

. (9)

Finally, the bias parts of the forward and backward branch
metric can be obtained from

ln p
(
yn|yn−1

1

)
= ln p (yn

1) − ln p
(
yn−1

1

)
(10)

and

ln p
(
yn+L|yN+L

n+L+1

)
= ln p

(
yN+L

n+L

) − ln p
(
yN+L

n+L+1

)
. (11)

Although the bias term has no influence on the soft-output
calculation (3), it is absolutely necessary to compare the
metric values of the different length paths which occur while
performing the main stack algorithm. Thus the length bias is
used to speed up the tree search. Before presenting a procedure
to determine the bias term we will give a detailed explanation
of the main stack algorithm.

C. Main stack algorithm with soft augmentation

Depending on the equalization direction the two indepen-
dent main stack algorithms work on the main stack

⇀

S or
↼

S , respectively. The TOP stack entry of each main stack
corresponds to the path with highest metric which has not
yet reached full length. A flow chart is depicted in Fig. 2 and
in the following we will only point out the differences to the
stack algorithm. Originally, the stack algorithm works only in

for soft-output calculation

Extend TOP stack entry and

Remove TOP entry from stack

calculate metrics of successors

to descending metric values

Insert the 2M new entries in the

filled up

Stack

?

Yes

Extend all shorter paths to full

length and update path metric

No

Initialize main stack
⇀

S /
↼

S

stack which is ordered according

using soft values

with root node

Store augmented stack
⇀

S /
↼

S

Fig. 2. Flow chart for the stack algorithm with soft augmentation.

the forward direction and stops when the path with the highest

metric has reached full length N . In contrast to that the main
stack algorithm stops when the corresponding stack is filled
up, i.e. the number of paths in the stack reached a maximum
value of |

⇀

S |max/|
↼

S |max, to use as many full length sequences
as possible for the soft-output processing in (3) under a given
memory constraint. When the stack is filled up with different
length paths, an additional improvement of the soft-output is
achieved by carrying out a full length augmentation without
increasing the stack size. More precisely, we use the a priori
information L(xm,n) by means of soft bits

x̄m,n = E{xm,n} = tanh(L(xm,n)/2) (12)

as well as soft symbols

s̄n = E{sn} =
∑

∀(b1,...,bM)

[
s(b1, . . . , bM)

M∏
m=1

1 + bmx̄m,n

2

]
,

(13)
bm ∈ {±1}, for the augmentation and the required metric

calculations. In Fig. 3 an example for the forward and back-
ward tree is presented. Solid lines belong to hard decisions and
dashed lines represent the soft augmentation. These augmented

backward

forward

xn+1 = +1

xn+1 = −1

x̄n+2 = +0.8

xn+2 = +1

xn+2 = −1

x̄n+2 = +0.8

xn = +1

xn = −1 x̄n+1 = −0.5

x̄n−2 = +0.3

x̄n−2 = +0.3

x̄n−2 = +0.3

x̄n−1 = −0.5

xn−1 = +1

xn−1 = −1

xn = +1

xn = −1

Fig. 3. Equalizer subtrees for BI-LISS applied to BPSK modulation.

paths x̆N
1 generally contain soft values x̄m,n and hard decided

values xm,n as shown in Tab. I.

k x̆1 . . . x̆n−1 x̆n x̆n+1 . . . x̆N Λ
(
x̆

N
1

)
1 + . . . − + − . . . + −0.9

2 + . . . − + + . . . +0.1 −1.2

3 + . . . + + − . . . − −1.8

...
...

...
...

...
...

...

|
⇀

S |max − . . . + − −0.5 . . . +0.1 −18.2

1 +0.7 . . . − + − . . . + −1.2

2 +0.7 . . . + − − . . . + −1.6

3 +0.7 . . . − + − . . . − −2.2

...
...

...
...

...
...

...

|
↼

S |max +0.7 . . . −0.5 − + . . . − −22.1

L(x̂n) +3.1 . . . −0.6 +2.5 −0.9 . . . +2.9 —

TABLE I

EXAMPLE FOR THE AUGMENTED STACKS OF A BI-LISS EQUALIZER FOR

BPSK TRANSMISSION WITH STACK SIZES |
⇀

S |max AND |
↼

S |max .

D. Auxiliary stack algorithm for bias estimation

The length bias parts of the branch metrics (10) and (11)
are essential for the main stack algorithm to be successful.
Evaluating

ln p (yn
1) = ln

∑
∀xn

1

eln p(yn
1 |xn

1)+ln P (xn
1) (14)

yields the exact value of the forward partial bias term and

ln p
(
yN+L

n+L

)
= ln

∑
∀xN

n

eln p(yN+L

n+L
|xN

n)+ln P(xN
n) (15)

the exact value of the backward partial bias term. Unfor-
tunately, the calculation of (14) and (15) is far too com-
plex, but the corresponding sums are dominated only by
a small subset of sequences of a particular length. These
sequences maximizing the forward partial auxiliary met-
rics

⇀

Λx (xn

1) = ln p (yn

1 |x
n

1) + ln P (xn

1) or the backward partial
auxiliary metrics

↼

Λx

(
x

N

n

)
= ln p

(
y

N+L

n+L
|xN

n

)
+ ln P

(
x

N

n

)
,

respectively, can also be found by exploring the equalizer
trees. For this we use a slightly modified M-algorithm, referred
to as auxiliary stack algorithm. In the forward direction this
algorithm works on an auxiliary stack

⇀

Sx with stack size

|
⇀

Sx |max = 2M

⇀

Nx and recursively computes partial auxiliary
metric values

⇀

Λx (xn
1) =

⇀

Λx

(
xn−1

1

)
+ ln p

(
yn|xn

n−L

)
+ lnP (xn) (16)

using the channel part (8) as well as the a priori part (9) of
the branch metric, starting from

⇀

Λx

(
x

1
1

)
= ln p

(
y1|x

1
1−L

)
+

ln P (x1). Consequently, the forward partial bias term can be
estimated by

ln p (yn
1) ≈ ln

⇀

βn= ln
∑

∀xn
1
∈

⇀

S x

e
⇀

Λx(xn
1). (17)

A flow chart for the auxiliary stack algorithm is depicted
in Fig. 4. Similarly, we have for the backward direction an

auxiliary stack
↼

Sx with size |
↼

Sx |max = 2M

↼

Nx and the partial
auxiliary metric

↼

Λx

(
xN

n

)
=

↼

Λx

(
xN

n+1

)
+ln p

(
yn+L|xn+L

n

)
+lnP (xn) (18)

starting from
↼

Λx

(
x

N

N

)
= ln p

(
yN+L|x

N+L

N

)
+ ln P (xN). An

estimation of the backward partial bias is obtained by

ln p
(
yN+L

n+L

) ≈ ln
↼

βn= ln
∑

∀xN
n ∈

↼

S x

e
↼

Λx(xN
n). (19)

Contrary to the main stacks, the auxiliary stacks contain only
sequences of a particular length. Moreover, to reach the end
of the trees and to guarantee limited stack sizes we have to
discard paths while performing the auxiliary stack algorithms
for the tree depth n >

⇀

Nx in the forward direction and for
n ≤ N−

↼

Nx in the backward direction.

with root node

Extend all stack entries and
calculate metrics of successors

?

Initialize auxiliary stack
⇀

Sx /
↼

Sx

Compute bias estimate
⇀

β
n

/
↼

β
n

Remove all previous entries and

auxiliary stack
insert new entries in the

of tree
Bias

complete

Yes

No

Stack
filled up

?

No

Order stack according to descending

Yes

End

metric values. Remove all entries

below position 2
M

(
⇀

Nx−1

)
/2

M

(
↼

Nx−1

)

Fig. 4. Flow chart for the auxiliary stack algorithm.

E. Soft-output processing

We now have available a set of augmented paths x̆N
1 in the

forward main stack
⇀

S and in the backward main stack
↼

S . Due
to the soft augmented part we have to modify (3) to control
the metric influence on numerator and denominator. Therfore,
we introduce the weighting factors (1± x̆m,n)/2 which leads
to

L(x̂m,n) ≈ ln

∑
∀x̆∈

⇀

S

1+x̆m,n

2 · eΛx(x̆N
1) +

∑
∀x̆∈

↼

S

1+x̆m,n

2 · eΛx(x̆N
1)

∑
∀x̆∈

⇀

S

1−x̆m,n

2 · eΛx(x̆N
1) +

∑
∀x̆∈

↼

S

1−x̆m,n

2 · eΛx(x̆N
1)

.

(20)
For the hard decided part of the tree we have almost the
original formula, but for the soft decided part we weight the
metric values with the corresponding bit probabilities

P (xm,n = ±1) =
1 ± x̄m,n

2
. (21)

An important difference according to (3) is that we only have
the estimated bias parts ln

⇀

β
N+L

and ln
↼

β
−L

, which are in
general different from each other, instead of the exact value
ln p

(
yN+L

1

)
which is valid for both directions. In order to

prevent BI-LISS to privilege paths of the augmented stack
with the smaller estimated full length bias, we have to use the
metrics without the estimated bias terms

Λx

(
x̆N

1

) ∣∣∣
x̆

N
1
∈

⇀

S
= Λ

(
x̆N

1

)
+ ln

⇀

β N+L ,

Λx

(
x̆N

1

) ∣∣∣
x̆

N
1
∈

↼

S
= Λ

(
x̆N

1

)
+ ln

↼

β−L (22)

for the evaluation of (20). For that reason it is only necessary
to estimate the partial bias up to ln

⇀

βN in the forward direction

and up to ln
↼

β1 in the backward direction. In conclusion the
structure of BI-LISS is presented in Fig. 5.

soft−
output processingauxiliary stack

M−algorithm stack algorithm

main stack

auxiliary stack

M−algorithm stack algorithm

main stack
(forward) (forward)

(backward) (backward)

BI−LISS equalizer

↼

Sx

↼

S

ln
⇀

βn

⇀

S

yn

L(xm,n)

L(x̂m,n)

ln
↼

βn

x̆m,n

Λ
(
x̆

N
1

)
x̆m,n

Λ
(
x̆

N
1

)

⇀

Sx

Fig. 5. Structure of the BI-LISS equalizer.

IV. SIMULATION RESULTS

The ionosphere is a very challenging physical channel
which suffers from a large delay spread and is typically mod-
eled by two propagation paths with equal power. Therefore, we
consider the 16-tap channel h = (1/

√
2, 0, 0, . . . 0, 0, 1/

√
2)T

for binary transmission [10]. Blocks of N = 128 symbols
are arranged in an interleaver frame of size 8192 bits. The
outer rate 1/2 convolutional code is terminated and defined
by the generator g = [1 + D + D3 + D4, 1 + D3 +
D4]. In Fig. 6 the BER after decoding for a turbo receiver
employing BI-LISS with |

⇀

S |max= |
↼

S |max = 4096 and
|

⇀

Sx |max= |
↼

Sx |max= 128 is depicted. Note that the full tree
has 2128 paths. The system performance is compared to coded
transmission over an AWGN channel with APP decoding.
We reach this performance bound in iteration 12 at a BER

2.5 3 3.5 4 4.5 5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
 in dB

it. 0
it. 2
it. 4
it. 6
it. 8
it. 10
it. 12
no ISI

Fig. 6. BER performance after the decoder for N = 128, an inner BI-LISS
equalizer with |

⇀

S |max = |
↼

S |max =4096, |
⇀

S x |max= |
↼

S x |max =128

and an outer BCJR decoder for the rate 1/2, memory 4 convolutional code.

of 10−3. In Fig. 7 a comparison of different LISS based
equalizers after 12 iterations equalization and decoding is
presented. For each equalizer we have fairly small auxiliary
stack sizes of |

⇀

Sx |max+|
↼

Sx |max = 256. Compared to the
unidirectional LISS equalizer with |

⇀

S |max = 8192, a turbo

2.5 3 3.5 4 4.5 5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

E
b
/N

0
 in dB

|
⇀

S |max = 8192

LISS, it. 12

no ISI

|
⇀

S |max = |
↼

S |max = 2048

BI-LISS, it. 12

|
⇀

S |max = |
↼

S |max = 4096

BI-LISS, it. 12

BI-Gain

Fig. 7. BER performance after 12 iterations equalization and decoding for
N = 128, various inner LISS based equalizers with |

⇀

S x |max + |
↼

S x |max=

256 and an outer BCJR decoder for the rate 1/2, memory 4 conv. code.

receiver employing BI-LISS with equal computational com-
plexity, i.e. |

⇀

S |max= |
↼

S |max= 4096, reaches the performance
bound at a 1.25dB lower Eb/N0. Moreover, we reduced the
main stack sizes by factors of two for the BI-LISS equalizer.
Even in that case, BI-LISS shows a better performance.

V. CONCLUSION

We have introduced a bidirectional list-sequential (BI-LISS)
equalizer which overcomes the problems of former bidi-
rectional sequential decoding algorithms. Furthermore, the
independent components of BI-LISS provide the possibility
of parallel processing. Especially in the low Eb/N0-range
BI-LISS shows a better performance than its unidirectional
complement LISS.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: Turbo codes (1),” in Proc. of the IEEE
Int. Conf. on Communications (ICC), vol. 2, pp. 1064–1070, May 1993.

[2] J. Hagenauer, “The turbo principle: Tutorial introduction and state of the
art,” in Proc. of the Int. Symposium on Turbo Codes & Related Topics,
pp. 1–11, Sept. 1997.

[3] J. M. Wozencraft and B. Reiffen, Sequential Decoding. Cambridge,
Mass.: MIT Press, 1961.

[4] J. Hagenauer and C. Kuhn, “Turbo equalization for channels with high
memory using a list-sequential (LISS) equalizer,” in Proc. of the Int.
Symposium on Turbo Codes & Related Topics, pp. 9–13, Sept. 2003.

[5] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE
Transactions on Information Theory, vol. 9, pp. 64–73, Apr. 1963.

[6] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Prentice-Hall, Englewood Cliffs, 2nd ed., 2004.

[7] G. D. Forney, “Final report on a coding system design for advanced
solar missions,” in Rep. NAS2-3637, Contract NASA CR73167, NASA
Ames Res. Ctr., 1967.

[8] S. Kallel and K. Li, “Bidirectional sequential decoding,” IEEE Trans-
actions on Information Theory, vol. 43, pp. 1319–1326, July 1997.

[9] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Transactions on Information Theory,
vol. 42, pp. 429–445, Mar. 1996.

[10] R. Otnes and M. Tüchler, “Block SISO linear equalizers for turbo equal-
ization in serial-tone HF modems,” in Proceedings of the Norwegian
Signal Processing Symposium (NORSIG), pp. 93–98, Oct. 2001.

