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Abstract— The trend for wireless systems is characterized by
the necessity to support multiple standards and transmission
modes. This calls for user-transparent system reconfigurations
between wireless networks and user terminals. System reconfig-
uration, in turn, requires flexible implementations. In addition
to flexibility, the implementations must meet tight constraints
with respect to both performance and development time due
to the nature of the applications and of the consumer market
respectively. These requirements can be met by employing
Application-Specific Instruction-set Processors (ASIPs), or by
employing FPGA-based solutions. In this paper, we present a
case study in ASIP development based on the Language for
Instruction Set Architectures (LISA), and contrast the design
flow to an FPGA approach. The case study is based on an FFT
processor for OFDM-based systems.

I. INTRODUCTION

Flexibility is one of the key requirements in wireless sys-
tems beyond 3G (B3G) [1], where both user terminal and
the network have to cooperate in user transparent system
reconfiguration procedures: encompassing software download-
ing, capability negotiation, security accomplishment, setting of
parameters and quality of service management. Application-
specific integrated circuits (ASICs) do not offer the required
flexibility but there are other approaches to meet these re-
quirements; the simplest and most flexible one is probably
the all-software solution, where one or more programmable
processors are in charge of all the required functions and
the system can be adapted by simply executing different
software. This high degree of flexibility is achieved at a cost
of low throughput and low power-efficiency. A much higher
throughput can be obtained by employing Field Programmable
Gate Arrays (FPGAs). Moreover, FPGA devices offer the
capability of reconfiguration. A convenient combination of
interconnected processors and FPGAs indubitably constitutes
a very powerful and flexible solution for supporting all the
processing functions in a software defined radio environment.
Another possibility is the use of an ASIP (Application Specific
Instruction set Processor), where a software implementation
based upon a processor with optimized features is used. ASIPs
can achieve a throughput comparable to FPGAs with the
flexibility of software solution.

Mapping components of B3G systems to one of the above
mentioned solutions implies that a trade-off between flexibility
and performance has to be explored because of the different
characteristics of the solutions. However, because of the re-
quirement for flexibility and high throughput, only ASIP and

FPGA solutions are of interest. Therefore, our intention is
to study the suitability and the trade-off potential which are
offered by these two solutions for constituent algorithms of
B3G systems.

In the PRIMO project [2], several radio access schemes have
been analyzed [3], mainly W-CDMA (both single carrier and
OFDM approach) and ultra wideband techniques, and most
demanding operations and algorithms have been investigated,
including synchronization, equalization, channel estimation,
multiuser detection, and channel coding. The considered sys-
tem uses TDD (Time Division Duplex) with OFDM (Or-
thogonal Frequency Division Multiplexing) designed to obtain
both a good performance in highly dispersive channels, and
a good spectral efficiency. Each sub-carrier is modulated by
using BPSK, QPSK, 16-QAM or 64-QAM, with a multiple
access scheme based on spreading in the time domain (MC-
DS-CDMA).

In OFDM [4], Fourier transform has a critical role from a
performance point of view. Therefore, FFT algorithms were
first considered for our studies for the suitability and trade-
off potential of ASIPs and FPGAs. For the case study, the
OFDM system described in [3] is used. In the PRIMO project
an FPGA implementation [5] has been investigated.

In this paper an implementation based on an ASIP is
presented in contrast to the FPGA implementation in [5]. The
processor used for FFT implementation has been designed
using LISATek tools. The rest of this paper is organized as
follows: the design flow with FPGAs is presented in section II,
followed by a summary of the implementation on FPGA in
section III. The LISATek ASIP design flow and our case study
with two design concepts for the FFT processor are discussed
in sections IV and V respectively. Concluding remarks are
finally provided in section VI.

II. FPGA DESIGN FLOW

Figure 1 depicts a general FPGA flow. It starts with a
behavior verification of an HDL model, followed directly by
the implementation which consists of synthesis, placement and
routing. Evaluation of the design is performed after the imple-
mentation. Necessary changes to the architecture are applied
on the HDL model. Changes can be immediately applied on
the design because operators can be spatially (re)arranged to
implement (other) functions, hence making FPGAs flexible.
This is in turn possible because the structure of FPGAs
is regular and fine grained, consisting of logic blocks and



Fig. 1. FPGA development flow

interconnects. A direct consequence of this structure is that
homogeneous architectures can be well mapped on FPGAs.
Heterogeneous architectures consisting of control and data
paths, particularly with large fan-in, lead to long paths when
mapped on FPGAs.

Because of the maturity of FPGA development tools, the
process of mapping a design onto an FPGA is a straight-
forward task. However, the design of an FPGA-device for an
embedded system (eFPGA) requires a significant effort which
involves circuit and physical design. Recently, efforts towards
a complete automation of the design of an FPGA-device have
been reported [6].

III. THE IMPLEMENTATION ON FPGA

A. Project Summary

The structure of an FFT implementation is regular, consist-
ing of butterflies, and can therefore be well mapped on FPGAs.
In the PRIMO project [2] [5], the radix-4 FFT algorithm was
implemented on a Xilinx Virtex E 2000 FPGA by using Xilinx
ISE 6.2. Radix-4 was chosen because of already available IP
cores. The OFDM system for the case study [3] uses a 256
points FFT, with 320 samples per symbol with 64 samples
cyclic prefix. With a 20 MHz sampling rate, these values imply
an OFDM symbol duration equal to 320

20MHz = 16µs. The
resulting performance constraints are listed in table I.

TABLE I

FFT PERFORMANCE CONSTRAINTS

Number of points 256
Maximum time per transform 16µs
Data width real part: 16 bits

imaginary part: 16 bits
Arithmetic fixed point

An FFT transformation is performed in three phases: first
the input data is transferred into an internal memory, then
the transform is computed and lastly, the result is transferred
out. Two Finite State Machines (FSMs) are used to control
the operation of the three phases so that the operations are
overlapped. Data is transferred into and out of the FPGA by
using FIFO buffers.

B. Results

The following results were obtained: design exploration and
implementation consumed 4 and 2 man weeks respectively.
The implementation can compute a transform in 13.53µs,
occupies 272.621 kGates (equivalent), and consumes 834.79
mW.

IV. LISATEK ASIP DESIGN FLOW

Alternatively, a balance between tight design constraints
and flexibility can be achieved by using ASIPs. In contrast to
FPGAs, the flexibility of ASIPs is attributed to programmabil-
ity. Programmability insures the flexibility of the control flow
of an implementation, as well as of the schedule of its op-
erations. Specialized instruction sets and application-specific
optimizations lead to efficient program execution. Therefore,
applications which are both control and data intensive can be
efficiently implemented by using ASIPs.

ASIP design requires not only the development of the ar-
chitecture, but also the development of corresponding software
development tools (simulator, compiler, assembler and linker).
The design task is typically an iterative process, whereby,
starting from an initial architecture (template), refinements are
made until design goals are met. This means that, for each
iteration, new software development tools are required which
match the new architecture. When the design process is fin-
ished, production-quality software tools have to be developed.
Obviously, this complex process can only be completed with
a reasonable effort and within a reasonable time if high-
level abstraction models are used. This, however, poses an
additional challenge because a link to gate-level synthesis has
to be established from the high-level abstraction model.

The time and effort of designing a new ASIP can be sig-
nificantly reduced by using a retargetable modeling approach
based on an Architecture Description Language (ADL). The
Language for Instruction Set Architectures (LISA)[7] was
developed for the automatic generation of consistent software
development tools and synthesizable HDL code out of a single
processor description. A LISA processor description consists
of the instruction-set, the behavior and the timing model of
the architecture. Changes in the architecture are easily applied
to the LISA model. Since software development tools and
HDL-models are automatically generated from the same LISA
model, such changes are reflected in the whole software chain
and in the HDL-model, insuring consistency across all tools
and levels of abstractions. Moreover, the speed and functional-
ity of generated software tools allow for usage after the ASIP
development is finished so that no upgrading to production-
quality tools is necessary. Because of the automation, the need
for an ASIP designer to have expertise in both the hardware
and software design domains is eliminated.

ASIP design with LISA follows two loops as shown in
figure 2. A LISA processor description is used to generate
software development tools. These, together with the target
application, are used to verify and evaluate the model with
respect to functionality and performance. Evaluation results
are then used to guide possible architecture modifications.



Fig. 2. LISATek based processor architecture design loops

Design parameters (area, timing, energy consumption) can be
obtained and utilized through RTL processor synthesis and
gate-level synthesis. In this way, architecture alternatives can
be rapidly explored. The RTL processor synthesis supports
an automated and optimized ASIP implementation in multi-
ple HDLs. The design methodology and the RTL processor
synthesis are described in detail in [8] and [9] respectively.

LISATek is a tool suite which is based on the LISA language
and covers support for the exploration as well as for the
implementation loop. Both the language and the tool suite
were developed by the Institute for Integrate Signal Processing
Systems (ISS) at RWTH Aachen University [10], and are now
commercialized by CoWare [11].

V. A CASE STUDY: FFT PROCESSOR FOR OFDM

In order to explore possibilities obtained by using LISATek
tools, a processor suitable for FFT implementation has been
designed. The constraints that were used are the same as for
the PRIMO project (sect. III, table I). In order to implement
the FFT, the radix-2 algorithm [12] has been chosen due to
its regularity that makes it a good candidate for a software
implementation.

Several solutions have been investigated, by exploiting the
reduction of the design time obtained with the use of LISATek
tools. Finally, two different approaches can be distinguished:

• an architecture with a highly optimized data path, i.e. a
processor with instructions specific for FFT computation

• an architecture with a highly optimized control path, i.e.
a processor with instructions for speeding up the control
flow of FFT computation

These solutions will be presented in following sections.

A. ASIP with FFT optimized data path

The first investigated implementation is a processor with
a highly specialized instruction set for FFT computation. Its
main features are complex data support, result bypassing and
delayed branch.

In the designed processor, each instruction can elaborate
complex data, obtaining complex results. The programmer can

choose to elaborate only the real part of data, or the imaginary
one, to obtain more flexibility. This is accomplished by using
a flag that specifies the data type in the assembly program.
The processor will access registers and memory according to
the chosen behavior.

With result bypassing, an instruction can use the result of
the previous one. The user can disable bypass by using a flag
in the assembly program.

Delayed branch is a technique that is able to reduce speed
penalties due to conditional jumps in executed program: when
a branch is found, the processor will execute the following
2 instructions, regardless of whether the jump is executed or
not.

This processor uses a 6-stage pipeline: ISTRF (ISTRuction
Fetch), OPF (OPerand Fetch), 3-execution stages (EX, EX2
and EX3), and a ST (STore) stage. This is shown in figure 3,
where also the bypass mechanism is outlined. This processor
does not have a Load&Store architecture, because some in-
structions support direct access to data memory. Some special

ISTRF OPF EX

bypass

EX2 EX3 ST

Fig. 3. 6-stage pipeline with bypass

features are implemented to match speed requirements.
1) Specialized resources: This processor uses three differ-

ent memories: a program memory, a data memory and a coeffi-
cient memory. The coefficient memory is a read-only memory
that can be used as a LUT (look-up table) to implement non-
linear functions, for example, in FFT implementations, to store
sinusoidal coefficients. In both data and coefficients memory,
complex data are stored in the way depicted in figure 4. To
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Fig. 4. How data are stored in memories

store complex data, there are two different general purpose
register files, made of 32 registers each: one for the real part
of data and one for the imaginary part. A programmer can
access both real and imaginary parts together, and can access
both data and coefficients at the same time.

2) Specialized instructions: An instruction able to calculate
a whole butterfly (see [12]) has been implemented. With
this solution user can read input data, execute arithmetic
operations, store results, and update memory addresses in one
clock cycle, because only one instruction has to be fetched. For
a butterfly implementation with a throughput of 1 instruction
per cycle, a complex multiplication, followed by a sum and a
subtraction must be supported. With a straight implementation
of the multiplication, 4 multipliers, 2 adders and 2 subtracters
are needed. These resources are distributed into the 3 EX



pipeline stages which are shown in figure 3 so that speed
penalties do not result.

B. ASIP with FFT optimized control path

Time constraints can be met by employing features, address-
ing modes and instructions for speeding up the control flow.

1) Maintained features: This processor supports complex
data. Memory resources are the same as in the previous
version and the pipeline is also very similar (figure 5). Bypass
mechanism and delayed branches are supported.

ISTRF OPF EX EX2 EX3 ST

bypass bypassbypass

Fig. 5. 6-stage pipeline with bypass

2) New features: In the the following subsections two new
features are discussed: Automatic Index Update (AIU) and
Zero Overhead Loop (ZOL).

a) AIU: When an instruction accesses a memory location
through a register, the processor can automatically increment
the content of the register. A programmer can enable this
behavior by using a post-increment flag with the desired
operand. If this flag is not present, AIU mechanism is disabled.
For example:

ADD *R[0], *R[1]++

in this line, memory locations which are addressed by R[0]
and R[1] are added together, but, after the memory access,
R[1] is incremented, while R[0] is not. The user can choose
the value of the increment by using the SET_INCREMENT
instruction.

At the same time, a memory location can be accessed by
bit-reversing the value of the register. The user can select this
behavior by using an optional flag rev, as shown by this
sample code

ADD *R[0]rev, *R[1]rev++

In this example, both memory locations are accessed using
address bits in reversed order. Two notes should be added
about the use of the rev flag:

• the content of the register is not affected by the rev flag
since the value obtained by bit-reversing the address is
used for memory access but is not stored in the register

• the user can select the number of bits to be reversed by
using the instruction SET_NOBTBR

In the previous sample code, if value stored in R[0] and
R[1] are 1 and 3 respectively, and if the number of bits to be
reversed is 4, and if the value of the increment is 1, then the
instruction accesses memory locations 8 and 12, while final
values stored in registers are 1 and 4 due to the ++ flag in
the second operand.

b) ZOL: In this processor, a zero overhead loop is
implemented by using two general purpose registers containing
the start and target address of the loop, and the initial and
current value of the loop index respectively. The user can
declare a ZOL by performing these operations

• declare a start address by using the SET_STARTADDR
instruction

• declare a target address by using the SET_TARGETADDR
instruction

• set an initial value for the index and the number of
iterations by using the SET_INITVALUE instruction

• activate the loop by using the SET_ZOL instruction
Also nested loops can be defined, but two rules have to be
respected: up to 4 loops can be present at the same time,
and nested loops have to be declared starting from the most
external loop to the most internal one. In figure 6, a pictorial
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Fig. 6. Nested loops

representation of three nested loops is given. These loops can
be declared as follows

SET_STARTADDR R[10], @_label5
SET_TARGETADDR R[10], @_label1
SET_INITVALUE R[11], #2
SET_ZOL R[11], R[10]

SET_STARTADDR R[12], @_label4
SET_TARGETADDR R[12], @_label2
SET_INITVALUE R[13], #2
SET_ZOL R[13], R[12]

SET_STARTADDR R[14], @_label3
SET_TARGETADDR R[14], @_label2
SET_INITVALUE R[15], #4
SET_ZOL R[15], R[14]

Loops have to be declared before the outer loop (see fig. 6).
After a SET_ZOL instruction is executed, the zero overhead
loop is registered and the processor is able to find and execute
it. That is to say, after the SET_ZOL instruction, the processor
continues to fetch instructions sequentially until the loop is
found.



The loop execution is fully automatic, since the processor
automatically updates current value of index, re-initializes
nested loops, and deletes nested loops when the outer loop is
finished. This approach grants better performance compared to
the usual zero overhead approach where the loop is declared
by introducing an instruction before the first instruction of the
loop. In fact, when nested loops are present, the traditional
approach needs the loop to be initialized as many times as the
external loop is executed, whereas in the proposed approach,
a loop is defined just once outside of the external loop, and
no instructions have to be inserted in the loop. In FFT radix-2
algorithm this approach saves more than 100 instructions for
each block.

C. Results and Comments

The development time for both processors, including explo-
ration, modeling, validation, verification and HW implemen-
tation, consumed 3 man weeks.

For RTL simulations, synthesis and power calculations,
Synopsys Scirocco, Design Compiler and Prime Power were
used. Both processors have been synthesized in a 0.13µm
technology, and are able to meet the time constraint. Because
of the memory architecture and because of the pipelining, the
speed of algorithm execution depends directly on the number
of required instructions in the program.

• The solution with an optimized data path has a 200
MHz maximum clock frequency. So, this processor is
able to execute 3200 instructions in 16µs. With supported
instruction set, FFT radix-2 algorithm is implemented by
using 2056 instructions. The number of gates consumed
is 106 kGates. The pre-layout power consumption for the
processor core is 95.915 mW.

• The solution with an optimized control path has a 192
MHz maximum clock frequency, so this processor can
execute up to 3072 instructions in 16µs. With supported
instruction set, FFT radix-2 algorithm is implemented by
using 3012 instructions. The number of gates consumed
is 110 kGates. The pre-layout power consumption for the
processor core is 169.754 mW.

The second processor achieves a lower performance, and
the constraint is met with a thin margin. But the mechanism
implemented in this processor can improve the performance
regardless of the algorithm.

The features utilized in the first processor are not flexible.
That is to say, algorithms different from FFT can be performed
using this processor (e.g. a FIR filter), but performances will
be poor since the specialized features are applicable for FFT
radix-2 only.

These two solutions show performance-flexibility trade-off
possibilities in the ASIP design space. A very high perfor-
mance can be achieved with a highly specialized data path.
Reasonable performance and a high degree in flexibility can
be achieved with a highly specialized control path.

Contrasting to the results of the FPGA implementation,
the design time for the ASIPs is comparable to that for the

FPGA implementation. It is even lower1. Both versions of
the FFT processor have a lower gate count than the FPGA
implementation. The power consumptions cannot be directly
compared. This is because the estimate for the FPGA is
conservative due to a large overhead. The overhead is caused
by power-consuming components of the discrete FPGA device
which are not part of the actual design. In addition to that, the
power estimate for the ASIPs is based on pre-layout data, and
can therefore vary.

VI. CONCLUSIONS

A case study for ASIP development with LISA has been
presented and contrasted with an FPGA design flow. Two
different design concepts were used: utilization of application-
specific data path optimizations, and utilization of application-
specific control path optimizations. The case study has shown
how trade-offs between flexibility and performance in ASIPs
can be made. It has further been shown that advanced
processor features which have been tailored to a particular
application can be utilized to meet tight design constraints
without sacrificing flexibility. Particularly, the case study has
revealed that the FFT algorithm for OFDM-based systems can
be efficiently implemented by using ASIPs with a high degree
in flexibility.
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