Towards a Context Management Framework
for MobiL.ife

Patrik Floréen*, Michael Przybilski*, Petteri Nurmi*, Johan Koolwaaij,
Anthony Tarlano¥, Matthias Wagner¥, Marko LutherY, Fabien Bataille!l,
Mathieu Boussard!, Bernd Mrohs?, SianLun Lau?*

Abstract— Recent advances in the field of context rea-
soning and in wireless information devices, which allow
mobile access and provide a multitude of context infor-
mation, have enabled the provision of new, context-aware
applications and services. The architecture framework
described in this paper provides a very flexible approach to
implementing different reasoning tasks and combining it
with application logic, in order to provide context-aware
applications and services. We are describing the initial
version of this architecture, which will be used within the
MobiL.ife project.

I. INTRODUCTION

Context-aware systems play an increasingly im-
portant role in modern software systems, especially
in software for wireless information devices. Con-
text, according to Dey and Abowd [1], is “any
information that can be used to characterize the
situation of an entity. An entity is a person, place or
object that is considered relevant to the interaction
between a user and an application, including the
user and application themselves.”

The MobiLife project (IST-2004-511607) aims to
bring advances in mobile applications and services
within the reach of users in their everyday life. In
doing so, it will provide new context-aware and
proactive services and applications.

For the handling of context information, from con-
text modeling to context reasoning, and for the
provisioning of services that are relevant to an end-

*University of Helsinki,

Email: {firstname.lastname}@cs.helsinki.fi;

Telematica Instituut, Email: johan.koolwaaij@telin.nl;

University of Kassel, Email: slau@comtec.e-technik.uni-kassel.de;
Fraunhofer FOKUS, Email: bernd.mrohs@fokus.fraunhofer.de;
ﬂDoCoMo Euro-Labs,

Email: {tarlano, luther, wagner}@docomolab-euro.com;

Alcatel CIT, Email: {firstname.lastname}@alcatel.fr

user in a given context, MobiL.ife is designing an
architecture, which we call the Context Management
Framework.
In this paper, after a short review of some exist-
ing context-aware architectures in Section II, we
describe our approach in Section Ill, and finalize
with a discussion in Section V.

Il. ARCHITECTURES OF CONTEXT-AWARE
SYSTEMS

Different approaches have been taken to provide
a common architecture for context-aware applica-
tions and the structuring of functionality of context-
reasoning mechanisms. According to Moran and
Dourish [2], current research focuses on either
different versions of a blackboard-based approach,
or on widget-based approaches. Usually these ap-
proaches are implemented in the form of middle-
ware, or in the form of application frameworks.
Another possibility that Moran and Dourish describe
is the implementation int he form of interacting
agents, which are distributed over a network. Also
Mayrhofer [3] describes an architecture for context-
aware systems, which is however focused on de-
vices with limited resources, but which does not
take into account the distribution of the reasoning
mechanisms.

1) Middleware: Examples of middleware ap-
proaches include, e.g., the Reconfigurable Context-
Sensitive Middleware (RCSM) [4], [5] and the COR-
TEX middleware [6]. RCSM is adaptive in the sense
that, depending on the context-sensitive behavior of
the applications, it adapts its object discovery and
connection management mechanisms. CORTEX, on
the other hand, introduces special entities, called
sentient objects, which are responsible for receiving,

processing, and providing context-related informa-
tion. Sentient objects are defined as autonomous
objects that are able to sense their environment and
act accordingly [6]. The advantage of this approach
is the possibility to re-organize them, for instance
depending on their primary task.

Also Siegemund [7] has presented a very interesting
approach of a communication platform for smart
objects. Focusing on changing the communication
mechanisms and the inter-object collaboration de-
pending on the situation, the presented platform
allows for the specification and implementation of
context-aware communication services and adapts
the networking structures according to the context
of an object.

2) Frameworks: Also some application

frameworks that support context-awareness have
been proposed. For example, Korpipéda et al. [8]
describe the implementation of a framework that
supports the management of context information on
mobile terminals. The structure of this framework
is centered around the blackboard paradigm for
communication, which is handled by a context
manager. Most components that use this framework,
including the applications, act as clients for the
context management system on the device itself.
Other services can run not only on the device itself,
but potentially also in a distributed environment.
Another framework approach is The Context
Toolkit [9]. The framework separates acquisition
and presentation of context information from
the application that requires it, by using so-
called widgets. The focus of this work lays in
the automatic inference of higher level context
information from lower-level sensory data.
The Hydrogen project [10] describes a three-
layered architecture, designed to overcome existing
problems, found in context-aware mobile systems.
The framework consists of adaptor, management
and application layer. For the communication
between the different layers, the described
framework utilizes an XML-based protocol. The
aim of the framework is the provision of an
architecture that is lightweight, extensible, robust,
and which also enables the possibility of adding
further meta-information to the system.

[1l. THE CONTEXT MANAGEMENT FRAMEWORK

The process of inferring higher level context, as
well as the learning of new inference models, can be
very complex and can be achieved in different ways.
For this reason we are structuring essential func-
tionalities into different components, which can be
configured for different tasks and reasoning meth-
ods. Figure 1 shows the key functions of our Context
Management Framework (CMF). We describe each
key function in detail below.

—

Context Context searches in, introspects

Ontology Consumer

Aﬁ/
links to

- queries provides i

Context Context
Representation Broker

is published in

Context
standardizes | Provider

implements uses
may use
Context Context
Interpretation Sources
Fig. 1. Key functions of the CMF.

A. Context Provider

The Context Provider is a software entity that
produces new context information from internal or
external (context) information. A Context Provider
exposes interfaces to provide context information
to Context Consumers. These interfaces adhere to
the MobiLife Context Representation standards. A
Context provides is registered in the Context Bro-
ker, so that Context Consumers can discover and
introspect it. The internal working of a Context
Provider is usually hidden, but may include context
aggregation, caching, prediction, reasoning etc.
Furthermore, in order to enable easy reconfigu-
ration of different Context Providers and other
components, so-called Super Distribution Objects
(SDO) [11] may be used. They provide a base-
technology, enabling the distributed interoperability
between the different components of the system.
For the Context Management Framework, SDOs

encapsulate on the one hand hardware and software
entities that provide raw data, and on the other
hand context providers, which are responsible for
the essential context-reasoning tasks.

The SDO approach applies not only to the Con-
text Provider Components, but also to the Context
Sources, Context Consumers and Context Broker,
which all have to implement the basic SDO inter-
faces.

B. Context Sources

The data sources (e.g. GPS receiver or a rain
sensor) are usually not under MobiLife control and
do not necessarily adhere to the Context Repre-
sentation. For this reason they are wrapped in the
form of Context Sources, which simply provide their
information in a way that adheres to the Context
Representation. A more complex Context Source
would derive higher-order information, e.g. country
instead of raw GPS coordinates, or implement some
pre-processing on its own, for instance to clean-up
outliers.

C. Context Consumer

A Context Consumer is a software entity that
uses the Context Provider interface as communica-
tion endpoint to obtain contextual data. Typically,
Context Consumers are implemented in the form
of either middleware services or applications that
use context information in combination with their
application logic.

D. Context Broker

The main goal of the Context Broker is to
provide a network addressable infrastructure
service, in a Service-oriented Architecture (SOA)
style architecture, which permits Context Providers
to publish interface contracts and allows Context
Consumers to find services and later on use
the published interfaces. In order for the Context
Broker to perform the lookup, all Context Providers
have to register themselves to the Context Broker.
During context discovery the Context Broker
may actively assist the discovery of Context
Providers and Context Consumers by broadcasting
advertisements. However, in order to decrease the
amount of network overhead, the default behavior
is to passively await connection requests from

Context Consumers or Context Providers. The
Broker discovery itself can be done by several
means, such as broadcast or shoutcast, depending
on the implementation.

E. Context Representation

In order to achieve interoperability between Con-
text Providers from diverse domains, the con-
text management framework standardizes a meta
model for Context Representation that all Context
Providers should adhere to, in order to register
themselves in a Context Broker and to enable po-
tential Context Consumers to discover the context
information they need.

The design of the meta-model is based on a few
simple design rules. The first is that the canonical
form for the meta-model will be XML-based. All
later formats can be derived from this canonical
form and a new format may only be introduced if
proper tooling is provided to convert from and to
the canonical form. The reasons to start with XML
are easy human inspection, extension, validation and
integration with development platforms and tooling.
Other design rules include rules on versioning,
security, naming schemes and identities.

The initial version of the MobiLife Context Rep-
resentation meta-model prescribes a standard for a
Context Provider advertisement, a context query that
could be requested from a content provider, and a
context element, the elementary piece of context
information.

With the prior knowledge of this meta-model a
Context Consumer can discover the capabilities of
a Context Provider, request relevant context infor-
mation from that Context Provider and parse the
response, in order to use the context information.

F. Context Ontology

Ontologies promise to play a pivotal role for dif-
ferent semantic-based and semantic-aware applica-
tions, not only in the area of the Semantic Web [12],
but also in next generation mobile communication
systems.

In MobiLife, we refer to an ontology as a logical
theory, accounting for the intended meaning of
a formal vocabulary, i.e. its ontological commit-
ment to a particular conceptualization of MobiLife

applications and domains. Reasoning about such
logical theories requires logic-based inference sys-
tems which have been studied within the field of
knowledge representation in the Al community in
the past. Description Logics (DLs), as a decidable
fragment of first-order predicate logic, turned out to
be an adequate formalism for the representation and
the reasoning about expressive ontologies [13]. As
a consequence, DLs form the formal foundation of
W3C’s Web Ontology Language (OWL) [14].

The MobiLife CMF aims at leveraging OWL on-
tologies for context management, in terms of so-
called upper ontologies. These high-level, logical
representations will support the representation of
context data at different levels of abstraction, enable
qualitative contextual logic reasoning and connect
MobiLife context vocabularies to external standard
or non-standard Context Representations.

G. Context Interpretation

The goal of Context Interpretation is to deduce
semantically flavored descriptions of the context
of the user or another relevant entity, such as a
group. The technical implementation of the Context
Interpretation, as part of the CMF, consists of a set
of container components, which encapsulate within
them communication, representation, privacy and
security related functionalities.

Furthermore, different kinds of containers allow for
different kinds of processing functionalities and the
container components can subscribe to events (data)
from other components. A typical configuration of
these components is depicted in Fig. 2.

In the following, a short description of the individual
components is given.

« A Context Source encapsulates the gathering of

data.

« The Preprocessor handles possible inconsis-
tencies with the raw data from an individual
source. The processing that is applied serves
only as a preceding step for the actual process-
ing.

« The Feature Extractor attempts to reduce the
amount of data by aggregating signals over
time or by performing transformations, such as
deriving pitch from speech.

« A Feature Selector selects the relevant features,
derived by the feature extractor, and is respon-

[Source Selector]
A
I I
Feature Feature
Selector) Selector)
Feature Feature
Extractor) Extractor)
Pre- Pre-
processor | | processor)
4 ? N\ 4 ? N\
Context Context
Source Source
N\ / N\ /
Fig. 2. A typical configuration of the Context Interpretation key

function.

sible for communicating the data further. These
first four components typically reside on the
terminal side, as they do not require major
resources.

« The Source Selector selects the most relevant
sources, which may have been already further
processed by the preprocessing, by the feature
extraction or by the feature selection function-
alities. This step further attempts to reduce
communication and computational overhead.

« The Classifier itself attempts for instance to
recognize the activity of the user from data.
Additionally, the classifiers may provide con-
fidence levels or full probability distributions
on the values. Typically this process requires
the most processing resources and is thus often
implemented remotely.

IV. DiscuUssION

The previously described architecture has the ad-
vantage that it is very flexible and allows the config-
uration of the different Context Providers according
to the different reasoning tasks and mechanisms
used. it is furthermore suitable for the implementa-

tion in a distributed manner, using a combination of
wireless information devices with limited resources,
and server mechanisms with high level of resources.
Besides the context reasoning in the steps described
above, context reasoning can also be used to predict
future context. In order to achieve this task, it is
necessary to extend the timing information, used
in the different reasoning steps and to include also
references to probable future events and context
information, as well as their confidence levels. This
is another goal we are currently working on.

The CMF described in this paper is an initial version
that has resulted after the first months’ work in
the MobiLife project. The CMF will be further
developed and refined during the course of the
project.

ACKNOWLEDGMENT

This work has been performed in the framework
of the IST project IST-2004-511607 MobiLife,
which is partly funded by the European Union. The
authors would like to acknowledge the contributions
of their colleagues.

REFERENCES

[1] A. K. Dey and G. D. Abowd, “Towards a Better Understanding
of Context and Context-Awareness,” College of Computing,
Georgia Institute of Technology, Tech. Rep. GIT-GVU-99-22,
1999.

[2] T. P. Moran and P. Dourish, “Introduction to Special Issue
on Context-Aware Computing,” Human-Computer Interaction
(HCI), vol. 16, no. 2-3, pp. 87 — 96, 2001.

[3] R. Mayrhofer, “An Architecture for Context Prediction,” Ad-
vances in Pervasive Computing, part of the Second Interna-
tional Conference on Pervasive Computing (PERVASIVE 2004),
vol. 176, pp. 65 — 72, Apr. 2004.

[4] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. Gupta,
“Reconfigurable Context-Sensitive Middleware for Pervasive
Computing,” Pervasive Computing, vol. 1, no. 3, pp. 33-40,
Jul.- Sep. 2002.

[5] S.S. Yauand F. Karim, “An Adaptive Middleware for Context-
Sensitive Communications for Real-Time Applications in Ubig-
uitous Computing Environments,” Real-Time Systems, vol. 26,
no. 1, pp. 29-61, 2004.

[6] H. A. Duran-Limon, G. S. Blair, A. Friday, P. Grace,
G. Samartzidis, T. Sivaharan, and M. WU, “Context-aware
middleware for pervasive and ad hoc environments,” Context,
Tech. Rep., 2003.

[7] F. Siegemund, “A Context-Aware Communication Platform
for Smart Objects,” in Proceedings of the 2nd International
Conference on Pervasive Computing (PERVASVE), ser. LNCS,
A. Ferscha and F. Mattern, Eds., no. 3001. Springer-Verlag,
Apr. 2004, pp. 69 — 86.

[8] P. Korpipad, J. Mantyjarvi, J. Kela, H. Kerdnen, and E.-J. Malm,
“Managing Context Information in Mobile Devices,” Pervasive
Computing, vol. 2, no. 3, pp. 42 — 51, Jul. - Sep. 2003.

[9] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual

Framework and a Toolkit for Supporting the Rapid Prototyping

of Context-Aware Applications,” Human-Computer Interaction

(HCI), vol. 16, no. 2,3&4, pp. 97 — 166, 2001.

T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, and

J. Altmann, “Context-Awareness on Mobile Devices - the

Hydrogen Approach,” in Proceedings of the 36th Hawaii In-

ternational Conference on System Sciences (HICSS 03), 2002.

OMG, “OMG FTF Convenience Doc: Platform Independent

Model (PIM) and Platform Specific Model (PSM) for Super

Distributed Objects (SDO) Specification,” Apr. 2004.

T. Berner-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”

Scientific American, vol. 284, no. 5, pp. 34 — 43, 2001.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-

Schneider, The Description Logic Handbook. Cambridge

University Press, 2003.

W3C, “OWL Web Ontology Language Reference. W3C Rec-

ommendation,” http://www.w3.org/ TR/owl-ref.

[10]

[11]

[12]

[13]

[14]

