
 
Abstract — The MPEG-2/DVB standards define several 

methods to encapsulate and carry IP datagrams in transport 
stream packets. In order to specify a flexible, yet efficient 
encapsulation the IETF has started the IP over DVB working 
group activity that developed the Ultra Light Encapsulation 
(ULE). ULE is currently in the working group last call procedure 
and may soon become an Internet standard. One specific goal of 
ULE is the efficient encapsulation of IPv6 datagrams. This paper 
describes the ULE encapsulation, its open source implementation, 
and presents the results of measurements that were carried out to 
compare the DVB standardized Multi-Protocol Encapsulation 
with ULE. 

I. INTRODUCTION

Digital Television Systems have received worldwide deployment 
(e.g. using the Digital Video Broadcasting (DVB) standards [1] from 
the European Telecommunications Standards Institute (ETSI) [2-4]). 
DVB builds on the work of the Motion Picture Experts Group 
(MPEG) standardized by the International Standards Organization 
(ISO) [5] to specify a complete transmission system. Satellites (DVB-
S) in particular, may be used to extend the Internet service to areas 
not readily covered by other broadband technology.  

Figure 1: DVB/MPEG-2/IP Protocol Stack 

The MPEG-2 transmission network [5] allows transmission of 
fixed-sized frames, known as “TS-Packets”. TS-Packets may carry 
Packetized Elementary Streams (PES) of audio and video and, in the 
form of Tables (e.g. Program Specific Information/Service 
Information (PSI/SI) [5]), associated control information. Tables are 
sent by segmenting them into Sections and then fragmenting each 
section into a series of fixed-sized TS-packets. Sections may also 
carry Digital Storage Media Command and Control [6], DSM-CC 
data, such as carousels.  A PC-based DVB Receiver card or 
Integrated Receiver Decoder (IRD) employs hardware, firmware, or 
software to receive TS-packets and to reassemble the PES and 
transmitted Sections. 

A. IP over MPEG-2 

An MPEG-2 transmission network may be used to transmit 
Internet Protocol (IP) packets [7] sourced locally or remotely over 
the MPEG-2 link for delivery to a local host (e.g., a PCI-based DVB 
Receiver card), or forwarded over other IP bearers to remote hosts 
(e.g., a DVB receiver card or set-top box with routing software).  
Such IP services are widely deployed today. 

Protocol Data Units (PDUs) (e.g. IP packets, Ethernet frames or 
MPLS payloads) are first sent to an Encapsulator at the edge of the 
MPEG-2 network. This encapsulator uses a convergence protocol [8, 
9] to form each PDU into a Subnetwork Data Unit [10] (SNDU) by 
adding header fields that carry protocol control information.  The 
variable-sized SNDU is fragmented into a sequence of fixed sized 
TS-Packets. When the TS-Packets have been delivered over the 
MPEG-2 network, a Receiver reassembles the SNDUs and extracts 
the original PDUs.  In the case of IP packets, these are then 
forwarded to the connected destination host or IP network.   

The DVB standards specify a method known as Multi Protocol 
Encapsulation (MPE) [4] to support transmission of SNDUs within 
the control plane of MPEG-2. Conceptually MPE is layered (see 
Figure 1) as an extension above DSM-CC, using a table type 0x3E (a 
DSM-CC Section containing private data) with DSM-CC stream type 
0x0A (MPE). MPE permits encapsulation of PDUs up to almost 4 
KB. The basic MPE header format carries a MAC destination 
address, but no payload type field, this may lead to the assumption in 
most current Receiver driver software that the payload is IPv4 only.  

B. Case for a New Encapsulation Algorithm 
The MPE encapsulation is significantly more complex than 

convergence protocols such as ATM/AAL5 [11], and is generally 
considered to be neither lean nor particularly efficient in terms of 
processing requirements [9].  Other criticisms include the mandatory 
use of a destination MAC address, a lack of an optional source MAC 
address, the ordering of destination MAC address bytes, and the 
absence of a next header protocol type field in the base header.  

When a type field is required (e.g. for IPv6), it is added by 
including an IEEE LLC/SNAP adaptation field. Presence of the 
LLC/SNAP field is indicated by a flag-bit in the MPE SNDU header. 
The efficiency of transmission and implementation are therefore 
impacted in scenarios employing bridging, multicasting and IPv6 
transmission. Finally, the MPE Specification [4] provides several 
options for receiver and transmitter functionality and does not 
explicitly specify how a sender or receiver should behave, or how 
interoperable configurations should be selected. 

Recently, an alternative to MPE has been proposed that is tailored 
to IP networks. The Ultra Light Encapsulation (ULE) [8] allows 
simple and efficient encapsulation of PDUs up to 32 KB and uses a 
mandatory CRC-32. A summary of the major differences of ULE 
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compared to MPE is: 
• Support for an Ethertype like type field providing code points 

for IPv4, IPv6, MPLS, bridged frames, etc. 
• Support for optional destination MAC address. 
• Simple, unambiguous design for leaner and easier 

implementation. 
• No “hidden” features, thus better interoperability. 
• Improved efficiency (less overhead and less instructions). 
• Flexibility through extension headers. 

The ULE protocol is being developed by the IETF “IP over DVB” 
(ipdvb) Working Group, and is one of a number of work items 
intended to enhance performance and interoperability while 
improving support for automated configuration for IP networks using 
MPEG-2 transmission [7]. A key goal of the activity leading to the 
definition of ULE was the need to precisely define the behavior of 
the protocol – such that any compliant ULE Receiver is able to 
receive data from any compliant ULE sender. Other intended work 
items include the definition of protocols to resolve IP addresses to 
TS-Logical Channels and support for automated discovery of 
network neighbor addresses within an IP network. These topics are 
not discussed in this paper. 

The remainder of this paper is organized as follows: Section 2 
presents the criteria for an efficient encapsulation and will argue for 
the ULE header compared to the MPE header. Section 3 describes 
the implementation of the open source DVB receive drivers. Section 
4 compares the transmission efficiency of ULE with MPE. Finally, 
the findings are summarized and future research work in the IP over 
DVB area is discussed. 

II. ULE ENCAPSULATION

A. Encapsulation Method 

   An SNDU is transmitted over an MPEG-2 transmission network 
by placing it either in the payload of a single TS Packet, or if 
required, fragmenting it into a series of TS Packets.  Where there is 
sufficient space, ULE permits a single TS Packet to carry more than 
one SNDU (or part thereof), sometimes known as Packing. All TS 
Packets comprising a SNDU are assigned the same PID, to facilitate 
reassembly at the Receivers. 

The ULE specification [8] follows that for Private Data in MPEG-
2 [5]. That is, ULE transmits SNDUs directly over the Transport 
Stream layer (Figure 1). This is sometimes called “Data Piping”.  The 
header of each TS Packet carries a one bit Payload Unit Start 
Indicator (PUSI) field. The PUSI identifies the start of a Payload 
Unit (SNDU) within the MPEG-2 TS Packet payload. In ULE, the 
following PUSI values are defined (in compliance with [5]:  

0: The TS Packet does not contain the start of a SNDU, but 
contains the continuation, or end of a SNDU. 
1: The TS Packet contains the start of a SNDU, and a one byte 
Payload Pointer follows the last byte of the TS Packet header.   

     
   If a SNDU finishes before the end of a TS Packet payload, but it 

is not intended to start another Payload Unit, a  stuffing procedure 
fills the remainder of the TS Packet payload with bytes with a value 
0xFF [5], known as Padding.  

B. SNDU Format 

PDUs (i.e. IPv6 packets) are encapsulated using ULE to form a 
SNDU. The encapsulation format to be used for PDUs is illustrated 
below:  

    
Figure 2: SNDU Encapsulation 

The interpretation of the SNDU header fields is as follows: 
• Destination Address Present (D) Field: this 1-bit value of 0 

indicates the presence of a destination MAC address following 
the Type field. A value of 1 indicates that a Destination Address 
Field is not present (i.e. it is omitted). 

• Length Field:  A 15-bit value that indicates the length, in bytes, 
of the SNDU counted from the byte following the Type field, up 
to and including the CRC-32. 

• Type Field: The 16-bit Type field indicates the type of payload 
carried in a SNDU, or the presence of a Next-Header. The set of 
values that may be assigned to this field is divided into two 
parts, similar to the allocations for Ethernet.  A Type filed 
smaller than 1536 (decimal) indicates the presence of an 
extension header (see section II.E). The second set of ULE Type 
field values comprise the set of values greater than or equal to 
1536 in decimal. In ULE, this value is identical to the 
corresponding type codes specified by the IEEE/DIX type 
assignments for Ethernet and recorded in the IANA EtherType 
registry. 

• SNDU Destination Address Field (not shown in figure 2): The 
optional SNDU Destination Address Field is carried only when 
the D field is set to 0 and follows the type field. This may be 
used for IP unicast packets destined to routers that are sent using 
shared links (i.e., where the same link connects multiple 
Receivers). A sender may use a D field set to 1 for an IP unicast 
packet and/or multicast packets delivered to Receivers that are 
able to utilize a discriminator field (e.g. the IPv4/IPv6 
destination address), which in combination with the PID value, 
could   be interpreted as a link-level address. 

• SNDU Trailer CRC: each SNDU carries a 32-bit CRC field in 
the last four bytes of the SNDU. The CRC-32 polynomial from 
the DSM-CC section [5] syntax is to be used. This complies 
with the IPv6 requirement that link-level frames should be error 
free. 

When the first two bytes of a SNDU have the value 0xFFFF, this 
denotes an End Indicator. This indicates to the Receiver that there are 
no further SNDUs present within the current TS Packet. 

C. SNDU Encapsulation Comparison 

The SNDU header complexity usually dominates the volume of 
code needed to implement a Receiver and Encapsulator. Optional 
components can significantly impact performance (specifically 
execution cost increases with the number of bit-manipulations 
required to convert protocol variable to header field values). 

The MPE SNDU header provides flexible delivery for a wide 
range of deployment scenarios. The penalty for this flexibility is a 
complex header structure with a range of encapsulation options 
leading to 4 basic header formats, ranging from 16 to 44 Bytes. This 
complexity can be disadvantageous when performing software-based 
encapsulation/decapsulation (e.g. in the driver software of a 
Receiver). In contrast, the SNDU header in ULE is simpler and 
comprises only 3 fixed fields. The small header reduces the number 
of instructions and code paths to be considered during reassembly of 
a particular Sub Network Data Unit (SNDU), and hence improves 
software processing efficiency. The mandatory presence of a 
destination link (MAC) address in MPE has been avoided in ULE 
through the introduction of the D field to improve transmission 
efficiency of IP-multicast and unicast in some specific scenarios [8] 

D    Length       Type                     PDU                            CRC32 



(e.g. directly connected end-hosts). When receiver addressing is 
required, ULE adds an additional 6 byte SNDU destination address 
field, analogous to the MPE MAC address.  

Table 1 compares the overhead of MPE and ULE (but ignores the 
impact of the MPEG-2 Payload Pointer, associated with 
fragmentation [5]). It shows that ULE reduces the header overhead 
by 4% - 10%. For IPv6 packets, the overall size of the base header in 
ULE and MPE does not differ significantly– although in ULE, when 
the destination address is omitted (D=1), or bridging is used, a 
considerable saving may be achieved. The LLC option of MPE 
increases overhead by 8 Byte. 

SNDU Header 

Encapsulation Payload 
Type 

Link 
Address 

LLC Brid-
ging 

Total SNDU 
Overhead 
including 

CRC
MPE IPv4 6B - - 16 
MPE, LLC IPv6 6B 8B - 24 
MPE Bridging Any 6B 8B 14B 44 
ULE (D=0) Any 6B - - 14 
ULE (D=1) Any - - - 8 
ULE(D=0) 
Bridging 

Any 6B - 14B 
28

ULE(D=1) 
Bridging 

Any - - 14B 
22

Table 1: Summary of SNDU Overhead. 

D. SNDU Fragmentation and Reassembly 

Since PDUs are of variable size (up to 64 KB for IPv4, and 
potentially larger for IPv6), most SNDUs will require fragmentation. 
There are similarities between the MPE and ULE fragmentation 
process. A one-bit Payload Unit Start Indicator (PUSI) in the MPEG-
2 TS-Packet header [5, 8] indicates a specific TS Packet carries the 
start of a new payload (i.e. SNDU). MPEG-2 [5] provides three 
options when SNDUs do not precisely align to the end of a TS-
Packet payload: Padding, Packing, and Stuffing. Stuffing requires the 
additional use of Adaptation Field Control bits and an Adaptation 
Field. It is not used in ULE and is not further discussed here. 

With Padding, each new SNDU starts in a new TS-Packet (as does 
each PES for Audio/Video), and therefore padding bytes fill any 
remaining payload within the final TS-Packet used to send a SNDU. 
To allow a Receiver to identify the start of each SNDU, the 
Encapsulator sets the PUSI in the first TS-Packet used, and directly 
follows this with a Payload Pointer byte, indicating the position of 
the first byte of the SNDU within the payload (usually 0). 

Using Packing [4], an Encapsulator can utilize the remaining bytes 
following a previous SNDU to start sending a new SNDU. This 
removes the need for Padding, provided there is a continuous stream 
of PDUs arriving at the input of the Encapsulator. As in Padding, the 
PUSI Pointer indicates the start of the first SNDU within a specific 
TS-Packet, although subsequent SNDUs in the same TS-packet are 
found by offsetting the length of previous SNDUs. To control 
Packing, ULE introduces the concept of a Packing Threshold and/ 
payload packing time-out, which is a period of time that the 
Encapsulator is willing to defer transmission of a partially filled TS-
Packet to accumulate more SNDUs, rather than use Padding. After 
the Packing timeout, the Encapsulator uses Padding to send the 
partially filled TS-Packet. A Packing Threshold of zero is equivalent 
to Padding. 

E. Extension Headers 

ULE extension headers were introduced to gain more flexibility 
and to allow future extensions to the ULE process without requiring 
changes to the already established ULE implementations.  

In ULE, a Type field value less than 1536 (decimal) indicates an 
Extension Header. This field is organized as a 5-bit zero prefix, a 3-
bit H-LEN field and an 8-bit H-Type field, as follows (see Figure 3):  
            

  Figure 3: Structure of ULE Next-Header Field. 

A H-LEN of zero indicates a Mandatory Extension Header. Each 
mandatory extension header has a pre-defined length that is not 
communicated in the H-LEN field [8]. The H-Type is a one byte field 
that is either one of 256 mandatory header extensions or one of 256 
Optional Header Extensions. If these optional extension headers are 
not known to a Receiver, it may omit them and may still deliver the 
PDU. 

The method used for extension headers follows closely the use of 
next-level headers in IPv6. Figure 4 shows an SNDU including two 
Extension Headers. The values of T1 and T2 are both less than 1536 
Decimal, each indicates the presence of an Extension Header, rather 
than a directly following PDU. T3 has a value greater than 1535 
indicating the EtherType of the PDU being carried. 

Figure 4: Encapsulation with two Extension Headers. 

III. IMPLEMENTATION OF THE DRIVER

A. Hardware and Driver Architecture 

The ULE decoder has been implemented as an extension to the well-
known and widely used, open-source Linux DVB driver [14] which 
works for the PCI (and some USB) adapters based on a design 
originally done by Technotrend. Supported cards include the 
Hauppauge WinTV DVB-S Nova and Nexus, to name just two, but a 
number of others exist as well. Additionally, different revisions of 
that design are available, using different hardware for tuners or other 
components. Most – if not all of them – are supported well by the 
Linux driver.  

B. Linux DVB Devices: The Driver API 

The Linux DVB API offers control of the hardware components 
through currently six Unix-style character devices for video, audio, 
frontend, demux, CA and IP-over-DVB networking. The video and 
audio devices control the MPEG2 decoder hardware, the frontend
device the tuner and DVB demodulator. The demux device allows 
control over the PES and section filters of the hardware. If the 
hardware does not support filtering, these filters can be implemented 
in software. Finally, the CA device controls all the conditional access 
capabilities of the hardware.  

The driver already supports Linux network interfaces for MPE 
encoded streams (i.e. MPEG2/DVB sections) via its dvb_net module, 
which feeds the IP packets extracted from MPE sections received by 
a feeder instantiated via the demux API into the Linux network 
protocol stack. 

0                   1  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
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C. The ULE Decoder 

The new ULE decoder is tightly integrated with the dvb_net 
module. Upon creation of an ULE network interface, it uses the 
demux API to setup a TS feeder – one that delivers (blocks of) single 
TS packets – for the desired stream, referred to via its PID value. 
Then, as these TS packets are received, the decoder (an instance 
thereof is working for each network interface) performs the following 
steps for each TS packet: 

1. Check the TS packet’s validity: the TS sync byte (0x47) 
and the TS header’s transport error indicator (TEI) bits 
are examined, bad packets are dropped. 

2. If the decoder is in synchronization state: drop the TS 
packet, unless the payload unit start indicator (PUSI) is 
set, which marks the beginning of a new ULE SNDU; 
change to synchronized state. 

3. If the decoder is synchronized and the PUSI flag is set: 
check, by examining the pointer field, if the current ULE 
SNDU can be completed with the data available in the 
current TS packet. 

a. If not, drop the current ULE SNDU, 
synchronize on the new one; apparently we 
missed one or more TS packets. 

b. Else, it is a packed payload; complete the 
current SNDU, and re-process the same TS 
cell to synchronize on the beginning of the 
new payload. 

4. Else (not PUSI or no current ULE SNDU available): add 
the current TS packet’s payload to the current ULE 
SNDU, creating a new one, if required. 

5. If an ULE SNDU has been completed with the current 
TS packet’s payload (known from the SNDU length 
field): 

a. verify the CRC32, drop the ULE SNDU, if 
this fails. 

b. check for the presence of ULE extension 
headers (by examining the ULE type field) and 
call the respective handler(s), which might 
drop the SNDU. 

c. pass the SNDU as Ethernet frame to the Linux 
kernel. 

These steps give a rough overview of the decoder’s algorithm, 
although, in reality some more error checking and handling of 
‘strange’ situations have to be performed to achieve a robust decoder, 
especially with respect to packed payloads and re-synchronization in 
case of errors. In total, about 400 lines of code cope with the 
reassembly and decoding process and another 80 are required for 
extension header handling. Ideally, this whole functionality would be 
implemented in the firmware for the card, as is already the case with 
the section decoder. Then, only step 5 remains to be done in the 
driver’s context. The ULE implementation is either available from 
the LinuxTV CVS [14] or from [15]. 

IV. MEASUREMENTS

A. Testbed 

For the measurements a Linux based IP encapsulator from gcs [12] 
has been used. It provides virtual network interfaces corresponding to 
logical circuits, addressed by a specific packet identifier (PID) for the 
underlying transport multiplex. Each virtual network interface

(dvbX) is characterized by its PID, its encapsulation and some 
interface parameters, out of which the payload packing time-out 
value has been used to set the time until when the driver waits for 
new packets being concatenated within the same TS packet before 
filling the TS packet with padding bytes.  

The encapsulator has been configured in such a way that only 
dedicated traffic was routed to the respective dvb interface. The 
driver of the encapsulator can be queried and provides statistics about 
the amount of data bytes sent to the hardware interface and other 
information. Before each series of tests the driver and interface 
statistics have been reset. 

B. Measurements 

The measurements conducted concentrated on the effect of the 
payload packing timeout. For the IPv6 measurement iperf [13], 
version 2.0.1, was used to send an arbitrary number of IPv6 packets 
to an IP-multicast group. This traffic has been recorded with tcpdump 
[16] and played back on each of the dvb interfaces using tcpreplay 
[17]. IP-multicast addressing was used primarily to avoid sending 
feedback being necessary for TCP and UDP tests normally performed 
with iperf. Four interfaces have been configured, dvb0 with MPE 
(implicitly using LLC/SNAP for IPv6 transport), dvb1 with MPE and 
section packing (again implicitly using LLC/SNAP for IPv6 
transport), dvb2 for ULE with Destination Address (DA) present, and 
dvb3 for ULE without Destination Address. The ULE interfaces were 
configured to always provide packing. Values of 10 ms and 100ms 
for the payload packing time-out were used for dvb1, dvb2, and 
dvb3. 

The amount of encapsulated data is shown in the following tables. 
The column “Bytes sent” counts the number of bytes and the column 
“TS packets” shows the number of 188 TS packets that have been 
passed from the encapsulator module to the hardware. Finally the 
“%” column calculates the efficiency with respect to MPE. 

The following tables show the transmission efficiency for IPv6 
transport at 100Kbps, 1 Mbps, 2 Mbps and 10 Mbps respectively. 
The packing timeout was set to 100 ms; the transfer duration was 60 
seconds. 

Rate DA Interface Bytes sent TS packets %
100Kbps Yes MPE 880404 4683 100
100Kbps Yes MPE-SP 880404 4683 100
100Kbps Yes ULEP 880404 4683 100
100Kbps No ULEP 880404 4683 100

Rate DA Interface Bytes sent TS packets %
1Mbps Yes MPE 8756664 46578 100
1Mbps Yes MPE-SP 8054108 42841 91.977
1Mbps Yes ULEP 8000716 42557 91.367
1Mbps No ULEP 7969132 42389 91.006

Rate DA Interfac
e

Bytes sent TS packets %

2Mbps Yes MPE 17507876 93127 100
2Mbps Yes MPE-SP 16103140 85655 91.977
2Mbps Yes ULE 15996356 85087 91.367
2Mbps No ULE 15933188 84751 91.006

Rate DA Interface Bytes sent TS packets %
10Mbps Yes MPE 87522648 465546 100
10Mbps Yes MPE-SP 80499344 428188 91.975
10Mbps Yes ULE 79965612 425349 91.366
10Mbps No ULE 79650336 423672 91.001

Above tables clearly show that the load of a link strongly 
influences the payload packing efficiency. Due to the smaller header 
also ULE is also better than MPE. Although a saving of 1 percent 
does not sound a huge improvement this 1 percent easily corresponds 



to an average of 400 kilobit/sec saving on a full transponder. In other 
words the 400 kbps correspond to roughly 1.2 GB of download 
volume per hour that can be saved.  

In repeating the same series of tests with a payload packing time-
out of 10ms, the following tables result. Of course the MPE cannot 
perform differently. 

Rate DA Interface Bytes sent TS packets %
1Mbps Yes MPE 8756664 46578 100
1Mbps Yes MPE-SP 8289860 44095 94.67
1Mbps Yes ULE 8289860 44095 94.67
1Mbps No ULE 8289860 44095 94.67

Rate DA Interface Bytes sent TS packets %
2Mbps Yes MPE 17507876 93127 100
2Mbps Yes MPE-SP 16379876 87127 93.557
2Mbps Yes ULE 16127016 85782 92.113
2Mbps No ULE 16127016 85782 92.113

Rate DA Interface Bytes sent TS packets %
10Mbps Yes MPE 87522648 465546 100
10Mbps Yes MPE-SP 80618348 428821 92.112
10Mbps Yes ULE 80190648 426546 91.623
10Mbps No ULE 80054160 425820 91.467

The longer the encapsulator waits for consecutive IPv6 packets the 
more efficient the overall encapsulation process gets. For real traffic 
the efficiency will heavily depend on the queue size of the respective 
interface, corresponding to the number of pending packets to be 
encapsulated. An adaptive Packing time-out depending on traffic 
load could help optimizing efficiency. 

A reasonable value of 100 ms for the Packing time-out can lead to 
more than 7 percent of bandwidth saving without noticeable 
increasing the average delay for a satellite transmission for lightly 
loaded links. For cable and terrestrial transmissions that have a 
processing and transmission delay of a few milliseconds, again, the 
adaptation of the Packing time-out with respect to the traffic offered 
and queue sizes will be mandatory to optimize encapsulation 
efficiency. 

In summary the above tables provide ample evidence that ULE 
efficiency of IP6 transport is significantly better than MPE without 
payload packing, and noticeably better than MPE with payload 
packing in performance for IPv6 transport, yet the results are heavily 
dependent on packing payload time-out. 

V. CONCLUSION

This paper has compared the Multi-Protocol Encapsulation with 
the Ultra Lightweight Encapsulation, a new encapsulation protocol 
being defined by the ipdvb WG, which places packets directly into 
the MPEG-2 transport stream. Compared to Multi-Protocol 
Encapsulation it provides several functional improvements. These 
represent the primary reasons for developing ULE: 
• For IP-multicast transport ULE saves 8 bytes of overhead and 

obsoletes the mandatory use of a destination MAC address. 
• IPv6 support is natively provided by a code point, instead of 

going through the general purpose LLC/SNAP method used by 
MPE. Apart from the increased header size of IPv6 (40 bytes 
instead of 20 in the minimal case) ULE can save 16 bytes of 
encapsulation header (8 bytes less MPE plus 8 bytes 
LLC/SNAP) thus making IPv6 over ULE nearly as efficient than 
IPv4 over MPE.  

• IPv4 unicast addressing has been difficult to configure in uni-
directional transmission networks, requiring the knowledge 
about the MAC address of the receiving card in order to set up 

static ARP entries at the sending gateway. ULE allows sending 
an IP packet addressed to the destination IP address, instead, 
which removes the need for an operator to maintain a database 
of the hardware at the receiver side. 

• The implementation of the ULE decapsulator code is straight 
forward and amounts for approx. 400 lines of code.  

This paper shows that the currently implemented open source 
driver is able to map the expected theoretical results well to the 
practical results. It is further assumed that the availability of the ULE 
driver in the standard Linux Kernel (greater than 2.6.7) might further 
speed-up the movement from MPE to ULE. 

Further work is certainly needed to optimize encapsulation 
efficiency for different traffic patterns corresponding to changing 
queue sizes, where the Packing time-out needs to be adopted 
accordingly. 

The authors are continuing their efforts in the ipdvb working 
group to fine tune the encapsulation, its implementation, and provide 
input to assist for the associated networking functions, such as 
address resolution and routing. The goal is to provide a reasonable 
and useful series of standards. 

ACKNOWLEDGMENT

This standardization activity was partially funded by the European 
Commission’s Sixth Framework Programme, the Information Society 
Technologies (IST) Project BROADWAN and by the ESA project 
IPEncaps. 

REFERENCES

[1] DVB, "Digital Video Broadcasting Home Page." http://www.dvb.org. 
[2] ETSI, "Digital Video Broadcasting (DVB); Interaction Channel for 

Satellite System Distribution," EN 301790 v.1.1.1 2000-07, 2000. 
[3] ETSI, "Framing structure, channel coding and modulation for 11/12 

GHz satellite services," ETSI, Draft DVB-S: ETS 300 421, 2000. 
[4] ETSI, "Digital Video Broadcasting (DVB); DVB specification for data 

broadcasting," European Standard (Telecommunications series), ETSI 
EN 301 192 V1.3.1 2003. 

[5] ISO/IEC, "ISO/IEC 13818: Part 1: Information Technology - Generic 
Coding of Moving Pictures and Associated Audio Information”, 2000. 

[6] ISO/IEC, "ISO/IEC 13818: Part 6: Extensions for DSM-CC is a full 
software implementation," International Organization for 
Standardization and International Electrotechnical Commission 1995. 

[7] M.J. Montpetit, G. Fairhurst, H. D. Clausen, B. Collini-Nocker, and H. 
Linder, " A Framework for transmission of IP datagrams over MPEG-2 
Networks," IETF Work-in-Progress, Internet Draft, draft-ietf-ipdvb-
arch-03.txt, 2004. 

[8] G. Fairhurst and B. Collini-Nocker, "Ultra Lightweight Encapsulation 
(ULE) for transmission of IP datagrams over MPEG-2/DVB networks," 
IETF Work-in-Progress, Internet Draft, draft-ietf-ipdvb-ule-05.txt, 2005. 

[9] H. Clausen, H. Linder, and B. Collini-Nocker, "Internet over Direct 
Broadcast Satellites," IEEE Communications Magazine, vol. 37, pp. 
146-151, 1999. 

[10] P. Karn (Editor), "Advice for Internet Subnetwork Designers," IETF 
Work-in-Progress, Internet Draft (BCP), draft-ietf-pilc-link-design-
15.txt, 2004. 

[11] J. Heinanen, "Multiprotocol Encapsulation over ATM Adaptation Layer 
5," Network Working Group, RFC1483, 1993. 

[12] Open DVB Gateway: http://www.gcs-salzburg.at/. 
[13] Iperf: http://dast.nlanr.net/Projects/Iperf/ 
[14] LinuxTV: http://www.linuxtv.org 
[15] Network Research: http://www.network-research.org
[16] tcpdump: www.tcpdump.org 
[17] tcpreplay: tcpreplay.sourceforge.net 


