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Abstract— Sparse intersymbol-interference (ISI) channels are
encountered in a variety of high-data-rate communication sys-
tems. Such channels have a large channel memory length, but only
a small number of significant channel coefficients. In this paper,
trellis-based equalization of sparse ISI channels is revisited. Due
to the large channel memory length, the complexity of maximum-
likelihood detection, e.g., by means of the Viterbi algorithm, is
normally prohibitive, and efficient equalization with an acceptable
complexity-performance trade-off is a demanding task. We inves-
tigate a unified approach to tackle general sparse ISI channels: It
is shown that the use of a linear filter at the receiver renders the
application of standard reduced-state trellis-based equalizer algo-
rithms feasible, without significant loss of optimality. Numerical
results verify the efficiency of the proposed receiver structure.

Index Terms— Trellis-based equalization, sparse ISI channels,
complexity reduction, prefiltering.

I. INTRODUCTION

SPARSE intersymbol-interference (ISI) channels are en-
countered in a wide range of communication systems, such

as high-data-rate mobile radio systems (especially in hilly ter-
rain), wireline systems, or aeronautical/satellite communication
systems. For mobile radio applications, fading channels are
of particular interest. The equivalent discrete-time channel im-
pulse response (CIR) of a sparse ISI channel has a large channel
memory length L, but only a small number of significant chan-
nel coefficients.

Due to the large memory length, equalization of sparse ISI
channels is a demanding task. The topics of linear and decision-
feedback equalization for sparse ISI channels are, e.g., ad-
dressed in [1], where the sparse structure of the channel is
explicitly utilized for the design of the corresponding finite-
impulse-response (FIR) filter(s). Decision-feedback equaliza-
tion for sparse channels is also considered in [2]-[5].

Trellis-based equalization for sparse channels is addressed in
[6]-[8]. The complexity in terms of trellis states of an optimal
trellis-based equalizer, based on the Viterbi algorithm (VA) [9]
or the Bahl-Cocke-Jelinek-Raviv algorithm (BCJRA) [10], is
normally prohibitive for sparse ISI channels, because it grows
exponentially with the channel memory length L1. However,
reduced-complexity algorithms can be derived by exploiting the
sparseness of the channel. In [6], it is observed that given a
sparse channel, there is only a comparably small number of
possible branch metrics within each trellis segment. By avoid-
ing to compute the same branch metric several times, the com-
putational complexity is reduced significantly without loss of
optimality. However, the complexity in terms of trellis states
remains the same and thus the storage expense. As an alterna-
tive, another equalizer concept coined multi-trellis Viterbi algo-
rithm (M-VA) is proposed in [6] that is based on multiple par-
allel irregular trellises (i.e., time-variant trellises). However, it

1The VA is optimal in the sense of maximum-likelihood sequence estimation
(MLSE) and the BCJRA in the sense of maximum a-posteriori (MAP) symbol-
by-symbol estimation. Both algorithms operate on the same trellis diagram.
Correspondingly, statements concerning complexity hold for both the VA and
the BCJRA.

can be shown that the M-VA does, in fact, not lead to a reduc-
tion of computational complexity, compared to the conventional
VA [11] (if optimality is supposed to be retained).

A particularly simple solution to reduce the complexity of
the conventional VA without loss of optimality can be found in
[7]: The parallel-trellis Viterbi algorithm (P-VA) is based on
multiple parallel regular trellises. However, an application of
the P-VA is only possible for a certain class of sparse chan-
nels having a so-called zero-pad structure. In order to tackle
more general sparse channels with a CIR close to a zero-pad
channel, it is proposed in [7] to exchange tentative decisions
between the parallel trellises and thus cancel residual ISI. This
modified version of the P-VA is, however, suboptimal and is de-
noted sub-P-VA in the sequel. A generalization of the P-VA and
the sub-P-VA can be found in [8], where corresponding algo-
rithms based on the BCJRA are presented. These are in the se-
quel denoted as parallel-trellis BCJR algorithms (P-BCJRA and
sub-P-BCJRA, respectively). Some interesting enhancements
of the (sub-)P-BCJRA are also discussed in [8]. Specifically,
it is shown that the performance of the sub-P-BCJRA can be
improved by means of minimum-phase prefiltering [12]-[14] at
the receiver. A specific FIR approximation of the infinite-length
linear minimum-phase filter is used, which preserves the sparse
structure of the channel. This guarantees that the sub-P-BCJRA
can still be applied after the prefiltering.

Alternatives to trellis-based equalization are the tree-based
LISS algorithm [15] and the Joint Gaussian (JG) approach in
[16]. Turbo equalization for sparse ISI channels is addressed
in [17]. A non-trellis based equalizer algorithm for fast-fading
sparse ISI channels, based on the symbol-by-symbol MAP cri-
terion, is presented in [18].

In this paper, trellis-based equalization for sparse channels
is revisited. In order to equalize general sparse ISI channels,
a simple alternative to the sub-P-VA/ sub-P-BCJRA is investi-
gated. For this purpose, the idea in [8] to employ prefiltering
at the receiver is picked up. It is demonstrated that the use of a
linear minimum-phase filter renders the application of reduced-
state equalizers such as [19],[20] feasible, without significant
loss of optimality. As an alternative receiver structure, the use
of a linear channel shortening filter [21] is investigated, in con-
junction with a conventional Viterbi equalizer operating on a
shortened memory length. The proposed receiver structures are
notably simple: The employed equalizer algorithms are stan-
dard (i.e., not specifically designed for sparse channels), be-
cause the sparse channel structure is normally lost after pre-
filtering. Solely the linear filters are adjusted to the current CIR
(which is particularly favorable with regard to fading channels).
The filter coefficients can be computed according to standard
techniques available in the literature.

In Section II, the system model considered throughout this
paper is introduced. The two prefiltering approaches are briefly
recapitulated in Section III, and the overall complexity of the re-
ceiver structures under consideration is discussed. Afterwards,
the structure of the filtered CIR is studied. In order to illus-
trate the efficiency of the proposed receiver structures, numer-



ical results are presented in Section IV for various types of
sparse ISI channels. Using minimum-phase prefiltering in con-
junction with a delayed decision-feedback sequence estimation
(DDFSE) equalizer [20], bit error rates are achieved that devi-
ate only 1-2 dB from the matched filter bound (at a bit error rate
of 10−3). To the authors’ best knowledge, similar performance
studies for prefiltering in the case of sparse ISI channels have
not yet been presented in the literature.

II. SYSTEM MODEL

A general sparse ISI channel has a comparably large chan-
nel memory length L, but only a small number of significant
channel coefficients hg, g = 0, ..., G � L, according to

h := [h0 0 . . . 0︸ ︷︷ ︸
f0 zeros

h1 0 . . . 0︸ ︷︷ ︸
f1 zeros

. . . 0 . . . 0︸ ︷︷ ︸
fG−1 zeros

hG ]T , (1)

where the fi are non-negative integers and L =
∑G−1

i=0 (fi + 1).
A sparse ISI channel, for which f0 = ... = fG−1 =: f ≥ 1
holds, is called zero-pad channel [7].

In the sequel, the channel vector h is assumed to be known at
the receiver. Moreover, an M -ary alphabet for the data symbols
is assumed. Throughout this paper, complex baseband notation
is used. The k-th transmitted M -ary data symbol is denoted
as x[k], where k is the time index. A hard decision of x[k] is
denoted by x̂[k]. For simplicity, the channel coefficients are
assumed to be constant over an entire block of data symbols
(block length N > L). The equivalent discrete-time channel
model is given by

y[k] = h0 x[k] +

G∑
g=1

hg x[k − dg] + n[k] , (2)

where y[k] denotes the k-th received sample and n[k] the k-th
sample of a complex additive white Gaussian noise (AWGN)
process with zero mean and variance σ2

n. Moreover,

dg :=

g∑
i=1

(fi−1 + 1), 1 ≤ g ≤ G (3)

denotes the position of hg within the channel vector h.
The complexity in terms of trellis states of the conventional

Viterbi/BCJR algorithm is given by O(ML) and is thus nor-
mally prohibitive. Given a zero-pad channel, the conventional
trellis diagram with ML = M (f+1)G states can without loss
of optimality be decomposed into (f + 1) parallel regular trel-
lises, each having only MG states [7]. Such a decomposition
is not possible in the case of a more general sparse ISI chan-
nel. In this case, one possibility is to resort to the suboptimal
sub-P-VA/ sub-P-BCJRA with residual ISI cancellation. How-
ever, for a good performance the CIR should at least be close to
a zero-pad structure.

In order to tackle general sparse ISI channels, a simple al-
ternative to the sub-P-VA/ sub-P-BCJRA is proposed in the se-
quel: We investigate the use of prefiltering at the receiver, in
conjunction with a standard (reduced-state) trellis-based equal-
izer algorithm. The receiver structure under consideration is
illustrated in Fig. 1, where z[k] denotes the k-th received sam-
ple after prefiltering and hf the filtered CIR. Two types of lin-
ear filters are considered in the following, namely a minimum-
phase filter [12]-[14] and a channel shortening filter [21]. In
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Fig. 1. Receiver structure under consideration.

the case of minimum-phase prefiltering, a reduced-state trellis-
based equalizer is employed. Within the scope of this pa-
per, focus is on delayed decision-feedback sequence estimation
(DDFSE)2 [20]. As an alternative receiver structure, the chan-
nel shortening filter is used in conjunction with a conventional
Viterbi equalizer. The Viterbi equalizer operates on a shortened
CIR with memory length Ls < L, which is indicated by the
term shortened Viterbi detector (SVD) in the sequel. The SVD
equalizer is no longer optimal in the sense of MLSE.

III. PREFILTERING FOR SPARSE CHANNELS

To start with, the two prefiltering approaches are briefly re-
capitulated. Then, the overall complexity of the receiver struc-
tures under consideration is discussed, and it is shown that the
sparse channel structure is normally lost after prefiltering.

A. Minimum-Phase Filter

Consider a static ISI channel with CIR h := [h0, h1, ..., hL]T

and let H(z) denote the z-transform of h. Furthermore,
let hmin := [hmin,0, hmin,1, ..., hmin,L]T denote the equiva-
lent minimum-phase CIR of h and Hmin(z) the corresponding
z-transform. In the z-domain, all zeros of Hmin(z) are either
inside or on the unit circle [22, Ch. 3.4]. In the time domain,
hmin is characterized by an energy concentration in the first
channel coefficients [12],[13] (especially if the zeros of H(z)
are not too close to the unit circle):

λ∑
l=0

|hmin,l|
2 ≥

λ∑
l=0

|hl|
2 , (4)

for all λ ≤ L.
The z-transform of the ideal linear filter, which transforms h

into the minimum-phase CIR hf =hmin, is given by [13]

A(z) =
Hmin(z)

H(z)
=

m∏
µ=1

(−z∗0,µ)
z − 1/z∗0,µ

z − z0,µ
, (5)

where (.)∗ denotes complex conjugation and z0,µ, µ = 1, ...,m,
denote the zeros of H(z) that are outside the unit circle
(0 ≤ m ≤ L). The z-transform Hmin(z) is obtained by reflect-
ing the zeros z0,µ into the unit circle, whereas those zeros of
H(z) inside or on the unit circle are retained for Hmin(z). If
all zeros of H(z) are close to the unit circle, minimum-phase
prefiltering does not have a significant effect in the time do-
main. The ideal filter A(z) has allpass characteristic [13], i.e.,
it does not color the noise. A direct realization of A(z) would,
however, result in a non-stable recursive filter. One alterna-
tive is to use a stable IIR (infinite impulse response) allpass,
which generates a maximum-phase overall impulse response,

2A DDFSE equalizer is obtained from the conventional VA by applying the
principle of parallel decision feedback [20]. By this means, the effective mem-
ory length of the equalizer can be reduced to K < L, i.e., the number of trellis
states is reduced by a factor of ML−K .



TABLE I
COMPUTATIONAL COMPLEXITY OF THE DIFFERENT RECEIVERS.

Conventional VA DDFSE + WMF SVD + CSF
(memory length L) (K < L) (Ls < L)

O(ML+1) O(MK+1) O(MLs+1)
– O(LF L

2) O(L3
F)

and to employ a time-reversed equalizer [23]. Another alterna-
tive, among others, is to approximate A(z) by an FIR filter of
length LF <∞.

In this paper, the approach in [12],[14] is used to calculate
the filter coefficients. For reasons of conciseness, the deriva-
tion of the filter coefficients is not repeated here. The inter-
ested reader is referred to [14]. The resulting FIR filter approx-
imates a discrete-time whitened matched filter (WMF). The
computational complexity of calculating the filter coefficients
is O(LF L2), i.e., only linear with respect to the filter length
(see [12],[14] for further details). Correspondingly, compara-
bly large filter lengths are feasible.

B. Channel Shortening Filter

In this approach, a linear filter is used to transform a given
CIR h := [h0, h1, ..., hL]T into a shortened CIR hf = hs :=
[hs,0, hs,1, ..., hs,Ls

]T, where Ls < L denotes the desired chan-
nel memory length, which is assumed in the subsequent equal-
izer. Several methods to design a linear channel shortening fil-
ter (CSF) can be found in the literature, e.g. [21],[24]-[27].
In this paper, the method described in [21] is used. This CSF
is based on the feed-forward filter (FFF) of a minimum mean-
squared error decision-feedback equalizer (MMSE-DFE). The
filter design is as follows: For the feed-back filter (FBF) of the
MMSE-DFE, a fixed filter length of (Ls+1) is chosen. Under
this constraint, the FFF and the FBF of the DFE are then opti-
mized with respect to the MMSE criterion, where the length LF

of the FFF can be chosen irrespective of Ls. The optimized FFF
finally constitutes a linear finite-length CSF: The mean-squared
error between the CIR hs after the FFF and the coefficients of
the FBF is minimized, i.e., the channel coefficients hs,l with
l < 0 and l > Ls are optimally suppressed in the MMSE sense.
As opposed to the minimum-phase filter, an arbitrary power dis-
tribution among the desired coefficients hs,l, 0≤ l≤Ls, results.
Moreover, the CSF does not approximate an allpass filter, i.e.,
depending on the given CIR h the CSF can color the noise. The
computational complexity of calculating the filter coefficients
is O(L3

F) (see [21] for further details).

C. Computational Complexity of the Proposed Receivers

Altogether, three different receiver structures are considered
in the sequel (cf. Fig. 1):

• A full-state Viterbi equalizer (MLSE, memory length L,
no prefiltering3)

• A DDFSE equalizer with effective memory length K <L
in conjunction with a minimum-phase filter (WMF)

• An SVD equalizer with effective memory length Ls <L in
conjunction with a channel shortening filter (CSF).

The computational complexity of these three receiver structures
is summarized in Table I. For the equalizer algorithms, the over-
all number of branch metrics is stated that is computed for each
symbol decision x̂[k]. For the linear filters the approximate

3The bit-error-rate performance of the full-state VA is (virtually) not influ-
enced by prefiltering [14].

computational complexity of calculating the filter coefficients
is stated. The parameters K,Ls are design parameters. In or-
der to obtain a complexity that is similar to the P-VA/P-BCJRA
equalizer, K and Ls should be chosen such that4

K,Ls ≤ logM (f + 1) + G . (6)

D. Channel Structure After Prefiltering

The sparse structure of a given CIR h is normally lost after
prefiltering. This is obvious in the case of the shortening filter,
since an arbitrary power distribution results among the desired
(Ls+1) channel coefficients. However, the sparse structure is –
in general – also lost when applying a minimum-phase filter.
An exception is the zero-pad channel, where the sparse CIR
structure is always preserved after minimum-phase prefiltering:
Let h := [h0 h1 . . . hG ]T denote a (non-sparse) CIR with
z-transform H(z), and let hZP denote the corresponding zero-
pad CIR with memory length (f+1)G and z-transform HZP(z),
which results from inserting f zeros in between the individual
coefficients of h. Furthermore, let z0, 1, ..., z0, G denote the
zeros of H(z). An insertion of f zeros in the time domain cor-
responds to a transform z �→ z1/(f+1) in the z-domain, i.e.,
HZP(z) = H(zf+1). This means, the (f+1)G zeros of HZP(z)
are given by the (f+1) complex roots of z0, 1, ..., z0, G, respec-
tively. Consider a certain zero z0, g := r0, g exp(jϕ0, g) of
H(z) that is outside the unit circle (r0, g > 1). This zero will
lead to (f+1) zeros

z
(λ)
0, g := r

1/(f+1)
0, g exp

(
j
2πλ + ϕ0, g

f + 1

)
(7)

of HZP(z) (λ = 0, ..., f ) that are located on a circle of ra-
dius r

1/(f+1)
0, g > 1, i.e., also outside the unit circle. By means

of minimum-phase prefiltering, these zeros are reflected into
the unit circle, i.e., the corresponding zeros of HZP,min(z) are
given by 1/z

(λ)∗
0, g . Therefore, the sparse CIR structure is re-

tained after minimum-phase prefiltering (with the same zero-
pad grid), since the zeros of HZP,min(z) are the (f +1) roots
of the zeros of Hmin(z). Specifically, the non-zero coefficients
of hZP,min are given by the CIR hmin. If the zeros of H(z) (or
equivalently of HZP,min(z)) are not too close to the unit circle,
hmin is characterized by a significant energy concentration in
the first channel coefficients. In this case, the effective channel
memory length of hZP is significantly reduced by minimum-
phase prefiltering, namely by some multiples of (f+1), cf. (1).

IV. NUMERICAL RESULTS

In the sequel, numerical results obtained by means of
Monte-Carlo simulations are presented, in order to illustrate
the efficiency of the proposed receiver structures. In all
cases, perfect channel knowledge at the receiver was as-
sumed. To start with, a static sparse ISI channel is con-
sidered, and the bit-error-rate (BER) performance of the
proposed receiver structure is compared with that of the
sub-P-BCJRA equalizer [8]. As an example, we consider the

4In order to obtain an appropriate value for K or Ls in the case of a general
sparse ISI channel, one first has to find an underlying zero-pad channel with
a structure as close as possible to the CIR under consideration. This yields
the parameters f and G for the right hand side of (6). Then, choosing K,Ls

according to (6) gives an overall receiver complexity similar to that of the corre-
sponding sub-P-VA/ sub-P-BCJRA equalizer. It should be noted that due to the
parallel decision feedback, the complexity of the DDFSE equalizer is slightly
larger than that of the SVD equalizer (given the same value for K and Ls).
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Fig. 2. BER performance of the proposed receiver structures in the case of a
static sparse ISI channel.

CIR h = [h0 0 . . . 0 h4 0 . . . 0 h7 0 . . . 0 h15 ]T with h0 =0.87
and h4 =h7 =h15 =0.29 from [8], which has a general sparse
structure (i.e., no zero-pad structure). The BER performance
(binary antipodal transmission, M = 2) of the sub-P-BCJRA
equalizer and the DDFSE equalizer with WMF as well as the
SVD equalizer with CSF is displayed in Fig. 2, as a function
of Eb/N0 in dB, where Eb denotes the average energy per bit
and N0 the single-sided noise power density (Eb/N0 :=1/σ2

n).
Due to the given channel memory length, the complexity of
MLSE detection is prohibitive. As a reference curve, however,
the matched filter bound (MFB) is included, which constitutes
a lower bound on the BER of MLSE detection [28, Ch. 14.5].
The filter lengths for the WMF and the CSF were chosen suffi-
ciently large (LF =40 for the WMF and LF =50 for the CSF),
i.e., a further increase of the filter lengths gives only marginal
performance improvements5. Since the channel is static, the fil-
ters have to be computed only once. When the parameters K
and Ls for the DDFSE and the SVD equalizer, respectively, are
chosen as K,Ls =4, the overall receiver complexity is approxi-
mately the same as for the sub-P-BCJRA equalizer. In this case,
the DDFSE equalizer in conjunction with the WMF achieves a
similar BER performance as the sub-P-BCJRA equalizer, as can
be seen in Fig. 2. At a BER of 10−3, the loss with respect to
the MFB is only about 1 dB. At the expense of a small loss
due to residual ISI (0.5 dB at the same BER), the complexity
of the DDFSE equalizer can be further reduced to K = 3. The
BER performance of the SVD equalizer in conjunction with the
CSF is worse than that of the DDFSE equalizer with WMF: At
a BER of 10−3, the gap to the MFB is about 2.1 dB for Ls =4
and 4.2 dB for Ls =3.

Next, we consider the case of a sparse Rayleigh fading chan-
nel model, i.e., the channel coefficients hg (g = 0, ..., G) in (1)
are now zero-mean complex Gaussian random variables with
variance E{|hg|

2} =: σ2
h,g . It is assumed in the sequel that

the individual channel coefficients are statistically independent.
Moreover, block fading is considered for simplicity. As an ex-
ample, we assume a CIR with G=3 and a power profile

p := [σ2
h,0 0 . . . 0︸ ︷︷ ︸

f zeros

σ2
h,1 0 0 0 σ2

h,2 σ2
h,3 ]T . (8)

5According to a rule-of-thumb, the filter length for the WMF should be cho-
sen as LF ≥ 2.5 (L+1) [14].

0 1 2 3 4 5 6 7 8 9 10 11 12
10

−4

10
−3

10
−2

10
−1

10
0

index l (l = 0,...,L)

E
{|

h l|2 },
   

E
{|

h s,
l|2 },

   
E

{|
h m

in
,l|2 }

Power profile of the original CIR
Power profile after WMF (L

F
 = 36)

Power profile after CSF (L
F
 = 36)

Fig. 3. Power profiles after prefiltering with the WMF/CSF, resulting for large
values of Eb/N0.

Note that this CIR again does not have a zero-pad structure. By
choosing different values for the parameter f , different channel
memory lengths L = f + 6 can be studied. To start with, con-
sider a power profile with equal variances σ2

h,0 = ... = σ2
h,3 =

0.25 and a memory length of L = 12. Fig. 3 shows the power
profiles that result after prefiltering with the WMF and the CSF,
respectively, for large values of Eb/N0. The filter length was
LF =36 in both cases. As can be seen, after prefiltering with the
WMF the sparse structure of the power profile is lost (cf. Sec-
tion III-D): Significant variances E{|hmin,l|

2} occur, for exam-
ple, at l =1, l =4, and l =5. The power profile after the WMF
exhibits a considerable energy concentration in the first chan-
nel coefficient, whereas the variances E{|hmin,l|

2} for l = 7,
l = 11, and l = 12 are smaller than for the original CIR. As
will be seen, this significantly improves the performance of the
subsequent DDFSE equalizer. For the CSF a desired channel
memory length of Ls = 5 was chosen. After prefiltering with
the CSF, the variances E{|hs,l|

2} for l<0 and l>Ls are virtu-
ally zero6. Correspondingly, a subsequent SVD equalizer with
memory length Ls =5 will not (much) suffer from residual ISI.

Fig. 4 shows the BER performance of the proposed receiver
structures for binary transmission and three different channel
memory lengths L (solid lines: L = 6, dashed lines: L = 12,
dotted lines: L = 20). The filter lengths have been chosen as
LF =20 (L=6), LF =36 (L=12), and LF =60 (L=20), for
both the WMF and the CSF. As reference curves, the BER for
flat Rayleigh fading (L=1) is included as well as the MFB7. In
the case L=6, MLSE detection is still feasible. As can be seen
in Fig. 4, its performance is very close to the MFB. The DDFSE
equalizer with K =5 in conjunction with the WMF achieves a
BER performance very close to MLSE detection (the loss at
a BER of 10−3 is only about 0.6 dB). Even when the chan-
nel memory length is increased to L = 20, the BER curve of
the DDFSE equalizer with WMF deviates only 2 dB from the
MFB. When the DDFSE equalizer is used without WMF, a sig-
nificant performance loss occurs already for L=6. Considering
the case L = 12, it can be seen that the influence of the WMF

6As discussed in Section III-B, the CSF is designed such that a given CIR is
optimally shortened in the sense of the MMSE criterion. In the case of large
Eb/N0 values, the MMSE solution and the zero-forcing (ZF) solution become
equivalent, i.e., the channel coefficients with l<0 and l>Ls are nulled.

7The MFB does not depend on the channel memory length L, as long as the
variances σ2

h,g
remain unchanged.
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(cf. Fig. 3) makes a huge difference: The BER increases by
several decades when the WMF is not used. Similar to the case
of the static sparse ISI channel (cf. Fig. 2), the performance of
the SVD equalizer with Ls = 5 in conjunction with the CSF
is worse than that of the DDFSE equalizer, especially for large
channel memory lengths L. Still, a significant gain compared
to flat Rayleigh fading is achieved, i.e., a good portion of the
inherent diversity (due to the independently fading channel co-
efficients) is captured.

Similar performance results were also obtained for unequal
variances σ2

h,g . Specifically, the performance of the SVD equal-
izer in conjunction with the CSF was always inferior to that of
the DDFSE equalizer with WMF. For the latter, the following
observation was made: When the power profile p of the origi-
nal CIR does already exhibit an energy concentration in the first
channel coefficients, the benefit of the WMF is smaller, but still
significant.

V. CONCLUSIONS

In this paper, trellis-based equalization of sparse inter-
symbol-interference channels has been revisited. Due to the
large memory length of sparse channels, efficient equalization
with an acceptable complexity-performance trade-off is a de-
manding task. In order to tackle general sparse channels, re-
ceiver structures with a linear filter and a reduced-complexity
equalizer have been studied. The employed equalizer algo-
rithms are standard (i.e., not specifically designed for sparse
channels), because the sparse channel structure is normally lost
after prefiltering. Moreover, the coefficients of the linear filters
can be computed using standard techniques from the literature.
Using a minimum-phase filter in conjunction with a delayed
decision-feedback sequence estimation equalizer, bit error rates
are achieved that deviate only 1-2 dB from the matched filter
bound (at a bit error rate of 10−3).
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AEÜ Int. J. Electron. Commun., vol. 48, no. 5, pp. 237-243, 1994.

[22] S. Haykin, Adaptive Filter Theory. 4th ed., Upper Saddle River (NJ):
Prentice Hall, 2002.

[23] M. Schnell and A. J. Han Vinck, “A low complexity equalization con-
cept for frequency-selective mobile radio channels”, AEÜ Int. J. Electron.
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