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Abstract— We analyze the error performance of distributed
space-time codes in a wireless system with multiple cooperating
transmitters and a single receiver. Due to the distributed nature of
the system, the transmitted signals are subject to different average
path losses. As our analysis shows, this effect leads to reduced di-
versity gains. We explain this result on the basis of an interesting
duality between systems with distributed transmitters and systems
with densely-packed transmitters: For the case of Rayleigh fad-
ing, we prove that any system with distributed transmitters can be
transformed into an equivalent co-located multiple-antenna sys-
tem with correlated antennas. Specifically, the case of equal aver-
age path losses corresponds to an uncorrelated system. In order to
quantify the performance loss resulting from distributed transmit-
ters, we propose a simple performance measure between zero and
one, which is equivalent to a certain correlation measure recently
proposed for co-located multiple-antenna systems.

Index Terms— Wireless communications, cooperative networks,
distributed space-time codes, diversity, correlation, BER analysis.

I. INTRODUCTION

IRELESS systems are well known to suffer from fading

effects. However, system performance can be improved
significantly by exploiting some sort of diversity. By means of
multiple antennas in conjunction with space-time coding tech-
niques [1]-[6], spatial diversity can be exploited, provided that
the individual transmission links from the transmit antennas to
the receive antenna(s) fade independently. This yields signifi-
cant gains compared to a system with just a single antenna at
either end of the wireless link.

Spatial diversity can also be exploited in cooperative wire-
less networks, e.g. [7]-[13]. In such networks, multiple (single-
antenna) nodes share their antennas, for example by using a
distributed space-time coding scheme. By this means, a vir-
tual multiple-antenna system is established (see Fig. 1). The
concept of cooperative wireless networks has recently gained
considerable attention, because cooperating nodes build the ba-
sis of any ad-hoc network and promise benefits also for other
types of networks, e.g., cellular networks [12]. Examples for
cooperative wireless networks include simulcast networks [7]
and relay-assisted networks [8]-[13].

In this paper, focus is on simulcast networks that consist
of multiple base stations using a distributed space-time cod-
ing scheme'. Simulcast networks are normally employed for
broadcasting or for paging applications. Conventionally, simul-
casting means that the base stations simultaneously transmit the
same signal on the same carrier frequency. Mobile users within
the intersection of the coverage areas are thus provided with a
comparably small probability of shadowing (macroscopic spa-
tial diversity). However, conventional simulcasting does not
yield microscopic spatial diversity, i.e., diversity that is due to
independently fading transmission links [7]. In this paper, we
assume that the base stations use a distributed space-time code
to provide an additional microscopic diversity gain.

IThe results presented in this paper are also relevant for other types of co-
operative wireless networks, such as relay-assisted networks. Specifically, in
a relay-assisted network, the link from the relays to the destination node can
often be regarded as a type of simulcast network.
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Fig. 1. Cooperating transmitters building a virtual multiple-antenna system.

In a system with distributed transmitters, specific differences
arise compared to the co-located case. For example, in a dis-
tributed system the individual transmission links

o can have different fading statistics (shadowing, line-of-
sight components, etc.)

o are normally characterized by different average path
losses [13], due to different link lengths

o can exhibit non-negligible relative signal delays if the
transmitters are spaced far apart [14],[15]

« can be subject to frequency offsets, due to independent lo-
cal oscillators employed at the individual transmitters [16].

Since the above effects do only occur in distributed systems,
they are usually not addressed in the standard literature on
space-time codes. On the other hand, they are also neglected
in most papers on cooperative wireless systems. In the present
paper, we focus on the second item and its impact on the per-
formance of distributed space-time codes. With focus on simul-
cast networks consisting of multiple cooperating base stations,
relative signal delays can normally be neglected, because they
are small for practical symbol durations and (urban) cell radii.
However, the different average path losses are not negligible,
even for small cells. Having broadcasting or paging applica-
tions in mind, link adaptation is not possible: In a broadcast-
ing scenario, the base stations communicate with many mobile
users at the same time. In a paging scenario, they communi-
cate with a single mobile user with unknown position. Even if
link adaptation is possible for a specific user, the problem of
transmit power allocation is not trivial, as will be seen.

The outline of the paper is as follows: In Section II, the sys-
tem model is introduced. In Section III, the error performance
of a distributed space-time coding scheme is determined analyt-
ically, where a single receiver with fixed position is considered,
and it is shown that unequal average path losses lead to reduced
diversity gains. In Section IV, this result is explained on the
basis of an interesting duality between systems with distributed
transmitters and systems with densely-packed transmitters: For
the case of Rayleigh fading it is proven that any system with
distributed transmitters can be transformed into an equivalent
co-located multiple-antenna system with correlated antennas.
Specifically, the case of equal average path losses corresponds
to an uncorrelated system. To the authors best knowledge, this
duality has not yet been formulated in the literature. In order to



quantify the performance loss resulting from distributed trans-
mitters, a simple performance measure between zero and one is
proposed, which is equivalent to a certain correlation measure
recently proposed for co-located multiple-antenna systems [17].

II. SYSTEM MODEL AND BASIC ASSUMPTIONS

Consider a simulcast network according to Fig. 1 consisting
of n base stations (BS; to BS,,) and a single mobile receiver
(MS). For simplicity, we assume that the base stations and the
mobile receiver are equipped with a single antenna. In order to
provide a microscopic diversity gain, the base stations employ
a distributed space-time block coding scheme. Due to the dif-
ferent link lengths, the transmitted signals s;(¢) (i = 1,...,n)
are subject to different average path losses.

Throughout this paper, the complex baseband representa-
tion is used. Assuming a frequency-flat block-fading channel
model, we model the transmission link from the i-th base sta-
tion to the mobile receiver by a single complex-valued channel
coefficient h; := «o; %%, which is constant over the duration of
an entire data block. After each data block, the channel coeffi-
cient change randomly, where h; and h; (1 #1') are statistically
independent. Focus is on Rayleigh fading in the sequel, i.e., the
channel coefficients h; are complex Gaussian random variables
with zero mean and variance E{|h;|*} =E{a?} =:;. The k-th
received sample y[k] is given by

ylk] = ihi x;[k] + nlk], 1)

where k denotes the discrete time index, z;[k] € C the transmit-
ted symbol of base station BS;, and n[k] a sample of a complex
additive white Gaussian noise (AWGN) }Q:Jrocess with zero mean
and variance o2, i.e., n[k] ~ CN(0,02). The noise samples
are assumed to be statistically independent of the data symbols
and the channel coefficients. Note that the transmitted symbols
x;[k] are coupled by the distributed space-time code (the under-
lying information symbols are denoted as a[k] in the sequel).
For the purpose of analysis, the normalization
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is done. The individual base stations are assumed to use the
same average transmit power Pry ; := E{|z;[k]|*} = P/n. To
provide a fair comparison with a single-antenna system, the
overall transmit power P is fixed. The received signal-to-noise
ratio (SNR) for the ¢-th transmission link is given by
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(instantaneous and average SNR, respectively). With the nor-
malization (2), the overall average received SNR is 7., =
S" 1% = PJ/o?. The average received power for the i-th
transmission link can be written as Pry ; = a; Pry ;, where a;
represents an unnormalized version of §2;. The parameter a; is
in essence a function of the distance d; between the base station
BS; and the mobile receiver (a;  1/d?, where p=2...4 is the
path-loss exponent). Due to the normalization (2), 1/, repre-
sents a relative average path loss, because it depends not only
on the distance d;, but also on the other distances d;, j #1.

In the sequel, we set Jo, =: Fs/Np, where Ey denotes the av-
erage symbol energy and N, the single-sided noise power den-
sity. For the average energy per info bit we have Ey, = Es /Ry,
where R; denotes the temporal rate of the distributed space-
time code. Within the scope of this paper, the base stations are

assumed to employ a distributed orthogonal space-time block
code? (OSTBC) [2],[3]. OSTBCs yield full diversity in terms
of the number n of transmit antennas. In the flat-fading case,
OSTBCs enable maximum-likelihood detection at the receiver
by means of simple linear processing. However, a drawback of
these schemes is that a temporal rate Ry =1 (full rate) is only
accomplished for certain numbers of transmit antennas. Given
a two-dimensional modulation scheme such as M-ary phase-
shift keying (PSK), full-rate transmission is, in fact, only ac-
complished by Alamouti‘s OSTBC [2] for n = 2 transmitters.
In the case of n = 3 and n = 4, for example, the maximum
possible rate is Ry =3/4 [3].

III. ERROR PERFORMANCE OF A DISTRIBUTED OSTBC

In the following, a multiple-antenna system with nr trans-
mit and ny receive antennas is denoted an (nt X nR)-system.
An (nx1)-system, which employs an OSTBC at the transmitter
side and the corresponding linear detector at the receiver side,
is equivalent to a (1xn)-system with identical fading statistics?
and maximum-ratio combining (MRC) [2],[3] (apart from a
possible rate loss due to the temporal rate of the OSTBC). In
the equivalent (1xn)-system, the k-th received sample of trans-
mission link ¢ is given by

where n;[k] and n; [k] (i £1") are statistically independent (a[k]
is the k-th information symbol underlying the OSTBC).

In the sequel, we focus on binary transmission. If all links
are characterized by Rayleigh fading, there are closed-form ex-
pressions for the average bit error probability P, [18]. For equal
average SNRs 7; = 7,y /n one obtains:
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where 1 := \/Jov/(n + Fov ). In the case of unequal SNRs 7;

one obtains
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The bit error rate (BER) performance of a distributed OSTBC
system with n = 4 transmitters and a single receive antenna is
illustrated in Fig. 2, for the example of Rayleigh fading and
various settings for the average SNRs 7; = (P ;)/(n o2). The
exact analytical results for the average bit error probability ac-
cording to (5) and (6) are plotted versus E}, /Ny in dB. For
the OSTBC, a temporal rate of Ry = 3/4 was assumed, i.e.,
10 logyo(Ew/Np) dB=10 log,,(Es/Np) dB + 1.25 dB. Con-
sider first the case of equal average SNRs (£2; = 1 for all i),
which corresponds to a co-located system. The performance
results in Fig. 2 show that significant gains over a (1x1)-system
(n=1) are obtained, especially for large values of E},/Ny. A
high-SNR approximation of (5) yields [18]
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2 Although focus is on OSTBCs and frequency-flat fading, the results pre-
sented here are also relevant for frequency-selective channel models. For ex-
ample, they can directly be applied to space-time coded orthogonal-frequency-
division-multiplexing (OFDM) systems. They give also insight into the behav-
ior of other distributed space-time coding schemes, such as (generalized) delay
diversity [4],[5] or the time-reversal STBC scheme [6], which are both suited
for frequency-selective fading.

3This means that the individual links of both systems are characterized by the
same PDFs pr, (v;) and specifically by the same average SNRs ;.




Correspondingly, for large SNR values the BER decreases with
1/(Ep/No)™. In the log-log plot shown in Fig. 2, this corre-
sponds to a straight line with slope —n.

If the individual transmission links are characterized by iden-
tical fading conditions (e.g., by Rayleigh fading), unbalanced
average SNRs #; lead to reduced performance gains®, as can be
seen in Fig. 2. A high-SNR approximation of (6) yields [18]:
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(92; # 0 for all 7). Correspondingly, the asymptotic slope of the
BER curve is still given by —n, which can also be observed in
Fig. 2. However, the additional product term causes (asymp-
totically) an up-shift of the BER curves, which leads to a per-
formance degradation®. As can be seen in Fig. 2, in the case
Q;, = nand Q; = 0 for all ¢ # iy, the BER performance tends
to that of the (1x1)-system, i.e., the asymptotic slope of the BER
curve is —1. The shift of 1.25 dB with respect to the BER curve
of the (1x1)-system is due the temporal rate of Ry =3/4 that has
been assumed for the OSTBC.

The behavior of a system with multiple distributed transmit-
ters and unequal average SNRs 7; resembles that of a co-located
system with spatially correlated antennas. In the next section
we will show that, in fact, for any system with multiple dis-
tributed transmitters, an equivalent co-located system with cor-
related antennas can be found. This insight reveals an astonish-
ing duality between systems with distributed transmitters and
systems with densely-packed transmit antennas.

IV. DUALITY BETWEEN DISTRIBUTED SYSTEMS AND
CO-LOCATED SYSTEMS WITH CORRELATED ANTENNAS

Consider an OSTBC system with n distributed transmitters,
a single receiver, and individual links characterized by Rayleigh
fading with unequal average SNRs 4; according to (2) and (3).
In the equivalent (1xn)-MRC system (cf. (4)), the received sam-
ples y1[k], ..., yn[k] before MRC can be written as

ylk] = halk] + nlk], ©)

where y[k]:= [y1[K], ..., yn[K]]T, hi:=[h1, ..., h,]T, and n[k] :=
[n1[k], ..., nn[K]]T. The channel coefficients are assumed to be
uncorrelated, i.e. E{hh'} = diag([Qy, ..., Q,]) =: . More-
over, the noise is spatially white, i.e. E{n[k]n"[k]} =021, for
all k, and statistically independent of the channel vector h and
the transmitted information symbols a[k].

Proposition 1: The above (1xn)-system with unequal average
SNRs 7; can be transformed into an equivalent (1xn)-system
with correlated receive antennas and equal average SNRs 7.

Proof: A unitary transform y’[k] := U y[k], where U denotes
an arbitrary unitary (nxn)-matrix, does not change the statisti-
cal properties of the (1xn)-MRC system [19]. Specifically, the
overall average SNR o, =Y. | 7; (i.e., the average SNR at
the combiner output) remains unchanged. Correspondingly, the
transformation yields a (1xn)-system

y'[k] = Uhalk] + Unlk] =:

h'alk] + n'[k]  (10)

41f the transmission links experience different fading conditions, unbalanced
average SNRs can be beneficial: If those links with good fading conditions
(e.g., Nakagami-m fading with m > 1) also have large average SNRs, the BER
performance will be better than in the case of equal 7;.

5 As will seen in Section IV, the product term is always greater or equal to 1.
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Fig. 2. BER performance of an OSTBC system with n = 4 distributed trans-
mitters and a single receiver: Binary transmission, all links characterized by

Rayleigh fading, unequal average SNRs 7; = (P2;)/(no2).

that is equivalent to (9). The new noise vector n’[k] is still spa-
tially white. However, the covariance matrix of the channel co-
efficients is changed. The new channel vector h’ is in general
characterized by a non-diagonal covariance matrix:

E{h'h™} = UE{hh"} U" = UQU". 1)
By definition, the resulting covariance matrix UQU™ is a Her-
mitian matrix. In order to prove the proposition, a unitary ma-
trix U must be found such that UQUH is proportional or equal
to a correlation matrix R with diagonal entries r;; = 1 for all
i = 1,...,n and non-diagonal entries 7;; with |r;;| <1 for all
i # j. Then, equal average SNRs 7/ = PE{|h|*}/(no2) =
P/(no?) result for all i. Choosing U such that |u;;| =1/y/n
for all 2, 7=1, ..., n, one finds that

n 1 n
Tis — Z|Uij‘2Qj = EZQJ = 1
7j=1 Jj=1

for all i. Moreover, since U is a unitary matrix, |r;;| <1 holds
for all 4, j. Thus, UQUH is equal to a correlation matrix R.. In
general one finds that |r;;| >0 (i #j), i.e., the receive antennas
in the transformed (1xn)-system are correlated.  Suitable
unitary matrices U with |u;;| = 1/y/n are, for example, the
Fourier matrix F,, with entries u;; = /27(=DG=1/n / /iy (ex-
ists for any number n) or the Hadamard matrix H,, with entries
w;; ==x1/+/n (exists only for n=2", where v=1,2,...). O

12)

Since the resulting (1xn)-MRC system with correlated re-
ceive antennas and equal average SNRs ¥/ is in turn equivalent
to an (nx1)-OSTBC system (including an appropriate linear
detector at the receiver) with correlated transmit antennas
(same correlation matrix R), and identical fading statistics
(same average SNRs 7/), we have the following theorem:

Theorem 1: For any OSTBC system with n distributed trans-
mitters, a single receiver, and individual links characterized by
Rayleigh fading with unequal average SNRs #;, we can find an
equivalent co-located OSTBC system with correlated transmit
antennas and equal average SNRs 7.

Proof: Follows directly from Proposition 1, via the equivalent
(1xn)-MRC systems. O

Remark: 1t is straightforward to generalize the above theorem
to more than one receive antenna. Moreover, the theorem can
also be formulated for Rician fading. The equivalent co-located



OSTBC system will, however, be characterized by different
Rice factors K;, compared to the original system [19]. °

Corollary: For an OSTBC system with n distributed trans-
mitters, a single receiver, and individual links characterized by
Rayleigh fading with average SNRs {7y, 0, ...,0}, we find an
equivalent co-located OSTBC system that is fully correlated,
ie.|rjj|=1foralli,j=1,..,n

Proof: Again, the equivalent (1xn)-MRC systems are consid-
ered. The weight matrix € of the (1xn)-system with unequal
average SNRs is in this case given by

Q=diag([0, ..,0,2,,0,...,0]),

where ;, = n. The corresponding correlation matrix of the
co-located system results as

* *
Ui Uy 4, UigUps,
R=n : (13)
* *
UnigUyg, UnigUpj,

Since |u;;|=1/+/n for all 4, j, |r;;| is always equal to one. O

Remark: The corollary states that the set {7oy, 0, ..., 0} consti-
tutes the worst case among all possible sets of unequal average
SNRs (provided that all transmitters use the same average trans-
mit power), i.e., it leads to the worst possible BER performance
(cf. Fig. 2). Obviously, the set {Joy /7, ..., Jov/n} of equal av-
erage SNRs constitutes the best case, because it corresponds to
the uncorrelated case (2 =1,, =R). This can also be seen when
regarding (7) and (8). The BER in the case of unequal average
SNRs can, asymptotically (7o, — 00), never be smaller than
in the case of equal average SNRs, because the product term
H:’:l 1/€; in (8) is always greater or equal to one: Rewriting
the product term as the inverse of the determinant of the weight
matrix €2 and using the fact that UQUH =R, one finds that

n

> 1, (14

1 1 1
HQT T det(Q) ~ det(UHRU)  det(R)

i=1
where we have used the fact that the determinant is invariant
under a unitary transform, and that the determinant of any
correlation matrix R (i.e. 7; =1 for all 4, |r;;| <1 for all 4, 7,
and R = RM) is always smaller or equal to one. Although the
above result has been derived for large average SNRs, it also
applies for practicable SNR values, cf. Fig. 2. °

Discussion: The unitary transform €2 — R is not unique. For
example, in the case n = 4 we can either use the Hadamard
matrix H4 or the Fourier matrix F, for the transformation,
which leads to equivalent co-located OSTBC systems with dif-
ferent correlation matrices. The weights {2; can be interpreted
as the eigenvalues of the resulting correlation matrix R, and
the column vectors of U as the corresponding eigenvectors
(by definition, RU = UQ). The transform £ — R is thus
somewhat dual to the Karhunen-Loeve transform (KLT), which
is often used to analyze correlated transmission systems (see
e.g. [20]). However, the entries of the unitary transformation
matrix used in the KLT are not subject to special constraints, as
opposed to the entries of the matrix U. °

Practical relevance: Theorem 1 states an interesting duality be-
tween systems with distributed transmitters and systems with
densely-packed transmit antennas. This duality is useful, in or-
der to analyze the performance of virtual antenna arrays (VAAS)

T T T
(3 1111 0.4444 0.2223 0.2221}
={3.0769 0.6154 0.1539 0.1537}
={3.0769 0.4615 0.3077 0.1538}
={3.0909 0.5455 0.3636 0.0000}
Q ={3.0769 0.6154 0.3077 0.0000} ||
- ©={3.0769 0.4616 0.4614 0.0000}
Q = {3.0400 0.8000 0.1600 0.0000}
Q = {3.0000 1.0000 0.0000 0.0000}
Q ={2.9333 1.0667 0.0000 0.0000}

; ;
0 2 4 6 8§ 10 12 14 16 18 20
10log, (E/N,) dB

Fig. 3. BER performance of various distributed OSTBC systems with n =4
transmitters, a single receiver, and a performance measure of A(Q2)=0.7: All
links characterized by Rayleigh fading with unequal average SNRs 7;, where

i=(PQ)/(na}).

[9]. The concept of VAAs was first proposed for the downlink
of cellular networks, in order to provide spatial diversity at the
receiver side: It is argued in [9] that due to space limitation
at the mobile receiver, multiple co-located antennas will cause
strong spatial correlations and are therefore often not practi-
cable. In order to circumvent the problem of correlation, it
is proposed to establish VAAs by means of multiple adjacent
single-antenna receivers that mutually relay their received sig-
nals. However, according to Proposition 1 this use of VAAs
merely trades one form of correlation for another: Depending
on the path-loss exponent p and the distances between the base
station and the individual cooperating receivers, unequal aver-
age link SNRs can arise that correspond to significant correla-
tion values 7;;.

The duality stated by Theorem 1 is also useful, in order
to reuse existing transmitter and receiver strategies for spa-
tially correlated multiple-antenna systems. For example, in
distributed systems where link adaptation is possible, existing
transmit power allocation strategies for correlated systems [21]
can be reused without loss of optimality®. °

The weight matrix €2 does not directly reflect the BER perfor-
mance of the corresponding distributed OSTBC system. Specif-
ically, it is not immediately clear, how two different distributed
OSTBC systems with weight matrices €2; and €25 compare.
For this purpose, a simple performance measure A(2) between
zero and one is introduced in the sequel, which allows for a clas-
sification of distributed OSTBC systems. As will be seen, dif-
ferent systems with the same value A(€2) exhibit a very similar
BER performance. Let

n

> (- 1)2

i=1

A(R) = (15)

1
vn(n—1)

where Q = diag([Q1, ..., Q,]). The measure A(€2) quantifies
the degree of SNR unbalance. For € = I,,, which represents
the best case with regard to BER performance, one obtains
A(Q)=0. For 2 =diag(]0, ...,0,n, 0 ,0]), which represents
the worst case, one obtains A(Q)

Fig. 3 shows the BER performance of various distributed
OSTBC systems with n =4 transmitters, a single receiver, and
different weight matrices (2. All systems are characterized by a
performance measure of approximately A(§2)=0.7. As can be

6Given a fixed overall transmit power P itis, for example, clearly suboptimal
to simply equalize the unequal average SNRs by using average transmit powers
o< 1/7; at the individual transmitters.



seen, for low to moderate SNR values all systems exhibit a very
similar BER performance. In the high SNR regime, the slope
of the BER curves is determined by the number of weights €2;
that are unequal to zero. Correspondingly, when classifying the
BER performance of distributed OSTBC systems for large SNR
values, one should not only consider the resulting performance
measure A(£2). As can be seen in Fig. 3, those systems with
the same number of weights €2; # 0 exhibit a very similar BER
performance, also for large SNR values.

Recently, a similar performance measure has been introduced
for spatially correlated multiple-antenna systems [17]. Given
an (nxn) correlation matrix R, the corresponding performance
measure is calculated according to

n n

1
UYR) = ——— [rii]2 . (16)
vn(n—1) ; le /
i

Similar to the measure A(£2), the value of U(R) is between
zero and one: U(R) = 0 results for an uncorrelated system
(i,e., R =1,) and U(R) = 1 for a fully correlated system
(i.e., |ri;| =1 for all 7, 7). An interesting question is: Given a
distributed OSTBC system with performance measure A(€2),
what is the performance measure ¥(R) of the corresponding
equivalent co-located OSTBC system? The following theorem
states that A(€2) and ¥(R) are, in fact, identical.

Theorem 2: Let 2 be the weight matrix of an OSTBC system
with n distributed transmitters, a single receiver, and individual
links characterized by Rayleigh fading with unequal average
SNRs #;. Furthermore, let R be the correlation matrix of an
equivalent co-located OSTBC system with correlated transmit
antennas. Then the two performance measures A(2) and
¥(R) according to (15) and (16) are identical.

Proof: The performance measure A(€2) can be written as

=
=]l

Vnn—1)°

where &; = (Q; — 1), E := diag([1,...,&s]) and ||.||r de-
notes the Frobenius norm. On the other hand, the performance
measure WU (R) can be written as

Y g =

=1

a7

R -1,
U(R) = IR = Tnfle (18)
n(n —1)

Moreover, R=UQU" =U (I, + ) U" =1,4U E U holds.
Correspondingly,

IR~ Lyl = [UEU"||p = [IE]r. (19)
In the last step, we have used that the Frobenius norm is invari-
ant under a unitary transform. O

V. CONCLUSIONS

In this paper, we have analyzed the error performance of
distributed space-time codes in a mobile broadcasting system
with multiple cooperating base stations. Since the distances be-
tween the individual transmitters and the mobile receiver are
typically different, unequal average signal-to-noise ratios re-
sult for the individual links. We have shown that this effect
can lead to significantly reduced diversity gains. For the case
of Rayleigh fading and orthogonal space-time block codes it

has been proven that systems with distributed transmitters and
unbalanced average signal-to-noise ratios are, in fact, equiva-
lent to co-located systems with correlated transmit antennas.
A simple performance measure has also been proposed, in or-
der to classify the performance of space-time coded systems
with distributed transmitters. An interesting consequence of
our findings is that transmitter techniques (e.g. power alloca-
tion schemes) originally developed for spatially correlated sys-
tems can be reused for systems with distributed transmitters.
Although focus has been on Rayleigh fading, the main results
of the paper apply also for other types of fading, such as Rician
fading or Nakagami-m fading.
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