Design and Implementation of
a Service Discovery Architecture
in Pervasive Systems

Vincenzo Suraci', Tiziano Inzerilli%, Silvano Mignanti3,
University of Rome “La Sapienza”, D.L.S.
'vincenzo.suraci @dis.uniromal.it “inzerilli @dis.uniromal.it, *silvano.mignanti @dis.uniroma ..it,

Abstract - The availability of cheap wireless technologies,
which can be interconnected through the Internet, has paved
the way to a large fruition of (web) services and the
convergence of the Internet with mobile handheld devices. A
potential market opportunity could become concrete only if
users can easily locate and access the available services,
thorough support for Service Discovery. There are a number
of service discovery protocols and architectures incompatible
with each other and sometimes applicable to only specific
networks. Often the use of these protocols can be carried out
only by experienced users.

In this article we will describe an architecture implementing
Service Discovery for a Pervasive System, which is simple,
effective and compliant with standardization. Whenever a
generic user, equipped with his wireless or wired terminal, get
access into an IP Network, the Service Discovery service start
up finding all the available and suitable services which can be
accessed locally or remotely from that access point. This work
has resulted in the context of DAIDALOS (Designing
Advanced network Interfaces for the Delivery and
Administration of Location independent, Optimised personal
Services [1]), a project granted in the European 6th
Framework Research Programme, within the IST
(Information Society and Technology) thematic area.

Index Terms - Service Discovery, Service Location
Protocol, Pervasive System, Personalization, Context
Awareness.

L SERVICE DISCOVERY

henever services are to be located in a LAN or in the

Internet, Service Discovery has to be performed. In
order to enable automatic Service Discovery mechanisms,
some protocols and software architecture have been
proposed (SLP [2,3,4], JINI [5], UPnP [6], Salutation [7],
UDDI [8], SDP [9] ecc.). Compatibility, autonomy, and
simplicity of service discovery are important requirements
for applicability in pervasive systems.
Each Service Discovery solution is characterised by an
architecture, a service description model to define service
characteristics and rules for filtering and allowing service
selection. Existing solutions are often not compatible with
each other, in terms of architecture, description model and
rules.

In this work we propose a general architecture
independent from the particular Service Discovery
Protocol, which can perform Service Discovery both in
automatic or manual mode, into a pervasive system. We

then show a practical implementation based on SLP, which
is an IETF standard protocol.

IL. SCENARIO

Often service discovery is triggered by a change of
context. For instance, a user with a wireless terminal enters
in a museum, an office, a university, and she is interested in
finding local available services (i.e. a printer, a wall screen,
a newscast service). She can either explicitly query the
network to be informed about them or receive spontaneous
advertisements of services which can be offered in the local
environment. Also, instead of looking for a new service, she
might need to continue to use a particular one before
changing the context.

Service Discovery needs then to be provided both
manually and automatically. In addition, it should allow a
sufficiently accurate research of service so that, the service
discovery process can be followed by an actual utilization of
the located services. We will describe an architecture with
such features, that enables Service Discovery in a Pervasive
System.

III. THE EXISTING SERVICE DISCOVERY
ARCHITECTURE

Nowadays almost all the Service Discovery
Architectures are based on a simple framework including
three main entities:

e User Agent: entity which triggers the Service
Discovery, namely, it queries a Directory Agent for ,
available services and receives the list of discovered
services.

e Service Agent entity which communicates with the
Directory Agent to register (publish) or delete the
services it provides. Published services can be
discovered by a querying user agent.

e Directory Agent entity which stores the information on
services interacting with service agents, receives
queries by user agents, performs filtering on queries
and replies to queries providing a list of available
services matching the queries.

| DIRECTORY AGENT |

& :

USER AGENT H SERVICE AGENT

Figure 1 Service Discovery General Framework

Almost all the Service Discovery protocols are based on
this kind of architecture. We will extend it, improving its
capabilities without adding more complexity.

We need to introduce some critical aspects to describe
the whole architecture.

IV. PROFILE and CONTEXT

A generic service discovery could be performed
manually using a web search engine, inserting some key
words and selecting the wanted web service. By the way,
often the service we are looking for is not suitable for our
terminal and network capabilities, it does not match our
individual preferences, in other words it is not personalized
to our needs.

In order to perform a smart service discovery, it can be
advantageous to exploit the following information:

e User Profile: information about the user preferences,
identity and authorisations. It can be used to
personalize the services, to identify the user, to perform
Authentication, Authorization and Auditing.

e Terminal Profile: information about the terminal
which are static and do not change over time (i.e.
Screen size, Storage and Memory size, etc.)

e Context: information about the user and terminal
dynamic parameters representing user and terminal
status, such as Location, Battery charge, Internet
connection type, etc.

Nearly all service discovery protocols do not support the
advanced features required for a service discovery process
in a pervasive system. Namely, they hardly include Context
Awareness and Personalization. Context Awareness is
essential to provide real time information about the user and
the terminal status. Personalization perform service
adaptation on the basis of user preferences and identity.
Quite all service discovery protocols are not platform
independent, they are based on a particular network
(Bluetooth for the Simple Discovery Protocol), a particular
service (Web services for Universal Description, Discovery
and Integration, Network services for the UPnP’s Simple
Service Discovery Protocol) or a particular programming
language (Java for the Jini framework).

V. AN PROPOSAL FOR A GENERAL SERVICE
DISCOVERY ARCHITECTURE

In this section we describe a general architecture for
service discovery. We will concentrate on the interaction
between the client and the service discovery server. Main
requirements for a definition of an innovative service
discovery framework are:

e Hardware & Software Independency: the framework
should not depend on a particular network, a specific
hardware, software, operating system or programming
language.

e Context Awareness: the framework should use context
information (such as location) to provide services
which are compatible with the pervasive environment
in which the user and terminal are involved in.

e Personalization: the framework should be based on
user identification and preferences so as to select only
the services which satisfy the actual user needs.

e Compatibility: the framework should be compatible
with all the communication protocols and service
discovery protocols.

e Flexibility: the framework should be compatible with
all future communication protocols and service
discovery protocols, and should support the next
generation pervasive services.

e Scalability: the framework should work on different
networks (LAN and internet) and on different clients
(Mobile phones, Handled PCs, Notebooks, Desktops,
etc.)

e User Friendliness: the framework should be easy to
use, install and maintain. Use of a friendly graphical
user interface is recommended. Low level mechanisms
that govern the framework should be transparent to the
end user.

Figure 2 depicts the architectures of the User Agent and the
Directory Agent as well as their interfaces:

| Graphic Interface |

¢

| USER AGENT IP Network

5 L

| Resource Discovery | DIRECTORY

e =

Hardware (| Operating

System Service Discovery
APIs Protocol
CLIENT SERVER

Figure 2 Architecture overview

e Resource Discovery: It is the only module which
interoperates with the underlaying Operating Systems
and Hardware. It provides an adaptation to the specific
platform which is used and accesses local system
information, in fact it can access information on battery
charge, location, connection availability and type, and
so on. It then makes the whole architecture hardware
and software independent and render the architecture
with context aware.

e User and Directory Agent: they communicate with
each other using a common communication protocol
(such as HTTP, SOAP, ecc.). This can be used to tunnel

any specific discovery protocol enabling interaction of
user and directory agents across any network. The
directory agent receives queries and process them to
translate them into specific service discovery protocol
messages.

This approach assures compatibility of the architecture
to many environments: if a protocol changes, the
architecture’s structure remain the same. Moreover, the
user agent is independent from the specific service
discovery protocol used in the service discovery server.
Finally, the directory agent could support
Personalization functionalities. In fact it can base the
filtering process on user identity information and select
queried services which effectively match user
individual needs.

e The client/server approach provides scalability to this
framework: balancing appropriately the load, as the
service discovery process could be accomplished even
using a thin client (such as mobile phones).

e The use of IP networks, provides scalability to this
framework in terms of network size. It could operate in
a small Local Area Nework, as well as in a larger
network, such as the whole internet.

e A Graphical Interface provides a user friendly unique
interface to the service discovery process. It masks all
the underlaying network, hardware and software
aspects to the user and it interacts directly with him.

A. Service Discovery Manager

This service discovery framework requires that Client
and Server could communicate in a common language. To
choose a common communication protocol, the user agent
could discover a Service Discovery Manager (SDM)
Service. A service discovery manager provides information
about the communication interfaces supported by the
Directory Agent located in the server.

A user agent could discover a SDM through a standard
service discovery process, or by using a proprietary
protocol. When a user agent finds a SDM it can use its
information to locate the service discovery protocol and to
establish a communication channel.

VL IMPLEMENTATION

This section describes an implementation of the
proposed architecture by the University of Rome “La
Sapienza”.

A. Used Hardware

A PDA (iPAQ 5550) has been used as a client and a
Linux based PC for the Service Discovery Server.

A GPS module has been used to detect the PDA
geographical position. It is able to connect to the PDA
using a bluetooth interface.

A GPRS/GSM PCMCIA card has been used to connect
the PDA in the Internet .

B. Protocols

The communication protocol used between User Agent
and Directory Agent is HTTP.

The service discovery protocol used in the Service
Discovery Server 1is a Service Location Protocol
implementation, in particular the OpenSLP implementation,
working both under a linux/unix or windows based
environment, was used.

C. Software Modules

As far as the software modules, their implementation is
shown in the following figure.

The Directory Agent has been separated into the Web
Server and FILTER modules. The first one enables the
client/server communication using the HTTP protocol. All
the information are encapsulated in HTML documents. The
second one translate the incoming information sent by the
client, into SLP messages and viceversa.

Due to the fact that Resource Discovery has to
communicate directly with the hardware and with the
Operating System’s APISs, it has been implemented in C++.
Instead, the User Agent and Filter have been programmed
using Java.

The graphical interface is a web based one, it uses the
Java Server Pages (JSP) to create an intuitive graphic user
interface that can be accessed from a generic web browser.
JSP can be managed by a Tomcat web server, that can be
installed as a stand alone web server or as a plug-in of an
existing web server (such as IIS, Apache, etc.). JSP can
communicate with the filter directly using Java.

| Web Browser ﬁ%
@ IP Network |

| USERAGENT |
ét | Web Server |
| Resource Discovery | @
@ @ | FILTER |
rrduare og;;?;mg Serviceél.;ocation
APIs Protocol
CLIENT SERVER

Figure 3 Software modules overview

D. Testbed Description

The network testbed has been represented in figure 4.
When Resource Finder and User agent are running in the
client, the User Agent tries to find a SDM on the Local Area
Network in which the PDA is connected. If an SDM has
found, the User Agent controls if it supports the particular
protocols described in the SDM.

\

o8

Handled
Device

Wvireless LAN
a02.11b

Figure 4 Testbed overview

If no SDM is found, the PDA can connect to a standard
(pre-configured) server on the net.

If PDA has no internet connection, and no SDM can be
found, the service discovery process can be accomplished
only locally using a standard service discovery protocol (if
it is supported in that LAN).

We have assumed that the PDA is connected in a LAN
that can access the internet. In that LAN a service discovery
server supports a SDM based on HTTP communication
protocol.

When the PDA receive the SDM information (through a
SLP search, casted by the User Agent), the user agent
requests the Resource Finder the following information:

e Terminal Profile to identify terminal capabilities

e User Profile to identify the end user

e Context in terms of battery charge, localization
information, Internet connectivity, etc.

The Resource finder provides this information in a
XML document, through a TCP connection on local port
50000. The user agent connects to the web server (using the
SDM information), downloads the main page, populates
this HTML document with the XML document, and sends
this new HTML document to the default local web browser.

To discover if there is a local web browser, the user
agent sends a specific command to the Resource Finder (see
figure 5) which is the only module that can communicate
with the under laying hardware and software tier.

UserProxy ! E W nternet Explo § & ¢ 12:55 €3
Fle 7 http:/f151,100.9,53:8080/5erviceD - | @
SDM SEARCH EMAELED. - . .

- SOM Individuata (HTML). m Service Discovery
SDM SEARCH TERMIMATED, Setvice
HTTP Request sent - ocation Based R
HTTP response received
Query
Web Browser is starting. .. - -
RESOURCE FINDER ENABLED
Command; GET_#ML
Command: START File: jfQuery htn
lji_rwj UserProxy BE - &F £ 21.24 Yiew Tools < @ o E|‘
Figure 5 Service Figure 6 The User

Discovery is starting

performs a Query

Figure 6 shows the client screen before a query for
service discovery is made by the user. The end user can
submit a service discovery request filling both the Service
and the Query fields and pressing the Send button.

The sent web page is provided with the following
information:

User Profile
Context

e Type of service °

e Query .
e Terminal Profile

The filter layer translate the end user’s query
information in specific service discovery protocol’s queries.
In particular we choose to use the Service Location Protocol
(SLP). The filtered services are sent back to the end user
web browser.

We tested our architecture using the iPAQ 5550
connected to the GPS receiver trough the bluetooth and
connected to internet thanks to the GPRS card.

In the scenario for validation of the implementation we
assumed to be a tourist walking in the streets of Rome.

In the following examples we moved near the
Colosseum and asked for a guide (figure 7) and for an on-
line ticket service (figure 8).

& |Internet Explorer 4 4% 15.29 9

http: /192,162, 1, 100:8080/Service @

Se ige Daidalos |~
iscovery

One service has been found.

http://192.165. 1, 100:5080/Setvice v | @

Se i pe Daidalos
iscovery

One service has been found,

= g

Colosseum Guide Buy the ticket online
The story of Colosseum =

View Tools < @ 52 E|‘-

Wisit the Colosseum

view Tools G ¥ 3 % @|A

Figure 8 Colosseum
Online Ticket Service

Figure 7 Colosseum
Guide Service

E. Filtering Algorithm

The introduction of Context awareness and
Personalization features for support of the next generation
pervasive services (such as location based services), need
some extensions to the service registration capabilities. A
description model allowing filtering of old as well as more
advanced services has to be envisioned.

In general all the service discovery protocols permit to
associate an attribute list to a particular service. Each
attribute has a name and a list of possible values. The
implemented architecture uses some particular attributes
“REQUIRED” and “KEYSEARCH” to record important
information for the filtering phase.

The required field contains all the parameters regarding
the handled device and its owner that are needed by the
service to correctly provide its functionalities. For example,
if the service is a hi-res video streaming, it would require a
display with a minimum width and height, a medium CPU
speed and a good battery charge. The filter uses the XML
file sent by the end-user with the service request, and the
required attributes values to evaluate if that service is
suitable or not.

The keysearch field contains all the key words that
should match with the ones inserted by the end-user in the
query field (see figure 6).

VIL SLP EXTENSION

The implementation just presented is based on SLP,
which is characterised by a simple service description
model, which sometimes might be not sufficient to realize
complex service queries. We are exploring the potential of
the Ontology Web Language (OWL [10]), as a possible
add-on to enhance the overall service discovery
implementation as far as the service description part is
concerned. SLP characterizes the services using a list of
attributes, OWL can characterize the services using
ontologies, description models which can be represented
with an interconnected graph structure (and this structure
can be either very simple, using OWL-S, or with a medium
complexity, using OWL-DL, or very complex, using OWL-
full: either if we are searching a simple or a very detailed
way to represent a service entity, OWL seems to be equally
the best solution).

The overall idea is both simple and powerful: by adding
a “special” SLP attribute (named “OntologyURI”) in the
SLP service descirption model, we can register each service
either with usual SLP attributes and with an OWL ontology.
Close to the Directory Agent (DA) we have to use an OWL
Proxy Server, which performs OWL parsing.

The entire service discovery process, combining SLP
querying and OWL querying and parsing consists in a
certain number of steps. The client sends to the proxy either
an SLP or an OWL query. Then the OWL proxy server
forwards the SLP query to the DA, obtaining a raw list of
services (this step is the same as with SLP only). For each
returned service, the OWL proxy extracts the OntologyURI
attribute and downloads the related OWL file. Now the
proxy can perform a query on the ontology: if the current
service matches to OWL query requirements, the service is
saved, otherwise it is discarded. In a few words, the entire
discovery process consists in a two-step discovery, with
SLP discovery followed by OWL discovery.

The mechanism described above is being implemented
in Java in combination with OWL. We designed and
implemented a Java class that deserializes the OWL file
into a Java object. So the client side, receives either a list of
services and their attributes (this is the SLP part) and a list
of instanced Java objects representing the services
themselves. This approach requires the client to know the
interface of the service. We are now thinking to generalize
this approach using SOAP furthering conjunction with SLP
attribute to indicate the client where to find the above
mentioned interface.

The whole architecture, in an environment where the
client knows the class of returned instances, is already
adopted within the DAIDALOS project, and is being tested
for the CANs’ (multimedia Content Adaptation Nodes)
discovery, which are a category of highly structured
services. With the introduction of OWL the entire process
of CAN discovery has been substantially enhanced.

VIII. CONCLUSIONS

In this work we presented a general and innovative
architecture for service discovery in Pervasive Systems. It

has been designed and developed within the Daidalos
European project.

We particularly discussed the main design principles and
presented the overall structure of the architecture. We also
showed a possible implementation and a demo.

The architecture presented here provides a general and
innovative way to perform pervasive service discovery
including Context Awareness and Personalization.

This architecture is applicable to many different
scenarios in which the service discovery process is
necessary and needs to be easy to install and easy to use.
Thanks to its capabilities this platform could transform a
simple set of services in a real pervasive environment in
which the end user feels to be involved in.

ACKNOWLEDGMENT

The authors would like to thank members of
DAIDALOS team who partially supported this work by
participating to service discovery issues in a context of
pervasive computing environment.

REFERENCES

[1]. Daidalos homepage: http:/www.ist-daidalos.org

[2].IETF, RFC 2609, “Service Templates and Service Shemes”,
http://www.fags.org/ftp/rfc/pdf/rfc2609.txt.pdf

[3].IETF, RFEC 2614, “An API for Service Location”,
http://www.faqgs.org/ftp/rfc/pdf/rfc2614.txt.pdf

[4].IETF, RFC 2608, “Service Location Protocol, version 27,
http://www.fags.org/ftp/rfc/pdf/rtc2608.txt.pdf

[5].UpnP Forum, “UPnP Device Architecture”, [Online]
http://www.upnp.org/download/UPnPDA10_20000613.htm

[6].Sun Microsystem, Technical White Paper,“Jini Architectural
Overview”, [Online]
http://wwws.sun.com/software/jini/whitepapers/architecture.pdf

[7].Salutation Consortium, Internet Draft, “Salutation Architecture
Specification”, [Online],
http://www.salutation.org/spec/s21ala21.pdf

[8].0ASIS, UDDI 3.0 Specification, [Online],
http://uddi.org/pubs/uddi-v3.0.1-20031014.pdf

[9].Eugene A. Gryazin, “Service Discovery in Bluetooth”,
http://www.cs.hut.fi/~gryazin/SD_in_Bluetooth.pdf

[10]. OWL Services Coalition, “OWL-S Semantic Markup for Web
Services”, http://www.daml.org/services/owl-s/1.0/owl-s.pdf

