
Design of Service Discovery & Provisioning
Architecture based on the

Open Services Gateway Initiative
Vincenzo Suraci1, Massimiliano Taglieri2

University of Rome “La Sapienza”, D.I.S.
1vincenzo.suraci@dis.uniroma1.it, 2massimiliano.taglieri@tele2.it

Abstract - Mobility has become a central aspect of the lives
of the most industrialized countries citizens – in business,
education, and leisure. Due to rapid technological and social
changes there has been a widespread of cheap wireless and
wired technologies, which can communicate each other
creating an huge set of potential users and services in a
pervasive world. This potential business could become
concrete only if users can find the available services and get
access to them easily and automatically. In this futuristic
scenario a very important role is played by the Service
Discovery, Service Composition and Service Provisioning
Platforms. In this article we will describe an innovative
Service Discovery and Service Provisioning architecture based
on an open standardized platform: the OSGi framework. This
work presents first results of the service provisioning and
service discovery design activity which is being carried out
within DAIDALOS (Designing Advanced network Interfaces
for the Delivery and Administration of Location independent,
Optimised personal Services [1]), a project granted in the
European 6th Framework Research Programme, within the
IST (Information Society and Technology) thematic area.

Index Terms – Service Provisioning, OSGi Framework,
Pervasive System, Service Discovery.

I. SERVICE DISCOVERY

 service discovery process occur whenever something
or someone try to find a suitable and available service.

A general Service Discovery architecture is depicted in
figure 1. It is based on a simply framework represented by a
Directory Agent that stores the information on services,
receives queries, performs filtering functions and retrieves
the services matching the queries. A Service Agent
communicates with the Directory Agent, registers and
deletes the available services. The User Agent triggers the
Service Discovery process manually or automatically,
communicates with the Directory Agent, performs queries
on services and receives the available and suitable ones.

To enable an automatic Service Discovery some
protocols and software architecture have been defined: SLP,
SDP, UPnP, Salutation, Parlay, etc. and quite all the these
solutions are based on the above described architecture. But
they are not compatible each other, due to the different
architecture, rules or ontology.

Figure 1 Service Discovery General Framework

We will extend this simple service discovery
architecture, improving its capabilities and providing the
end user with the required services in an innovative,
automatic and pervasive way.

II. SERVICE PROVISIONING

Whereas a user want to use the functionalities of a
particular service, a service provisioning process occurs. In
literature some protocols and middleware architectures have
been defined to provide the services’ functionalities to a
client machine, such as CORBA, DCOM, Java RMI, JINI,
WS Provisioning, etc.

Each of these technologies uses a different service
provisioning approach. For example CORBA, DCOM and
Java RMI are middleware that extend the concept of object-
oriented programming system by allowing objects to be
distributed and invoked across a heterogeneous network, so
that each of these distributed object components
interoperates as a unified whole [5][6][7].

Instead the JINI approach is based on three main
players: there is a service, a client which would like to make
use of this service and there is a lookup service (service
locator) which acts as a locator between services and
clients.

A service provider sends a request to register the service
object that implements the service to the lookup services.
When the lookup service gets a request, it sends back to the
server an object known as a registrar. It acts as a proxy to
the lookup service and any requests that the service provider
needs to make of the lookup service are made through this
proxy registrar.

The client tries to get a copy of the service through the
same mechanism (it must get a registrar). But this time it
does something different with this, which is to request the
service object to be copied across to it (service provisioning
operation) [8].

A

Finally it’s interesting to analyze the service
provisioning issues by a Web Services point of view. In this
context many protocols or initiatives have been defined and
often they interact to provide Web services. The most
important are: SOAP (provides the definition of the XML-
based information which can be used for exchanging
structured and typed information between peers in a
decentralized distributed environment [9]), WSDL
(provides a model and an XML format for describing Web
services), UDDI (defines a SOAP-based Web service for
locating WSDL-formatted protocol descriptions of Web
services) and WS Provisioning Specification (describes the
APIs and schemas necessary to facilitate interoperability
between provisioning systems).

III. THE OSGi FRAMEWORK

The Open Services Gateway Initiative (OSGi) was
founded in March 1999. Its mission is to create open
specifications for the network delivery of managed services
to local networks and devices. Services are Java objects
implementing a concisely defined interface [2][3].

The Framework forms the core of the OSGi Service
Platform Specification. It supports the deployment of
extensible and downloadable service applications known as
bundles.

In the OSGi environment, bundles are the only entities
for deploying Java based applications. A bundle comprises
Java classes and other resources which together can provide
functions to end-users and provide components to other
bundles, called services. A bundle is deployed as a Java
ARchive (JAR) file.

OSGi-compliant devices can download and install OSGi
bundles, and remove them when they are no longer
required. Installed bundles can register a number of services
that can be shared with other bundles under strict control of
the Framework.

The Framework manages the installation and update of
bundles in an OSGi environment in a dynamic and scalable
fashion, and manages the dependencies between bundles
and services.

The Framework allows bundles to select an available
implementation at runtime through the Framework service
registry. Bundles register new services and receive
notifications about the state of services. This aspect of the
Framework makes an installed bundle extensible after
deployment: new bundles can be installed for added
features, or existing bundles can be modified and updated
without requiring the system to be restarted.

The OSGi framework for its characteristics is the more
suitable for the design and deployment of an innovative
service provisioning architecture.

IV. PERVASIVE SYSTEMS

The evolution of modern technologies allow to achieve
an important objective: to involve the user into a system
that can answer to his requirements providing him with
useful information and services. This kind of system is
called Pervasive System.

For this reason an intelligent service provisioning
architecture must be able to select and personalize the
services that the user wishes. This property is called Content
Adaptation.

Moreover when an user handles a terminal, it’s possible
that context’s changes occur (e.g. low battery, connection’s
interruption etc.). A good architecture should react and
compensate the consequences of these changes. This
characteristic is called Context Awareness.
In order to implement these functionalities, it is necessary to
manage the following information:
User Profile that maintains the user identity, preferences
and properties so that it can be used to personalize the
services, to perform Authentication, Authorization;
Terminal Profile that maintains data on the terminal static
capabilities (i.e. Storage and Memory size, Screen size,
etc.);
Context that maintains data on the user and terminal
variable capabilities (e.g. Location, Battery charge, Internet
connection, etc).

V. SCENARIO

Who has a handled device, entering in a new pervasive
environment (e.g. station, office, vehicle etc), could be
interested to identify the presence of useful and available
services. This can be done triggering the Service Discovery
service from the terminal both manually or automatically. If
the search has a positive outcome, the user must be able to
access to the chosen services automatically (i.e. without
executing complicated system configurations). These
services can be static information (e.g. in a railway station,
it could be the train timetable) or services that can be
managed through software applications (printers, wall
display, fax, etc.). In short the user should be able to execute
a Service Provisioning process.
 We will describe an architecture which can perform all
these functionalities, using any of the existing Service
Discovery Protocols and the OSGi platform.

VI. PROBLEM DESCRIPTION

Currently service provisioning frameworks don’t care
about the new functionalities required for a service
provisioning process in a pervasive system.

In particular they don’t support the automatic download
and installation of service applications and they can only
execute remote method invocations or use web services.
Moreover they don’t care about Context Awareness,
Content Adaptation and Service Composition. These
characteristics are basic for the next generation pervasive
services.

It is also necessary to consider that quite all service
discovery protocols are not platform independent: they are
bound to a particular network (e.g. Bluetooth for the Simple
Discovery Protocol) or a particular service (e.g. Web
services for the Universal Description, Discovery and
Integration, Network services for the UPnP Simple Service
Discovery Protocol).

VII. AN INNOVATIVE SERVICE DISCOVERY &

PROVISIONING ARCHITECTURE

A. Requirements

In the project development of an innovative service
discovery and provisioning framework, first step is to focus
on the project’s requirements.
The framework should be Hardware & Software
Independent: it couldn’t depend on a particular network, a
specific hardware, software or operating system. The
framework should be characterized by a high level of
Automation and it would have to provide mechanisms
allowing to the end user to install and to run automatically
the services in transparent way. When the architecture
interacts with the end user it should be User Friendly,
hopefully using well known graphic user interfaces
(windows like or web based).
The framework should use context information (such as
localization) to provide services which are compatible with
the pervasive environment in which the user and the
terminal are involved in. Moreover it should provide
content adaptation services, for example using the user
identity to find its service’s preferences and to select the
services which are compliant with the user characteristics
only.
Compatibility with all existent and future communication
service discovery protocols it’s necessary for a successful
architecture. Finally it should be scalable, i.e. it should
work on different networks and on different terminals.

B. Service Discovery

An important and innovative framework feature is the
independence from the adopted service discovery protocol.

In order to pursue this objective we have planned a
Service Discovery API (bundle) that makes it available
some service discovery functions (such as the service
registration, discovery, de-registration etc.) independently
from their real implementation (SLP, SDP, Salutation, etc.).

As depicted in the figures 2, 3 and 6 we have chosen to
use the Service Location Protocol (SLP) developed by the
IETF. It offers a more flexible and a more scalable
architecture than all the other discovery protocols.

SLP includes a leasing concept with a lifetime that
defines how long a directory agent will store a service
registration (peculiarity useful for highly dynamic wireless
network scenarios). It supports Service Browsing
functionality (in order to find the services in network) and
mechanisms for the attributes selection to realize complete
queries. Finally it is independent by programming
language.

C. Framework

Three agents interact in a service discovery and
provisioning scenario: a Directory Agent, a Service Agent
and an User Agent.

The innovative characteristics of the OSGi platform
suggests to use it in all the three agents, so that the

problem’s solution is designing an efficient bundle
architecture.

The Directory Agent provides an OSGi platform and a
database application in which all the services could be
registered.

The Directory Agent Bundle provides all the needed
functionalities to register a service into a database, to
retrieve it starting from a query and to delete it. The
different implementation of the Directory Agent Bundle
uses different Service Discovery Protocol.

The Service Location Protocol Directory Agent Bundle
represents a SLP Directory Agent working in the OSGi
platform. When it starts, it listens to the port 427 for
incoming SLP messages.

The http server bundle is useful in order to allow the
User Agent the download of a Service Provisioning
Manager Bundle, which represent a simple .jar file
registered in the http server root.

We’ll describe the service provisioning manager bundle
functionalities later in this document.

OSGi

HTTP SERVER (Knopflerfish Embedded Bundle)

SERVICE PROVISIONING
MANAGER Bundle (as a simple Jar File)

SLP DIRECTORY AGENT

(IMPLEMENTATION) Bundle

DATABASE

OSGi

HTTP SERVER (Knopflerfish Embedded Bundle)

SERVICE PROVISIONING
MANAGER Bundle (as a simple Jar File)

SLP DIRECTORY AGENT

(IMPLEMENTATION) Bundle

DATABASE

Figure 2 Directory Agent

When a Directory Agent Node is activated, the
Directory Agent Implementations installed in the OSGi
platform starts to listen for possible incoming service
requests.

The change of the Directory Agent Implementation
make possible to support different service discovery
protocols (SLP, UPnP, UDDI, Salutation, etc.) using the
same API for the service discovery.

The Service Agent main bundle is the Service Agent
Bundle. It coordinates the other bundles. When the service
agent get connected to the net, the LAN listener Bundle
detects this event and activates the service agent bundle. It
retrieves the list of the services installed in this machine and
try to register the services into the LAN using the Service
Discovery API.

The Service Discovery SLP bundle depicted in the figure
3 and 6 implements the Service Discovery APIs, using the
SLP protocol standard. The adopted solution is very useful
because allows the same service agent to use different
service discovery protocols without modifying the other
bundles.

The Service Bundle Installer bundle allow the server
administrator to manage the available services by means of
a graphic user interface, to install new services, to delete
and to update the old ones and so on.

The registered services could be simple web pages
(information services) or complete software programs
(OSGi bundles), and they are stored into the http server
running as a service in the OSGi platform (http server
bundle).

A generic service bundle stored into the http server
bundle is a stand alone software that can communicate both
with the real service or a controlling software installed into
the Service Agent, using any communication protocol. It’s
possible because the service bundle has been built by the
service provider itself. For example: a wall display
connected to the service agent machine provides a simple
service bundle that could be installed in the client OSGi
platform and allows the client machine to send a video
streaming representing the client’s display directly to the
wall display.

OSGiOSGi

SERVICE DISCOVERY
(API)

Service Discovery SLP
Bundle

LAN Listener
Bundle

SERVICE AGENT
Bundle

HTTP SERVER (Knopflerfish Embedded Bundle)

Service Bundle 1 Service Bundle N…

REAL SERVICE 1 REAL SERVICE N…

SERVICE Bundle
INSTALLER

Bundle

GRAPHIC USER INTERFACE

END USER (SERVER ADMINISTRATOR)

Figure 3 Service Agent Node

This is an innovative approach to provide next
generation pervasive services to the end user, who can
interacts directly with the software and the hardware around
him. Moreover using the OSGi platform all these processes
are completely automated.

The User Agent main bundle is the User Agent Bundle.
When a mobile user get connected to the net, the LAN
Listener Service bundle activate the user agent bundle that
searches a Service Provisioning Manager, i.e. something
that could accomplish all the service discovery and
provisioning processes automatically, requiring the
minimum interaction with the end user.

The user agent bundle uses the Service Discovery APIs
to find a available service provisioning manager. If a
Directory Agent is working in the LAN, it could listen the
user agent request and return to it the URL from which a
service provisioning manager could be downloaded.

When the user agent receive the directory agent
response, it uses the Bundle Loader bundle to download and
to install the Service Provisioning Manager bundle into the
OSGi platform.

This bundle enables the end user to perform a service
discovery and provisioning process interacting with him by
means of a graphic user interface. For example the end user
can select the service type and/or some key words to
accomplish a general service research. Moreover he can
trigger the downloading and the installation of the services.
The figure 4 shows the printer services discovered using an
iPAQ 5500 connected in a small office WLAN empowered
with the service provisioning architecture. The figure 5
shows the Knopflerfish OSGi console that makes it possible
to manage the bundles installed in the User Agent Node.

Figure 4 Printer Service
Discovery on PDA

Figure 5 Knopflerfish
OSGi Console on PDA

The service provisioning manager can also use the
information about the user profile (name, address, telephone
number, etc.), the terminal profile (display size, cpu speed,
installed software, etc.) and the context status (position,
connection speed, battery charge, etc.) provided by the
Resource Finder Bundle to perform a better service request.
All this information could be collected by a specific
software (the Resource Finder, generally written in a low
level programming language such as C++) that
communicates directly with the under laying hardware and
operating system.

OSGi

LAN Listener
Service Bundle

USER AGENT
Bundle

SERVICE DISCOVERY
(API)

SERVICE PROVISIONING
MANAGER Bundle

GRAPHIC USER INTERFACE

END USER

RESOURCE FINDER
Bundle

Service Discovery SLP
Bundle

BUNDLE
LOADER
Bundle

SERVICE Bundle1 SERVICE BundleN…

OPERATING SYSTEM APIs HARDWARE

RESOURCE FINDER (C++)

OSGi

LAN Listener
Service Bundle

USER AGENT
Bundle

SERVICE DISCOVERY
(API)

SERVICE PROVISIONING
MANAGER Bundle

GRAPHIC USER INTERFACE

END USER

RESOURCE FINDER
Bundle

Service Discovery SLP
Bundle

BUNDLE
LOADER
Bundle

SERVICE Bundle1 SERVICE BundleN…

OPERATING SYSTEM APIs HARDWARE

RESOURCE FINDER (C++)

OSGiOSGi

LAN Listener
Service Bundle

USER AGENT
Bundle

SERVICE DISCOVERY
(API)

SERVICE PROVISIONING
MANAGER Bundle

GRAPHIC USER INTERFACE

END USER

RESOURCE FINDER
Bundle

Service Discovery SLP
Bundle

BUNDLE
LOADER
Bundle

SERVICE Bundle1 SERVICE BundleN…

OPERATING SYSTEM APIs HARDWARE

RESOURCE FINDER (C++)

Figure 6 User Agent Node

The service provisioning manager uses the service
discovery API to find the suitable and available services in
that network. The received list of services could contain
URLs of web pages or downloadable bundles. As first case,
the local favourite web browser could be used to provide
the service to the end user. In the other case, the bundle
loader bundle must download and install the service bundle
into the local OSGi platform.

VIII. CONCLUSION

In this work we presented an innovative service
provisioning and discovery platform based on the OSGi
framework investigated in the context of the DAIDALOS
project. For its nature, this architecture is easy to install and
easy to use. It can express its potentiality in many scenarios
in which both user agent and service agent could be mobile
agent: whenever a LAN connection has detected the service
discovery and provisioning process starts automatically
involving the user in a concrete (and not only potential)
pervasive environment.

FUTURE WORKS

We are developing the entire architecture using a open
source OSGi implementation (Knopflerfish). We want to
test it in a wireless LAN in which the user agent is a mobile
node. In particular the end user uses a last generation
handled device (iPAQ 5550) provided with a 1.3.0
compatible java virtual machine and the Knopflerfish OSGi
framework.

ACKNOWLEDGMENT

The authors would like to thank members of DAIDALOS
team who provide a fundamental support in the design of
this service discovery and provisioning platform.

REFERENCES

[1].Daidalos homepage , http://www.ist-daidalos.org
[2].OSGi, “about the OSGi Service Platform” Technical Whitepaper,

Revision 3.0, 12 July 2004, OSGi Alliance,
http://www.osgi.org/osgi_technology/download_specs.asp?sect
ion=2

[3].Knopflerfish OSGi, “OSGi R3 framework” On line, last update
October 2004
http://www.knopflerfish.org/index.html

[4].OMG, “Object Management Group Information”, On line, last
update January 2005, http://www.omg.org

[5].CORBA, “CORBA Information”, On line, last update January
2005, http://www.corba.org

[6].DCOM, “Calling COM components from .NET Client”, On Line,
Microsoft, last update November 2001
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/callcomcomp.asp

[7].JavaRMI, “Java Remote Method Invocation Specification”,
Technical Whitepaper, , Revision 1.8 java 2 SDK, Standard
Edition, v1.4, Sun Microsystem,
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf

[8].Jini, “Jini Architecture Specification”, On line, Copyright 1997-
2003 Sun Microsystems
http://www.jini.org/nonav/standards/davis/doc/specs/html/jini-
spec.html

[9]. SOAP, “Web Services Activity”, On line, Copyright 2002-2004
W3C http://www.w3.org/2002/ws/

[10]. IETF, RFC 2608, “Service Location Protocol, version 2”,
http://www.faqs.org/ftp/rfc/pdf/rfc2608.txt

