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Abstract— Ultra-Wideband Impulse Radio communications
have been growing rapidly over the last few years, as a promising
technique for high bit-rate and multi-user transmissions over
the 3–10 GHz unlicensed spectrum. In literature, multi-user
interference is often approximated with a white Gaussian process
and embodied in the overall noise term. However, it has been
found that, in a typical indoor environments, such approximation
is inadequate. In this paper, we propose a new approach to char-
acterize the interference, based on the Gaussian mixture model.
We also derive an estimator for multi-user interference statistics,
based on the iterative Expectation Maximization algorithm. The
effectiveness of the proposed estimator is finally shown by means
of numerical examples.

I. INTRODUCTION
Ultra-Wideband (UWB) is an emerging communications
technology, whose features are well suited for multi-user
indoor environments, and is very attractive thanks to the pos-
sibility of exploiting the 3–10 GHz unlicensed spectrum [1].
The Impulse Radio (IR) modulation format we refer to was
originally described in 1993 [2]. It consists of the transmission
of ultra-short pulses with duration less than 1 ns, where
the pulse pattern is built up using binary pulse position
modulation (PPM) for data transmission with time-hopping
(TH) sequences to provide multiple access capability.
When applying receivers with coherent single- or multi-
user detection in fading channels, it is essential to provide
an accurate estimate of the channel state, which has a major
impact on the overall system performance. For this reason,
several works have been devoted to channel estimation in IR
systems, e.g. [3][4]. However, when deriving channel estima-
tors, the multi-user interference (MUI) is always modeled as
a Gaussian process, even though it has been shown that such
approximation is often inadequate [5]. In fact, in a typical
indoor scenario, MUI is due to the superposition of several
interferers which may have different power levels. Thus, a
strongly impulsive component may arise and then the central
limit theorem hypotheses are no longer verified.
The aim of this work is to derive an estimator of MUI
statistics suitable for further derivation of more reliable joint
channel and interference estimator algorithms. The proposed
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solution is based on the Gaussian mixture model (GMM),
which considers the interference as a stochastic process with
probability density function (pdf) given by a weighted super-
position of Gaussian pdfs, each having zero mean and assigned
variance. Hence, the complete statistical description of the
MUI is obtained by estimating the weights and the variances
of the GMM.
It has been found that the GMM is appropriate for impulsive
noise, which can be modeled as a train of randomly occurring
narrow pulses in a background of Gaussian noise, [6], [7].
We show that the GMM is also well-suited to characterize the
impulsive behavior of multi-user interference in IR systems
and allows MUI statistics estimation via the Expectation
Maximization (EM) algorithm [8].
The paper is organized as follows. In Section II, we intro-
duce the system model, describing the IR signal format in an
asynchronous multi-user scenario and the GMM. Afterwards,
in Section III, we derive the MUI statistics estimator detailing
the EM algorithm. Next, in Section IV convergence properties
of the estimator are discussed, whereas Section V demonstrates
the estimator performance. Finally, in Section VI some con-
clusions are drawn, addressing further investigation toward the
realization of a GMM-based joint channel and interference
estimator.

II. SYSTEM MODEL
A. IR over fading channels

In an IR system, designed for a maximum number of � �
users, the signal transmitted by the � –th user is

� � 
 � � � � � � 
 � � � � � � ! � $ � � � � & � $ � � � (1)

with a single pulse per slot, with duration � � . With TH,
each pulse is positioned within each slot according to a user-
specific TH sequence ! � $ �

. Specifically, dividing each slot
into � � chips each of duration � � , the � –th user TH code! � $ � - / 1 3 4 4 4 3

� � 5 corresponds to a time shift of ! � $ � � �
during the � –th slot. Furthermore, binary PPM maps the
source stream & � $ � - / 1 3 :

5 of the � –th user into a further
time shift of duration & � $ � � . Following [9], the duration of a
slot is fixed to � � � = > 1

ns, the chip period to � � � 1 4 ? ?
ns

and the 2-PPM spacing to � � 1 4 = = ns. We assume periodic



TH sequences with period � � � � � � � � �
, thus the signal

(1) can be regarded as a cyclostationary process with period� � � � . Notice that the chip period � � has been chosen such
that � � � � � � � � � � , where the guard interval � � � 	 � ns is
properly chosen to combat inter symbol interference (ISI) in
typical UWB propagation conditions. The chosen pulse � 
 � �
is the second derivative of the Gaussian pulse

� 
 � � � 
 � � 	 � � � � � ��� � � � 
 �� � � � �

with � � � � � 	 ns.
The regarded channel model is detailed in [10], and the
channel impulse response (CIR) writes

� � 
 � � �
�

� � !
" � �  # 
 � � $ � �  � $ � � (2)

where
" � �  and $ � �  represent attenuation and delay of the&

–th path for the � –th user, respectively. Without loss of
generality we assume $ � � ! � �

, ' � . For the reference user,$ � is the propagation delay, while for remaining interfering
users $ ) , * ,� � , is modeled as a random variable uniformly
distributed in the period of cyclostationarity. The received
signal, pointing out both the contribution of MUI and thermal
noise is:- 
 � � � - � 
 � � � �) /� � - ) 
 � � � 1 
 � � � - � 
 � � � 3 
 � �

where - � 
 � � represents the signal component related to the
reference user

- � 
 � � � ! � 5 � � 
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�
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The multi-user interference is collected in the signal 7 � 
 � � �8 ) /� � - ) 
 � � , while 1 
 � � is additive white Gaussian noise
(AWGN) with two-sided power spectral density : < 
 > � �

� ! @ 	 . We include both MUI and thermal noise in a single
term 3 
 � � , hereafter referred to as noise. Before being further
processed, the received signal - 
 � � is sampled into - B � - 
 E � ! �
with a proper sampling rate F ! � �

@ � ! .
In the following we are interested in the noisy component of
the received signal, so that we assume data-aided transmission,
i.e., the source stream $ � � %

is known to the receiver. Moreover,
perfect knowledge of the attenuations

" � �  and delays $ � �  of
the actual CIR (2) is assumed. Hence, at the receiver, a local
copy of the signal component - � � B � - � 
 E � ! � is generated and
the noise component 3 B � 3 
 E � ! � is obtained by subtraction,3 B � - B � - � � B .
B. The Gaussian Mixture Model

The receiver collects H samples of the noisy compo-
nent 3 
 � � of the received signal into a row vector I �J 3 !

� � � � � 3 K � L N . According to the Gaussian Mixture Model,
each noisy entry 3 B of the vector I is a realization of a random
variable with pdf given by an � –term mixture of Gaussian
pdfs, parameterized by a vectorO � Q S L � � � � � S T � V W

L
� � � � � V WT Y �

(3)

that is Z
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T
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where the nonnegative coefficients S \
satisfy the normality

condition
8 T\

� L S \ � �
and

Z \ 
 3 B [ V W\ � is the pdf of a zero-
mean Gaussian process with variance

V W\
, namelyZ \ 
 3 B [ V W\ � �

�
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Then, the pdf of the noise samples resultsZ
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T
�\
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(6)

We call � the order of the GMM. Notice that, setting � � �
,

the � –term Gaussian mixture model reduces to the Gaussian
model. This proves that the proposed model includes the Gaus-
sian approximation (GA), typically encountered in literature,
as a particular case.

III. MULTI-USER INTERFERENCE STATISTICS ESTIMATION

Given the GMM introduced above, an estimate of the
MUI pdf, which is a complete statistical description, may be
obtained from the maximum likelihood (ML) estimate of the
vector

O
. However, direct application of the ML algorithm

to this problem requires the maximization of the likelihood
function

� 
 I [ O � � K � LfB � !
Z


 3 B [ O � (7)

with respect to the vector
O
. The resulting search space

has dimension 	 � , therefore the ML estimation becomes
impracticable in terms of computational effort.

A. Expectation Maximization estimation with GMM

We propose a lower complexity solution based on the EM
algorithm [8], which is a broadly applicable approach to
the iterative computation of ML estimates. The derivation
of the EM algorithm relies on the two key notions of the
complete (unobservable) and incomplete (observable) data.
Following [11], the complete data set g � is obtained assuming
that each observed component 3 B is modeled by only one term
of the GMM (6), that is

g � � ( h B [ E � � � � � � � H � �
)

�

where
h B � 
 3 B � * B � and * B + ( � � � � � � � ) is the variable identi-

fying the term of the GMM (6) that models the noise sample3 B . The likelihood function of the vector l , parameterized byO
, is

� 
 l [ O � � K � LfB � !
Z


 3 B [ O � a � (8)

where O � a � J � � � � � � � � S � a � � � � � � � � � V W
� a � � � � � � � �

N



is obtained from
�
by setting all its components to zero,

except � � � and � �
� � . Since the vector � � � �

�
� � � � � � 	 
 � � �

is
not observable, the estimation is obtained iteratively from the
observation � of the incomplete data set

� � � � � � � � � � � � � � � 
 �
�

�

and from the previous estimate of
�
. The algorithm starts with

an arbitrary initial guess
� � � � , where

� � � � � � � � � ��
� � � � � � � � �� � � � � 
 �

�
� � � � � � � � 
 �� �

denotes the current estimate of
�
after

�
iterations of the

algorithm. Then, each iteration cycle can be divided into
two steps, namely, the expectation step (E-step) and the
maximization step (M-step).
The E-step is carried out by evaluating the expectation of the
log-likelihood function (8) of the complete data � conditioned
upon the incomplete data � and the current estimate � � � � .
Exploiting the Independence of the observed samples � � , we
obtain� �

� � � � � � � � � � � � � 	 
 ��� � �
�


 � � � � � � � ��� � � � � � � �
�

�
�
� � �

	 
 �� � � �
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where �

 � � � � � � � � � � � �
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represents the pdf of the complete data sample
� � conditioned

upon � � and � � � � . Finally, by substitution of (10) and (6)
into (9), and after some straightforward manipulation, we
obtain� �
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where
* � � � � , � # is a term independent of �

.
During the M-step (maximization), we search for the max-
imum of the function

�
with respect to the parameters of the

vector
�
. Solving - �

+ - � � � �
, with � � � � � � � � , , subject

to the constraint
- � � � � �

, we obtain updated estimates for
the coefficients � � , whereas for the variances

� �
� the update

equation follows from - �
+ - � �

� � �
, � � � � � � � � , . Thus, the

parameter estimates are updated by means of the following

� � � / � �� �
�

� � �
�


 � � � � � � � � � � � � � � � � � � � � , �
(11a)

and� � � 
 2 % �
� � - � � ��

�

 � � � � � � � � � � �- �

�

 � � � � � � � � � � �

� � � � � � � � � , �
(11b)

to obtain
� � � / � � .

In short, at the first iteration, the initial estimates of the
unknown parameters � � � �� and

� � � % �
� are arbitrarily chosen, then

�

 � � � � � � � � � � � is evaluated and, finally, parameter estimates
are updated by means of (11). The E-step and M-step are
iteratively repeated until convergence.

B. Maximum Likelihood estimation with GA

As already mentioned in Section II.B, the GMM includes
the Gaussian approximation as a particular case, when the
order , equals 1. Thus, the EM estimation derived above
reduces to the conventional ML estimation of the variance
of a Gaussian process. In fact, letting , � �

in the E-
step (9), the summation over � vanishes yielding the log-
likelihood function (7) of the observed data � and then the
estimate is obtained at the first iteration. Furthermore, from
the M-step (11), � � � �

according to the normality condition,
cf. (11a), and the variance estimate (11b) becomes� �

� �
�

� � � � �� �

IV. CONVERGENCE PROPERTIES
It is known that the incomplete data log-likelihood func-
tion (7) increases monotonically on the sequence of estimates
generated by the EM algorithm. Hence, convergence toward a
local maximum of the log-likelihood function is assured. How-
ever,the drawback of the EM algorithm, in combination with
mixture densities, is the high number of iterations required
for convergence [11]. In order to characterize convergence
properties, in terms of the number of iterations, we split the
parameter vector

�
into two halves, namely4 � � � � � � � � ��

� � � � � � � � �� � 7 8 : ; � � � � � � � � 
 �
�

� � � � � � � � 
 �� � �
(12)

The rate of variations experienced by estimates after each
iteration is measured by means of the following convergence
indexes

. > 
 � � � @ 4 � � � 
 4 B @ �
@ 4 B 
 4 � � � @ � � . D 
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 ; B @ �

@ ; B 
 ; � � � @ � (13)

where
4 B
and ; B

represent respectively the vectors of es-
timates to which the sequences

� 4 � � � � and
� ; � � � � tend as� E F

. The convergence indexes (13) quantify the rate
of convergence of the estimates toward the actual values,
including a normalization factor which takes into account the
distances between the initial setting

� � � � and the final result.
Observe that, due to the normality condition on

4
, weights and

variances have different orders of magnitude, thus the choice
of evaluating two different rate indexes.
To evaluate the convergence properties of the derived EM
algorithm, an IR system typical for indoor scenarios is defined.
We simulate the transmission of data packets, made up of 509
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Fig. 1. Percentage variation of the coefficients.
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Fig. 2. Percentage variation of the variances.

bits over a noisy LOS channel specified by the model CM1,
in [10]. The noise level corresponds to a SNR of 18 dB. We
choose two different scenarios, with 8 transmitting users. In
the first, here denoted as equal power users, all the transmitted
signals reach the receiver with the same power level. Hence, all
the interferers give the same contribution to the overall MUI� � . The second scenario differs in the presence of a strong
interferer with a power level 20 dB higher than the other
users. We expect the conventional Gaussian approximation to
be effective in the former scenario, unlike in the latter, where
the resulting impulsive MUI is more reliably modeled by the
GMM.
In the following all the presented results are obtained by
averaging over 100 independent realizations of the channel.
The natural choice for the estimator initialization would be
the ML estimate, namely

� � � �� � � � � � � � � � � �
� and

� � � � �
� �

�� � � 	 �� � � �
�� , with arbitrary

� � � � ��
,

�
� �

� � � � �
� . However,

with this setting the EM estimator collapses into the ML one
(see Section III.B). Thus, we modified initialization conditions
posing

� � � �� � � � � � � � � � � � � � �
� , with

�
�

� � � �
� 
 � �

�
� and� � � � � ��

�
�
with

� � � � �� � � � � � � ��
	 � , � � �

�
.

As a first result, simulations confirm that the proposed EM
algorithm actually increases the likelihood of observations in
each iteration, as expected. The convergence index � 	 
 � � and� � 
 � � are shown in Figs. 1 and 2, where we have chosen � 
 �

� � � � � , which corresponds to assume complete convergence
after 50 iterations.
Aiming to a reduced complexity, we have set the number� of pdfs involved in the mixture model to 3. This choice is
motivated from the results in [12], where it has been shown
that increasing � does not provide an improve in the reliability
of the GMM.
We observe that the rate of convergence is different for � 	
and � � . In particular, � 	 converges to 0 after an higher number
of iterations than � � . Furthermore, in both the equal power
users and strong interferer scenarios,

� � � iterations is a good
trade-off between convergence and complexity. In fact, about

80% of the variations of � 	 occurs in the first 8 iterations.
We also remark that further simulations, not reported here,
demonstrate that the rates of convergence, depicted in Figs. 1
and 2, are affected by the choice of the initial setting

� � � � .
However, limiting the number of iterations to

� � � always
results in a good trade-off.

V. PERFORMANCE ANALYSIS

In this section, the performance of the proposed MUI statis-
tics estimator are demonstrated by means of the cumulative
distribution function (cdf) of the noise.
Figure 3 shows the actual and estimated cdf, in the equal
power users scenario. In particular, four estimates of the cdf
are obtained by setting � �

� �
�

� 
 � �
. Since in the equal power

users scenario the Gaussian approximation is reasonable, it is
not surprising that increasing the order � of the GMM does
not improve the estimator performance.
Nevertheless, in typical indoor environments the presence of
strong interferers is highly probable. Focusing on the actual
cdf curves depicted in Fig. 4 (continuous line) it is evident
that in the strong interferer scenario the MUI has an impulsive
behavior, since the cdf tail is lower compared with that of the
equal power users scenario, confirming a well-known result.
Fig. 4 also compares the performance of the ML estimator
with the GA ( � 
 � � �

�
) and the EM estimator with GMM

( � � � � � �
� 

) in the strong interferer scenario. Due to the

symmetry of cdfs, only a portion of the cdfs is depicted, thus
allows easier curves comparison.
It is evident that the ML estimate is far from the actual
cdf, since it has been derived with the GA, which, with the
presence of a strong interferer, is no longer effective. On the
other hand, the derived EM estimator obtains reliable estimates
because the GMM fits the MUI statistics. Furthermore, satis-
factory performances are achieved limiting the GMM order �
to 3. This fact validates the choice of the number of iterations
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�
� � , carried out in Section IV.

VI. CONCLUSIONS
In this paper, we have shown that the impulsive nature
of multi-user interference is well characterized by the Gaus-
sian mixture model, making the usually accepted Gaussian
approximation no longer valid. Starting from this result, we
have proposed an iterative multi-user interference statistics
estimator for IR systems, based on the Gaussian mixture model
and the Expectation Maximization algorithm. The derived
estimator significantly outperforms conventional estimators
based on the maximum likelihood approach, at the expense
of a slight increase in the complexity.
The results presented in this paper may be exploited for
the derivation of channel estimation and synchronization algo-
rithms, which, relaxing the Gaussian approximation, promise
a performance improvement compared to existing solutions.
Presently, research is focused on an iterative joint channel
and noise statistic estimator based on the Space Alternating
Generalized Expectation Maximization (SAGE) algorithm.
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