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Abstract— MIMO transmission based on spatial multiplexing
has been shown to offer great performance improvements and,
therefore, will be included in future mobile radio systems.
However, these very high performance gains require accurate
channel state information either on the receiver [1] or on the
transmitter side [2] or, even better, on both sides [3]. Unfortu-
nately, the number of channel coefficients grows quadratically
with the number of antennas on the transmitter and receiver
sides whereas the channel capacity in the best case grows only
linearly with the number of antennas [4]. Consequently, the
performance improvement achievable by MIMO transmission
will in practice be limited by the requirement to estimate the
channel coefficients, which requires significant overhead for
training signal transmission especially in high mobility scenarios.
The present paper introduces new channel estimation techniques
which can partially overcome this problem by exploiting second
order channel statistics to improve the snapshot based channel
estimates or equivalently to reduce the number of resources
required for training signal transmission in order to achieve a
certain channel estimation performance.

1. INTRODUCTION

State of the art channel estimation is based on the transmis-
sion of a priori known training signals, sometimes also referred
to as pilots. In this case the received signal resulting from
the training signal transmission is a known linear function of
the unknown channel coefficients. These channel coefficients
may be either thought of as samples of the channel impulse
responses in the time domain, samples of the channel transfer
functions in the frequency domain, or, more generally, as
coefficients describing the channel properties with respect to
a chosen set of basis functions. There is nothing special about
the MIMO case except that in this case the channel coefficients
stem from different physical channels. Training signals may
be fed into all the inputs of the MIMO channel at the same
time, although this does not offer significant improvements
as compared to the case that the training signals are fed into
the different inputs at disjoint time intervals, as the first case
requires longer training signals in order to achieve the same
channel estimation performance and consequently the total
resource consumption for channel estimation is the same [5].

In the following the received vector e (i) describes the
received signal resulting from the ¢-th training signal trans-
mission with respect to a set of basis functions, e.g., with
respect to time shifted sinc-functions resulting in a vector of
samples in the time domain. Using the system matrix G and

the Gaussian noise vector n (i), the received vector e (i) can
be written as a linear function of the vector h (i) of channel
coefficients valid at time instant ¢ as follows:

e(i))=G-h(i)+n(). (D)

For simplicity it is assumed that the same training signal is
used for each training signal transmission i, i.e., the system
matrix G is independent of 4.

With the covariance matrix

R, =E{n()n()"} @

of the stationary Gaussian noise the optimum unbiased max-
imum likelihood snapshot based channel estimate is obtained
as [6], [7]

B()=(G"R,'G) G'R,'e(). @

It should be noted that the maximum likelihood channel
estimate only exists if the number of received values is at
least as large as the number of unknown channel coefficients.
Of course a luxury in the number of received values and thus
in the length of the used training signals can improve channel
estimation performance.

For the sake of simplicity we will focus our investigations
on the estimation of the channel coefficients of one of the SISO
subchannels of the MIMO channel. For the initial snapshot
based channel estimation we will use unbiased maximum like-
lihood estimation, see (3). The results can be easily extended to
MIMO channel estimation, which is mathematically the same
as SISO channel estimation.

The rest of the paper is organized as follows: First the
new concept of subspace based channel estimation is intro-
duced. Basically it exploits second order channel statistics to
determine the subspace in which the unknown vector h (7)
of channel coefficients lies. Alternatively one could exploit
the knowledge of the second order statistics by the well
known minimum mean square error channel estimator which is
briefly recapitulated. The paper concludes with a performance
comparison of the new subspace based channel estimation
and the state of the art minimum mean square error channel
estimation.
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II. SUBSPACE BASED CHANNEL ESTIMATION
A. Channel subspaces

1) Time window: In this example channel coefficients rep-
resenting the time samples of the channel impulse response of
a SISO channel are considered. Due to the a priori unknown
access delay the dimension L of the channel impulse response
h (7) is usually chosen much larger than the excess delay W,
i.e., the channel impulse response has the following structure:
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In other words, the channel impulse response h (¢) lies in a W
dimensional subspace of the L dimensional total space. With
the shortened channel impulse response

by () = () ()1 @) ©

and the matrix Hyy (¢) spanning the considered W-
dimensional subspace one can write

0

hyy (4) - (6)

Interestingly, the subspace represented by Hyy (i) changes
only slowly due to slow fading, i.e., changing propagation
paths, if the transmitter or receiver moves, whereas the channel
impulse response h (i) and the shortened channel impulse
response hy, (i) change quickly due to fast fading.

2) Directional channels: Typically, the wavefronts impinge
at the moving mobile station (MS) from rather few directions
of arrival. In this example we consider the most simple case
of two directions of arrival, see Fig. 1. The two radio channels
corresponding to the two directions of arrival can be described
by directional channel impulse responses héd), d=1,2. At

the reference point (RP) the channel impulse response is just
the sum
b =hy +h? ™

of the two directional channel impulse responses. At a position
not too far away from the reference point, i.e., at a position
where the wavefronts are still the same as at the reference
point, the channel impulse response is a superposition

b () = b exp (jo (1) + b exp (0 () ®
of the two directional channel impulse responses. The factors
exp (jo'? (i)), d = 1,2, correspond to the steering factors
well known from the theory of array antennas. For the more

general case of D directions of arrival the superposition of (8)
can be equivalently written as

exp (i) (1))
h() = (h{...b{")- : )
—a \exp (e )

d ~ S

a()
It is important to notice that the matrix H; made up of the
directional channel impulse responses héd), d=1...D, and
representing the subspace does not change if the mobile station
only moves in a small area where the wavefronts do not
change, whereas the channel impulse response h (i) and the
steering vector a (i) change quickly due to fast fading.

3) Generalized mathematical model: The previous exam-
ples show that the channel vector h (i) typically lies in a
rather low dimensional subspace. In general, using the tall
L x D matrix Hq (7) spanning the subspace, one can write
the channel vector h (i) of dimension L as a function of
the subspace based channel vector hg (i) of dimension D as
follows:

h (1) = Hg (i) - hg (4) - (10)

This general model includes the two previous examples as spe-
cial cases. Substituting (10) into (1) one obtains the subspace
based linear system model

e(i) =G Hg (i) hs (i) +n (i) . (11)

It is important to notice that typically the matrix Hg (4)
changes only slowly over the time. Typically, L is much larger
than D.

B. Concept of subspace based channel estimation

The basic idea of subspace based channel estimation is
that in a certain snapshot ¢ only the subspace based channel
vector hq (i) needs to be estimated, which typically results
in a significant reduction of the number of unknowns to be
estimated as compared to the conventional snapshot based
channel estimator which directly estimates the channel vector
h (2).

Fig. 2 shows the resulting block diagram of a subspace
based channel estimator. In a first step a low quality initial
snapshot based channel estimate

h()=(G"R;'G) G'R;'e()  (12)
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Fig. 2. Block diagram of subspace based channel estimator

is obtained from the received signal e (i) at time instant §
by conventional maximum likelihood channel estimation. By

observing these initial channel estimates h (i) over a longer
time one can estimate the subspace represented by the matrix
H (i), more precisely the subspace estimate Hy (i) is updated
at each time instant ¢ using the past [ initial channel estimates

ﬁ(j), j=1i—1I+1...i In the following I is also called the
observation duration. This allows a tracking of slowly time
variant subspaces. Due to the possibility to observe the channel
for a longer time for subspace estimation the quality of the

initial channel estimates ﬁ(z) is not that critical. Using the
subspace estimate HS (i) one can estimate the subspace based
channel vector hg (¢) at each time instant i. Following the
maximum likelihood rationale [8],

~ N —1
b() = (Hs ()G"R,'GH; ()
L (i) G"R e (i) (13)
holds. Finally, the estimate
h (i) = Hg (i) - hg () (14)

of the channel vector h (i) at time instant ¢ is obtained.

C. Subspace estimation

For the covariance matrix of the channel vector h (%)
E{h() h)"}
H; () E{hs () bs ()" }Hs ()" (15)

Ry, ()

holds, i.e., the subspace spanned by the columns of the matrix
Hg (i) is equal to the subspace spanned by the covariance

matrix Ry, (). As we are only interested in any set of basis
vectors of the subspace it is sufficient to find one orthonormal
basis of the subspace spanned by the covariance matrix Ry, (4).
In practical applications the covariance matrix R, (i) is not
known but has to be estimated based on the initial channel

estimates h (i) as follows:

R, (1) =~
-1

E{h()h() }+(QHE;1Q)
z ﬁ ) b))
—I+

One can clearly see that the noise n (7) is not really disturbing
the subspace estimation as its influence can be eliminated,
provided that its covariance matrix R, is known and that
one can average over a sufficiently large number I of initial

(16)

s

R

channel estimates h (7).

II1. MINIMUM MEAN SQUARE ERROR CHANNEL
ESTIMATION

Subspace based channel estimation basically exploits the
knowledge of the covariance matrix Ry, (i) of (15) to first
estimate the subspace and then estimate the channel vector
h (7). Alternatively the knowledge of the covariance matrix
R, (7) of the channel vector could be exploited by minimum
mean square error channel estimation. Using the covariance
matrix Ry (i) of the channel coefficients one obtains the
minimum mean square error channel estimate as [8]

1

h(i) = (GR GH+R) ei).

IV. PERFORMANCE INVESTIGATIONS

R,G (17)

A. Performance of conventional channel estimation

Before going into the details of the performance investiga-
tion of subspace based channel estimation, one should briefly
review the performance of conventional maximum likelihood
channel estimation of (3), which constitutes the reference. For
the sake of simplicity, white Gaussian noise is assumed in the
following, i.e., the covariance matrix of (2) reads

R, =L (18)

As conventional maximum likelihood channel estimation
yields unbiased channel estimates h (7), the only disturbances
result from the Gaussian noise n (i) and are themselves
Gaussian distributed. The mean square error of the estimate
of the I-th channel coefficient ") () in the case of maximum
likelihood channel estimation reads

{20 -10 [ } =0 |(c"e) ']

The signal-to-noise-ratio (SNR) of the maximum likelihood
channel estimate of the {-th channel coefficient A" (i) reads

(19)

1l

2
0 5% 0)
M, (8) = 17 (20)
o? [(QHQ) }

1l

which is smaller by the SNR-degradation [6]

1) _ [H Ha) t
s-lorl [@e) ], e



than the optimum SNR
‘2

::‘ha)(i) [(;H(;]l , 22)

Yite (1) — |GG

a

)

which could be obtained by biased matched filter channel
estimation. By proper training signal design the performance
losses 51(\51)14’ |l = 1...L, due to the need to eliminate biases
can be avoided [6]. For optimized training signals

s =1,1=1...L (23)

holds, i.e., GHG is a diagonal matrix. For reasons of fairness
we will furthermore require that the same transmitted energy,
i.e., energy one, is available for the estimation of each channel
coefficient b¥) (i),1 = 1... L. In the following we will use the
term optimum training signals for training signals satisfying

GG =1 24)

B. Performance of subspace based channel estimation

Here again white Gaussian noise is assumed, see (18). In the
case of perfectly known subspace the channel estimates h (1)
obtained by subspace based channel estimation are unbiased.
The mean square error of the estimate of the [-th channel
coefficient h(" (7) in the case of subspace based channel

estimation reads
U ON7 ? 2
E @ (i)~ h m‘ =0

i {ﬂs (i) (ﬂs ()" G"G Hg (2)) B Hs (Z)H} 1l

(25)
The SNR can be easily calculated as
2
10 (3)
8 () =
S 0_2
1
. “H ~H A\ L \H
H, (i) (Hs ()" G"GH; (1)) Hy (3)
1l
(26)

As can be easily verified this SNR is invariant to the choice
of the basis vectors of the subspace included in the matrix
Hg (7). The resulting SNR-degradation reads

o) (i) = [QHQ]M

oo (0 etem o) B0
oen

which now can alsq be smaller than one, i.e., the SNR of the
channel estimates h (i) obtained by subspace based channel
estimation can be higher than the SNR of the channel estimates

h (i) obtained by matched filter estimation. In the special case

conventional
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Fig. 3. Performance with perfectly known subspace

of optimum training signals (24), the SNR-degradation of (27)
reads

B ) (B )" B ) B )] L e

]
i.e., it is a function of the matrix Hg (¢) describing the
subspace alone.

C. Performance of minimum mean square error channel esti-
mation

Minimum mean square error channel estimation yields
biased channel estimates even in case of perfect knowledge
of the covariance matrix Ry, (i) of the channel vector. Thus
its performance can only be characterized by the mean square

. 2
error E{‘h(l) (i) — b (z)‘ } of the estimate of the I-th

channel coefficient A" (i) and a performance measure like
the SNR-degradation which is independent of the actual noise
variance and SNR does not exist.

D. Numerical results

The SNR-degradation of (27) can be numerically evaluated
for given scenarios. In the following a UMTS like scenario
characterized by

e K = 8 transmitters and one receiver, i.e., a MISO
subchannel of the MIMO channel,

e chip duration 244ns,

o channel impulse response length L = 57,

o D directions of arrival per transmitter,

« constant envelope low SNR-degradation training signals
derived from the basic midamble code of hexadecimal
representation
C482462CAT7846266060D21688BA00OB72E1EC84
A3D5B7194C8DA39E21A3CEL2BF512C8AARGATO
79F73COD3E4F40AC555A4BCCA53F1DFE3F6C82
by the method described in [6], and

o random directional channel impulse responses hfld), d=

1...D, with power delay spectrum according to the
COST 207 typical urban model [9]
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Fig. 4. Performance comparison of subspace based channel estimation and
minimum mean square error channel estimation, E {||h (4) [|2} =102=1

is investigated. The constant envelope training signals are
optimized in such a way that the SNR-degradations 51(\?L,
I=1...L,of (21) of maximum likelihood channel estimation
are all equal and take a small value of dy;, = 1.1613. The
directional channel impulse responses hfld), d=1...D, span
the subspace. The dimension of the subspace will be smaller
than D if the directional channel impulse responses hgd),
d = 1...D, are linearly dependent. Fig. 3 shows the SNR-
degradation

5s=FE {5@” (i)} 29)
averaged over the channel coefficients [ = 1...L and the
random channel as a function of the number D of directions of
arrival. The smaller the number D of directions of arrival, the
smaller the SNR-degradation dg will be due to the fact that the
dimension of the subspace is at most D. As D goes to infinity
the SNR-degradation dg converges to the SNR-degradation of
maximum likelihood channel estimation. Interestingly, with
the number L of the channel coefficients h(") (4)

(30)

holds in good approximation for the average SNR-degradation
of subspace based channel estimation, i.e., the improvement
as compared to conventional maximum likelihood channel
estimation is roughly %. This is just approximately the factor
by which the dimension D of the subspace is smaller than the
dimension L of the full space.

The performances of subspace based channel estimation and
minimum mean square error channel estimation are compared
using the same UMTS like scenario as described above.
Additionally the random channel impulse responses h (i) are
normalized in such a way that their average energy is one. Fig.

. 2
4 depicts the average mean square error E { Hh (1) —h(7) H

of the estimated channel impulse responses as a function of
the number D of directions of arrival for a noise variance

3D

o? =1.

The price to be paid for the unbiasedness of the subspace
based estimates is an increase of the mean square error

R 2
E{Hh(i) ~ 1)
square error estimate. Especially in the typical case of small

numbers D of directions of arrival this price to be paid for
the unbiasedness is rather small.

as compared to the minimum mean

V. CONCLUSION

The paper presents the basic principles of a novel subspace
based channel estimation technique which can improve the
performance of channel estimation significantly as compared
to conventional maximum likelihood channel estimation. The
performance gains stem from the exploitation of long term
channel properties in form of the subspace in which the
channel vector lies. In contrast to minimum mean square
error estimation the novel subspace based channel estimation
technique delivers unbiased estimates. Future work may focus
on subspace estimation and the influence of improved channel
estimation techniques on the system performance.
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