

Abstract— The mobile communication market is confronted

with an increasing number of communication standards and a
corresponding complexity for the mobile terminal applications.
To cope with this complexity, the Software Defined Radio
approach gains more and more attractiveness. The upcoming
hardware platforms supporting a manifold of communication
standards all have to compromise between the degree of flexibility
and the maximal power consumption. One important architecture
feature for these platforms is the parallelization of processing
power in different kinds. But this also leads to additional
programming restrictions, which requires even more development
efforts and specific knowledge about the hardware architecture.
To reduce these complexities and to speed up the development
process, we suggest to separate the software development into at
least two different steps, such that developers only need
experience in either the hardware or the software area. In one
development step, the application is specified in a hardware-
independent way, and in a separate step, the hardware specific
implementation can be done without knowledge about the
application. To allow an automatism and an optimization in the
implementation step, the application has to be specified in a way
that the required processing is described in detail, but which still
keeps the potential for hardware-specific optimization steps.
Within the SDR project at Siemens Communication, we
developed a new programming concept called Virtual Radio
Engine (VRE) that supports this concept by defining a language
and providing compilation techniques.

Index Terms— Code generation, modeling language, system
level abstraction, software defined radio.

I. INTRODUCTION

Software Defined Radio (SDR) is a recent approach for
building wireless devices, which is characterized by the use of
software modules to control radio functionalities such as
modulation/demodulation, signal generation, coding, link layer
generation etc. These software modules run on a generic
hardware, i.e., SDR builds on the fact that the underlying
hardware modules for digital radio systems are considered as
programmable [13]. As compared to the traditional way of

building wireless devices, which has been to completely
implement radio functionalities in hardware, SDR has the
advantage of improved re-configurability, i.e., devices can be
easily adapted to new communication protocols by just
replacing the software. Some of the key requirements for a
SDR hardware platform are high processing speed, high speed
internal data flow channels, and inter- as well as intra-
processor communication paths with the flexibility to permit
different data flow topologies. The required processing power
can not be obtained through increasing the internal clock
frequency due to the low power consumption budget. Instead,
it requires multiprocessor architectures, which increase the
complexities, as compared to traditional analog and fixed
function digital radio platforms, not only on the hardware side,
but also in the application development procedure. Several
hardware-specific requirements such as mapping and
scheduling have to be considered. The complexity can be
reduced substantially if the application is described
independent from the hardware specifics, and the
implementation is done separately. For that, both the hardware
and the application need to be described at an abstract level,
independent from each other.�
�
Normally, in operating systems, hardware is abstracted through
application programming interfaces (APIs). A good API
makes it easier to develop programs, as it provides the
building blocks from which a program can be composed.
Consequently, the API can be thought of as a hardware
abstraction layer that hides hardware specifics, and, thus,
provides a consistent platform to develop and run applications
on. This concept is relatively easy to implement in a PC
environment, as the hardware components are well-defined,
and, thus, the hardware abstraction layer can be easily
described. SDR, in contrast, requires parallel hardware
architectures of very different kinds to achieve the required
high performance within the low power consumption budget.
For example, new architectures like Infineon’s “Programmable
Baseband Platform for SDR” [14] or Phillips EVP [4], which
claim to support SDR, require parallel implementation of
arithmetic and signal processing units to achieve their high
performance. This hardware can not be described with the von

Virtual Radio Engine: A Programming Concept
for Separation of Application Specifications and

Hardware Architectures

Riyadh Hossain1, Matthias Wesseling1, Claudia Leopold2

1Siemens AG, Com MP CTO TI2, Frankenstrasse 2, 46393 Bocholt, Germany
2Faculty of Electrical Engineering and Computer Science,

2Wilhelmshöher Allee 73, 34121 Kassel, Germany
riyadh.hossain@bch.siemens.de, matthias.wesseling@siemens.com, leopold@uni-kassel.de

Neuman model, and it is almost impossible to find a single
model that describes the variety of parallel hardware
platforms. Fortunately, an abstraction can be made in terms of
primitives, which are software modules for which the hardware
designers provide system-specific implementations. The
primitives can be made available to the application developers
as a library; however, the implementation is not straight
forward like APIs. Implementation of primitives in a specific
hardware platform requires one additional step, where
hardware specific information (e.g., execution time) of the
corresponding primitive is incorporated within the description
as well as verified, and thus, the implementation specific
optimization can be done depending on the real time
requirements.

Fig. 1. Application development approach with VRE. Here, the application
specification is developed independent from the hardware platform, and the
implementation is done separately.

The concept that we suggest in this paper is to separate the
description or program of an application from the
implementation on a specific hardware. We realize the concept
by a tool chain that we call Virtual Radio Engine (VRE). The
tool chain is depicted in figure 1. VRE splits the overall design
process into two different steps. First, the application is
described independent from the hardware details, and then, the
implementation is done separately. The platform-independent
description of the application (which is typically a
communication protocol) is essential for a successful and
quick design process [13]. In the VRE tool chain, the
hardware-specific information is only needed during the
implementation phase. From the application description and
hardware-specific information, the VRE compiler generates an
executable program for different SDR hardware platforms.
Thus, the application is not described in an implementation-
specific way; rather it only describes implementation
restrictions (in particular restrictions of the block execution
order). The compiler is responsible for mapping sub-
computations of the application to hardware modules, and it
chooses the schedule, i.e. determines the order in which the
sub-components are run, including the decision whether they
run sequentially or in parallel. As the compiler only has to
respect restrictions, but is not bound to a fixed schedule, it has
potential for optimizations.

This paper is organized as follows. In section II, we discuss
several development environments for signal processing
applications and what is still missing there. Then, in section
III, we describe why parallelism has to be considered during
application development and how this increases the
complexity. The concept of the VRE tool chain is presented in
section IV, and the VRE language is introduced in Section V.
A WLAN experiment using the VRE tool chain is discussed in
section VI. Finally, conclusions are drawn in section VII.

II. ENVIRONMENTS FOR THE DEVELOPMENT OF SIGNAL

PROCESSING APPLICATIONS

There are already some products available that generate
platform-dependent implementations starting from a higher
level description and claim to provide an efficient environment
for SDR application development. Some of these tools provide
code generation and compilation techniques for a successful
and quick development process. The question is, why we need
a new approach like VRE, even though there are already tools
available for SDR application development. Briefly stated, the
reason is that most of the tool chains available in the market do
not provide an application description concept that allows an
individual description to be realized on different hardware
platforms. Moreover, many automatic implementation
techniques for parallel hardware platforms are still in their
infancy [1]. One example is the tool chain of MathWorks with
Simulink/Real Time Workshop/target language compiler.
Here, the application is graphically described in Simulink, and
then the Real Time Workshop together with the target
language compiler generates C code. The generation process is
controlled by platform-specific description files [11]. The tool
chain works fine as long as there is a simple DSP-like
structure, but application development for parallel hardware
platforms is not possible. Furthermore, Simulink requires the
schedule to be fixed, which restricts portability.

Pieter van der Wolf et al. [8] describe an interface-centric
technique for multiprocessor-based embedded software
development and implementation. Their goal is to automate
the rewriting of source code according to guidelines provided
by the user, but they gave less consideration to algorithmic
transformations and the efficiency of the source code.
Examples of other development environments that are already
available and support both SDR and multi-processing include
Gedae [10], Ptolemy [9], Waveform Description Language
(WDL) [3], and MLDesigner [12]. Gedae uses its Primitive
and Graph languages to describe an application, and then
transforms the description into an efficient implementation on
a virtual machine [7]. Their concept of virtual machine does
not support the high throughput and good latency that are
required for high-performance SDR. Ptolemy is an
environment for simulation and prototyping of heterogeneous
systems [2, 6]. It includes a preliminary code generation
framework for heterogeneous multiprocessor platforms. The
industrial successor of Ptolemy is MLDesigner, an integrated
platform for modelling and analyzing architecture, function
and performance of high level system designs. The problem
with MLDesigner is that the scheduling of the application

program is part of the description. As the scheduling is
hardware-specific, the description can only be realized on one
particular hardware platform.

III. APPLICATION DEVELOPMENT FOR PARALLEL PLATFORM

ARCHITECTURES

Parallel platforms pose additional requirements to the
implementation of applications. In particular, sub-
computations (tasks) must be mapped to parallel units, tasks
must be scheduled, and communication and synchronization
have to be organized as well. In the implementation, real time
constraints, run time information and other parameters need to
be taken into account. Some types of parallelisation do need to
be considered by the programmer, because they are already
handled by low-level tools such as super-scalar devices or,
partly, vector units. These types of parallelisation are ‘local’
and do not influence the overall program structure.

To be able to generate an efficient mapping, we not only need
to know which tasks can be run on which parallel units, but
moreover the algorithms have to be described in a way that
supports parallelisation. A usual C program can not, in
general, be separated into independent parts, if this separation
is not already considered within the program. On the other
hand, the parallelisation should not be described in detail,
because an efficient parallelisation depends on the hardware
platform, which we want to exclude from the application
program. In the VRE language, data dependencies are
described, but the scheduling itself is left open, as will be
explained in section V.

IV. DEVELOPMENT FLOW OF VRE

VRE’s goal is to provide a quick and complete development
environment for signal processing applications, especially for
SDR, which separates the application description from the
hardware-specific implementation details. The VRE approach
is divided into two main parts: the VRE programming
language and the VRE code generation system. The VRE
programming language enables developers to describe the
applications in a platform-independent way. The VRE code
generator system reads the VRE program and hardware
description, and then performs the platform-specific
implementation. The responsibilities of the code generator
include the efficient mapping of the application algorithms,
scheduling, and the insertion of synchronizations.

The development process of VRE is outlined in figure 2. The
VRE program only describes the structure of the application
and the dependencies that are constraints for the scheduling
algorithm. The signal processing algorithms themselves (like
FFT, FIR, Viterbi) are neither a part of the VRE program nor
of an automatically generated C code of the VRE compiling
process. The efficient implementation of the signal processing
algorithms can only be obtained with the prior knowledge of
the target platform. This means that the signal processing
algorithms have to be supplied by hardware-specific libraries,
which are developed by the hardware providers who have a
better understanding of the hardware architecture. Ideally, each

library function should exist in different versions to support
different mapping decisions as well as different requirements
like throughput, latency etc. This gives a broad range of
flexibility to the VRE compiler to devise an efficient
hardware-specific implementation.

Fig. 2. Development flow of VRE. The applications are described in the VRE
programming language without any hardware dependencies. A code generator
takes this description as well as a separate description of the hardware as
input.

V. THE VRE LANGUAGE

VRE has been designed with the goal in mind that an efficient
mapping to a broad range of parallel hardware platforms
should be possible. As said before, basic functionalities such
as FFT are provided as libraries, which form the building
blocks from which VRE programs are composed. We call
these building blocks primitives; they are considered as black
boxes by the VRE compiler. Only the interfaces, i.e.,
parameters, ports, and memory accesses, are part of the
description. The parameters customize the block
functionalities, i.e., they modify the function executed. The
ports are interfaces for the input/output data as well as control
flow. Each port has a unique name with respect to a primitive
block, with properties like data type and size being part of the
corresponding port definition. Memory locations in VRE are
described by name, data type and size. These names are unique
in the sense that the same name denotes the same memory
location, throughout the program.

The description of the overall system is hierarchically
composed of modules that contain primitives and other
modules, and describe a part of the signal processing
algorithm. In other words, one can consider the overall system
as a tree, with primitives in the leaves, and modules in the
interior nodes. At any one level of this hierarchy, lower-level
modules are considered as black boxes, and the VRE program
for this level describes different kinds of dependencies
between the modules. VRE supports three types of

dependencies to describe the application program: message-
coupled dependencies, memory-coupled dependencies, and
control dependencies.

Fig. 3. Example of a data flow description. The arrows show the direction of
data flows.

Both message-coupled dependencies and memory-coupled
dependencies are described by signals, which only tell how the
blocks are connected, i.e., they indicate that the modules
exchange information. Type, size and other properties of the
information exchanged can be recognized from the
corresponding port’s properties, which are given in text form.
A signal may represent either a data flow or a trigger.
Message-coupled dependencies refer to direct data flow
between modules. The dependencies are directed, i.e., if an
output port of block B is connected to an input port of block
A, then the execution of block A is dependent on the execution
of block B. An example is given in figure 3.

Fig. 4. Comparison of the overall execution times of the module described in
figure 3 for two possible (a sequential and a parallel) implementations. In the
first case, the block size of data is considered as a vector of 64 values, and in
the second case, it is considered as a vector of 16 values.

Data flows impose restrictions on the execution order of the
modules, since an operation that produces a data item has to
occur before a second operation that consumes it. A different
sequence might change the overall result. Even if two blocks
are data-dependent, they may be run in parallel as long as the
data flow restriction is respected during the implementation.
Consider the example depicted in figure 3. There are two
modules, “Multiplier” and “Adder”, which are connected
through data flow signals. Let the inputs and outputs of the
modules each be a data vector of 64 values, so that the total
number of operation is 128 (64 operations of the “Multiplier”
+ 64 operations of the “Adder”). Here, a straightforward
sequential implementation respects data dependencies if it
executes the “Adder” after the 64 operations (b[k]=a[k]*a[k]
for k=0..63) of the “Multiplier”. Alternatively, the VRE

compiler can modify the block size during the implementation,
i.e., split both the “Adder” and the “Multiplier” into sub-
blocks. Then, the “Adder” can be executed in parallel with the
“Multiplier” as soon as the multiplier is finished with its first
block operation, which reduces the overall execution time.
Such a scenario is depicted in figure 4. Here, a change in the
block size of data from a vector of 64 values to a vector of 16
values reduces the overall execution time from 128µs to 80µs.

Fig. 5. Example of a data flow description. The arrows show the direction of
data flows.

Memory-coupled dependencies occur when two modules
access the same memory location. Memory is used to import
and export data independent from data flow. In this case, it has
to be considered what the read/write constellation is, and the
corresponding order of memory accesses has to be specified.
The VRE language does not allow memory-coupled
dependencies between two modules if there is already a
message-coupled dependency. Memory-coupled dependencies
described different scheduling information than that of
message-coupled, as VRE does not support parallel execution
of blocks (like figure 4 describes a possibility of parallel
implementation of the algorithm chain described in figure 3) if
they are accessing the same memory content. Two blocks
accessing the same memory are described sequentially. VRE
uses trigger flows between the modules to indicate the order of
memory accesses. Trigger flows may connect the modules
directly, or go through other modules in-between. An example
is depicted in figure 5. Here, both “Mod1” and “Mod2”
access memory location “m1”, where the access in “Mod1” is
a write and the access in “Mod2” is a read. As the write must
be performed before the read, the trigger is directed from
“Mod1” to “Mod2”.

Fig. 6. Example of a control dependency. The signals are just triggers that
describe the sequence of operations, in this case the sequence is: 1 X Init, 16
X SearchSnyc, 1 X SearchHeader respectively.

In addition to data dependencies, which we have distinguished
into message-coupled dependencies and memory-coupled
dependencies, there are control dependencies, which occur in
loops and branches. An example is depicted in figure 6, which
is about searching a synchronization signal. Here, the internal
contents of the SearchSync composed module are executing
repeatedly to search different parts of the synchronization
preamble. After the last iteration, the SearchHeader algorithm
is called. This sequence is important, because we need the
result of the SearchSync routine as an input for the
SearchHeader routine. But this can not be described by
message-coupled or memory-coupled dependencies only.

Here, we use a special block parameter (“LoopParam”) to
describe the internal scheduling behavior of the composed
module, i.e., repeatedly execute the contents of the
corresponding loop module as long as the current iteration
count does not exit the iteration limit.

At present, the VRE language separates message-coupled and
memory-coupled dependencies into two different domains:
message-flow domain and trigger-flow domain. In message-
flow domain, the connections between the modules are data
type signals, and the algorithms are described in terms of
message-coupled dependencies. Signals in trigger-flow
domain, in contrast, refer to trigger flows and describe
memory-coupled dependencies or control dependencies. In
general, we describe higher-level algorithms in the trigger-flow
domain with different hierarchically composed modules, where
the inner construct of each of these modules can be described
in either message-flow or trigger-flow domain. Trigger-flow
domain is also used for loops, which are described by
composed modules. The description of any one module is
either in the message-flow domain, or in the trigger-flow
domain.

VI. VRE WLAN 802.11 EXAMPLE

To verify the concept of VRE we designed a VRE program for
the WLAN 802.11 signal processing, which can be used as a
source text to generate (manually or automatically) an
implementation for different hardware architecture platforms.

The 802.11 VRE program can be roughly separated into three
different areas. The first is the signal processing, where all the
data stream operations and the dependencies between these
operations are described. The second area is the application
control, where the main control for the intra-frame processing
structure, like initial chip and symbol synchronization, channel
estimation, header detection and data processing is described.
The third area covers the MAC layer protocol including the
interface to the signal processing, which describes the inter-
frame behaviour. The structure of the protocol again is quite
different to the signal processing, because it is mainly based on
independent processes communicating via messages.

Describing all these areas allows a detailed evaluation of the
overall parallelisation restrictions of the application, which can
not be seen from the signal processing description only. It is
for example important to describe in any way, that the initial
frame synchronization processing is never required in parallel
to the frame user data demodulation. All three areas required
different description structures to allow an efficient
implementation. Real time requirements are part of the
description and can be part of any of these three areas. From
this description we can generate a multithreaded program
code, considering as much parallelism as possible, which runs
on a Sandblaster SB3000 [5] hardware platform.

VII. CONCLUSIONS

There is already a preliminary version of the VRE tool chain
available that partly consists of commercial tools (like

MLDesigner for graphically describing the VRE program) and
own developments. This version was used for the experiment
described in section VI. The experiment shows the potential of
the VRE tool chain in SDR application development. The next
major step will be the incorporation of Mathwork’s Simulink
tool into the VRE tool chain, such that we can use both
Simulink and MLDesigner to describe the applications
graphically. Since both tools are standard industrial
development environments, it will increase the intuitive
understanding of applications and simplify familiarisation for
new programmers. Furthermore, the functionality of the code
generator has to be extended such that it supports efficient
implementations for different parallel hardware platforms. We
will focus on high level mapping and generation of C code
tailored to a platform, but continue leaving all hardware-
specific register and other low-level optimizations to hardware
manufacturers.

REFERENCES

[1] C. Grassmann, M. Sauermann, H.-M. Bluethgen, and U. Ramacher,
“System level hardware abstraction for Software Defined Radios, ” in
Proc. 2004 Software Defined Radio Technical Conferemce,Arizone,
Nov, 2004, Paper 1.2-3, pp A113.

[2] J. T. Buck, S. Ha, E. A. Lee, and D.G. Messerschmitt, “Ptolemy: A
framework for simulation and prototyping heterogeneous system,” Intl.
Journal of Computer Simulation, vol. 4, April 1994, pp. 155-162.

[3] E. D. Willink, “The waveform description language: moving from
implementation to specification,” in Proc. Military Communication
Conference 2001, Communication for Network-Centric Operation:
Creating theIinformation Force.IEEE ,Oct. 2001, vol. 1, pp 208-212.

[4] C. H. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman, and M.
Weiss, “Vector processing as an enabler for software-defined radio
handsets from 3G+ WLAN onwards, ” in Proc. 2004 Software Defined
Radio Technical Conferemce,Arizone, Nov, 2004, Paper 2.4-1, pp
B125.

[5] D. Iancu, J. Glossner, H. Ye, M. Moudgill, and V. Kotlyar, “Software
rake receiver enhanced GPS system,” in Proc. 2004 Software Defined
Radio Technical Conferemce,Arizone, Nov, 2004, Paper 1.2-1, pp A97.

[6] Ptolemy 0.7 User Manual, vol. 1, 1997, chap. 4.1. Available:
http://ptolemy.eecs.berkeley.edu/ptolemyclassic/almagest/docs/user/htm
l/domains.doc.html

[7] J. Steed, K. Barnes, and W. Lungdren, “Gedae: A tool for implementing
software radio on heterogeneous system, ” in Proc. 2004 Software
Defined Radio Technical Conferemce,Arizone, Nov, 2004, Paper 1.2-5,
pp A127.

[8] P. v. der Wolf, E. de Kock, T. Henriksson, Wido Kruijtzer, “Design and
programming of embedded multiprocessors: an interface centric
approach,” in Proc. of the 2nd IEEE/ACM/IFIP international conference
on Hardware/Software codesign and system synthesis, 2004, pp 206-
217.

[9] X. Liu, J. Liu, J. Eker, and E. A. Lee, “Heterogeneous Modeling and
Design of Control Systems”, Chapter in “Softwate-Embedded Control:
Information Technology for Dynamic Systems,” T. Samal and G. Balas
(eds.), New York City: IEEE press, 2002. Available:
http://www.control.lth.se/~johane/publications/csm_ptolemy.pdf

[10] W. Lundgren, K. Barnes, and J. Steed, “Gedae: Autocoding to a virtual
machine,” Available:
http://www.gedae.com/documentation/articles.html

[11] Simulink documentation. Available: http://www.mathworks.com
[12] MLDesigner documentation. Available: http://www.mldesigner.com
[13] Hardware abstraction layer working group report on result of request for

information SDRF-04-A-0009-V0.00, version 0.004, Oct 2004.
Available: http://www.sdrforum.org

[14] H.-M. Bluethgen , C. Grassmann, W. Raab, U. Ramacher, and J.
Hausner “A programmable baseband platform for Software Defined
Radios, ” in Proc. 2004 Software Defined Radio Technical
Conferemce,Arizone, Nov, 2004, Paper 3.4-2, pp B155.

