
 
Abstract— The mobile communication market is confronted 

with an increasing number of communication standards and a 
corresponding complexity for the mobile terminal applications. 
To cope with this complexity, the Software Defined Radio 
approach gains more and more attractiveness. The upcoming 
hardware platforms supporting a manifold of communication 
standards all have to compromise between the degree of flexibility 
and the maximal power consumption. One important architecture 
feature for these platforms is the parallelization of processing 
power in different kinds. But this also leads to additional 
programming restrictions, which requires even more development 
efforts and specific knowledge about the hardware architecture. 
To reduce these complexities and to speed up the development 
process, we suggest to separate the software development into at 
least two different steps, such that developers only need 
experience in either the hardware or the software area. In one 
development step, the application is specified in a hardware-
independent way, and in a separate step, the hardware specific 
implementation can be done without knowledge about the 
application. To allow an automatism and an optimization in the 
implementation step, the application has to be specified in a way 
that the required processing is described in detail, but which still 
keeps the potential for hardware-specific optimization steps. 
Within the SDR project at Siemens Communication, we 
developed a new programming concept called Virtual Radio 
Engine (VRE) that supports this concept by defining a language 
and providing compilation techniques.       

Index Terms— Code generation, modeling language, system 
level abstraction, software defined radio.  

I. INTRODUCTION 

Software Defined Radio (SDR) is a recent approach for 
building wireless devices, which is characterized by the use of 
software modules to control radio functionalities such as 
modulation/demodulation, signal generation, coding, link layer 
generation etc. These software modules run on a generic 
hardware, i.e., SDR builds on the fact that the underlying 
hardware modules for digital radio systems are considered as 
programmable [13]. As compared to the traditional way of 

building wireless devices, which has been to completely 
implement radio functionalities in hardware, SDR has the 
advantage of improved re-configurability, i.e., devices can be 
easily adapted to new communication protocols by just 
replacing the software. Some of the key requirements for a 
SDR hardware platform are high processing speed, high speed 
internal data flow channels, and inter- as well as intra-
processor communication paths with the flexibility to permit 
different data flow topologies. The required processing power 
can not be obtained through increasing the internal clock 
frequency due to the low power consumption budget. Instead, 
it requires multiprocessor architectures, which increase the 
complexities, as compared to traditional analog and fixed 
function digital radio platforms, not only on the hardware side, 
but also in the application development procedure. Several 
hardware-specific requirements such as mapping and 
scheduling have to be considered. The complexity can be 
reduced substantially if the application is described 
independent from the hardware specifics, and the 
implementation is done separately. For that, both the hardware 
and the application need to be described at an abstract level, 
independent from each other.�
�
Normally, in operating systems, hardware is abstracted through 
application programming interfaces (APIs). A good API 
makes it easier to develop programs, as it provides the 
building blocks from which a program can be composed. 
Consequently, the API can be thought of as a hardware 
abstraction layer that hides hardware specifics, and, thus, 
provides a consistent platform to develop and run applications 
on. This concept is relatively easy to implement in a PC 
environment, as the hardware components are well-defined, 
and, thus, the hardware abstraction layer can be easily 
described. SDR, in contrast, requires parallel hardware 
architectures of very different kinds to achieve the required 
high performance within the low power consumption budget. 
For example, new architectures like Infineon’s “Programmable 
Baseband Platform for SDR” [14] or Phillips EVP [4], which 
claim to support SDR, require parallel implementation of 
arithmetic and signal processing units to achieve their high 
performance. This hardware can not be described with the von 
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Neuman model, and it is almost impossible to find a single 
model that describes the variety of parallel hardware 
platforms. Fortunately, an abstraction can be made in terms of 
primitives, which are software modules for which the hardware 
designers provide system-specific implementations. The 
primitives can be made available to the application developers 
as a library; however, the implementation is not straight 
forward like APIs. Implementation of primitives in a specific 
hardware platform requires one additional step, where 
hardware specific information (e.g., execution time) of the 
corresponding primitive is incorporated within the description 
as well as verified, and thus, the implementation specific 
optimization can be done depending on the real time 
requirements.  

Fig. 1.  Application development approach with VRE. Here, the application 
specification is developed independent from the hardware platform, and the 
implementation is done separately. 

The concept that we suggest in this paper is to separate the 
description or program of an application from the 
implementation on a specific hardware. We realize the concept 
by a tool chain that we call Virtual Radio Engine (VRE). The 
tool chain is depicted in figure 1. VRE splits the overall design 
process into two different steps. First, the application is 
described independent from the hardware details, and then, the 
implementation is done separately. The platform-independent 
description of the application (which is typically a 
communication protocol) is essential for a successful and 
quick design process [13].  In the VRE tool chain, the 
hardware-specific information is only needed during the 
implementation phase. From the application description and 
hardware-specific information, the VRE compiler generates an 
executable program for different SDR hardware platforms. 
Thus, the application is not described in an implementation-
specific way; rather it only describes implementation 
restrictions (in particular restrictions of the block execution 
order). The compiler is responsible for mapping sub-
computations of the application to hardware modules, and it 
chooses the schedule, i.e. determines the order in which the 
sub-components are run, including the decision whether they 
run sequentially or in parallel. As the compiler only has to 
respect restrictions, but is not bound to a fixed schedule, it has 
potential for optimizations.  

This paper is organized as follows. In section II, we discuss 
several development environments for signal processing 
applications and what is still missing there. Then, in section 
III, we describe why parallelism has to be considered during 
application development and how this increases the 
complexity. The concept of the VRE tool chain is presented in 
section IV, and the VRE language is introduced in Section V. 
A WLAN experiment using the VRE tool chain is discussed in 
section VI. Finally, conclusions are drawn in section VII.     

II. ENVIRONMENTS FOR THE DEVELOPMENT OF SIGNAL 

PROCESSING APPLICATIONS

There are already some products available that generate 
platform-dependent implementations starting from a higher 
level description and claim to provide an efficient environment 
for SDR application development. Some of these tools provide 
code generation and compilation techniques for a successful 
and quick development process. The question is, why we need 
a new approach like VRE, even though there are already tools 
available for SDR application development. Briefly stated, the 
reason is that most of the tool chains available in the market do 
not provide an application description concept that allows an 
individual description to be realized on different hardware 
platforms. Moreover, many automatic implementation 
techniques for parallel hardware platforms are still in their 
infancy [1]. One example is the tool chain of MathWorks with 
Simulink/Real Time Workshop/target language compiler. 
Here, the application is graphically described in Simulink, and 
then the Real Time Workshop together with the target 
language compiler generates C code. The generation process is 
controlled by platform-specific description files [11]. The tool 
chain works fine as long as there is a simple DSP-like 
structure, but application development for parallel hardware 
platforms is not possible. Furthermore, Simulink requires the 
schedule to be fixed, which restricts portability. 

Pieter van der Wolf et al. [8] describe an interface-centric 
technique for multiprocessor-based embedded software 
development and implementation. Their goal is to automate 
the rewriting of source code according to guidelines provided 
by the user, but they gave less consideration to algorithmic 
transformations and the efficiency of the source code. 
Examples of other development environments that are already 
available and support both SDR and multi-processing include 
Gedae [10], Ptolemy [9], Waveform Description Language 
(WDL) [3], and MLDesigner [12]. Gedae uses its Primitive 
and Graph languages to describe an application, and then 
transforms the description into an efficient implementation on 
a virtual machine [7]. Their concept of virtual machine does 
not support the high throughput and good latency that are 
required for high-performance SDR. Ptolemy is an 
environment for simulation and prototyping of heterogeneous 
systems [2, 6]. It includes a preliminary code generation 
framework for heterogeneous multiprocessor platforms. The 
industrial successor of Ptolemy is MLDesigner, an integrated 
platform for modelling and analyzing architecture, function 
and performance of high level system designs. The problem 
with MLDesigner is that the scheduling of the application 



program is part of the description. As the scheduling is 
hardware-specific, the description can only be realized on one 
particular hardware platform.      

III. APPLICATION DEVELOPMENT FOR PARALLEL PLATFORM 

ARCHITECTURES  

Parallel platforms pose additional requirements to the 
implementation of applications. In particular, sub-
computations (tasks) must be mapped to parallel units, tasks 
must be scheduled, and communication and synchronization 
have to be organized as well. In the implementation, real time 
constraints, run time information and other parameters need to 
be taken into account. Some types of parallelisation do need to 
be considered by the programmer, because they are already 
handled by low-level tools such as super-scalar devices or, 
partly, vector units. These types of parallelisation are ‘local’ 
and do not influence the overall program structure.   

To be able to generate an efficient mapping, we not only need 
to know which tasks can be run on which parallel units, but 
moreover the algorithms have to be described in a way that 
supports parallelisation. A usual C program can not, in 
general, be separated into independent parts, if this separation 
is not already considered within the program. On the other 
hand, the parallelisation should not be described in detail, 
because an efficient parallelisation depends on the hardware 
platform, which we want to exclude from the application 
program. In the VRE language, data dependencies are 
described, but the scheduling itself is left open, as will be 
explained in section V.     

IV. DEVELOPMENT FLOW OF VRE 

VRE’s goal is to provide a quick and complete development 
environment for signal processing applications, especially for 
SDR, which separates the application description from the 
hardware-specific implementation details. The VRE approach 
is divided into two main parts: the VRE programming 
language and the VRE code generation system. The VRE 
programming language enables developers to describe the 
applications in a platform-independent way. The VRE code 
generator system reads the VRE program and hardware 
description, and then performs the platform-specific 
implementation. The responsibilities of the code generator 
include the efficient mapping of the application algorithms, 
scheduling, and the insertion of synchronizations.    

The development process of VRE is outlined in figure 2. The 
VRE program only describes the structure of the application 
and the dependencies that are constraints for the scheduling 
algorithm. The signal processing algorithms themselves (like 
FFT, FIR, Viterbi) are neither a part of the VRE program nor 
of an automatically generated C code of the VRE compiling 
process. The efficient implementation of the signal processing 
algorithms can only be obtained with the prior knowledge of 
the target platform. This means that the signal processing 
algorithms have to be supplied by hardware-specific libraries, 
which are developed by the hardware providers who have a 
better understanding of the hardware architecture. Ideally, each 

library function should exist in different versions to support 
different mapping decisions as well as different requirements 
like throughput, latency etc. This gives a broad range of 
flexibility to the VRE compiler to devise an efficient 
hardware-specific implementation. 

Fig. 2. Development flow of VRE. The applications are described in the VRE 
programming language without any hardware dependencies. A code generator 
takes this description as well as a separate description of the hardware as 
input.    

V. THE VRE LANGUAGE

VRE has been designed with the goal in mind that an efficient 
mapping to a broad range of parallel hardware platforms 
should be possible. As said before, basic functionalities such 
as FFT are provided as libraries, which form the building 
blocks from which VRE programs are composed. We call 
these building blocks primitives; they are considered as black 
boxes by the VRE compiler. Only the interfaces, i.e., 
parameters, ports, and memory accesses, are part of the 
description. The parameters customize the block 
functionalities, i.e., they modify the function executed. The 
ports are interfaces for the input/output data as well as control 
flow.  Each port has a unique name with respect to a primitive 
block, with properties like data type and size being part of the 
corresponding port definition. Memory locations in VRE are 
described by name, data type and size. These names are unique 
in the sense that the same name denotes the same memory 
location, throughout the program.  

The description of the overall system is hierarchically 
composed of modules that contain primitives and other 
modules, and describe a part of the signal processing 
algorithm. In other words, one can consider the overall system 
as a tree, with primitives in the leaves, and modules in the 
interior nodes. At any one level of this hierarchy, lower-level 
modules are considered as black boxes, and the VRE program 
for this level describes different kinds of dependencies 
between the modules. VRE supports three types of 



dependencies to describe the application program: message-
coupled dependencies, memory-coupled dependencies, and 
control dependencies.

Fig. 3. Example of a data flow description. The arrows show the direction of 
data flows.        

Both message-coupled dependencies and memory-coupled 
dependencies are described by signals, which only tell how the 
blocks are connected, i.e., they indicate that the modules 
exchange information. Type, size and other properties of the 
information exchanged can be recognized from the 
corresponding port’s properties, which are given in text form. 
A signal may represent either a data flow or a trigger.
Message-coupled dependencies refer to direct data flow 
between modules. The dependencies are directed, i.e., if an 
output port of block B is connected to an input port of block 
A, then the execution of block A is dependent on the execution 
of block B. An example is given in figure 3.   

Fig. 4. Comparison of the overall execution times of the module described in 
figure 3 for two possible (a sequential and a parallel) implementations. In the 
first case, the block size of data is considered  as a vector of 64 values, and in 
the second case, it is considered  as a vector of 16 values.       

Data flows impose restrictions on the execution order of the 
modules, since an operation that produces a data item has to 
occur before a second operation that consumes it. A different 
sequence might change the overall result. Even if two blocks 
are data-dependent, they may be run in parallel as long as the 
data flow restriction is respected during the implementation. 
Consider the example depicted in figure 3. There are two 
modules, “Multiplier” and “Adder”, which are connected 
through data flow signals. Let the inputs and outputs of the 
modules each be a data vector of 64 values, so that the total 
number of operation is 128 (64 operations of the “Multiplier” 
+ 64 operations of the “Adder”). Here, a straightforward 
sequential implementation respects data dependencies if it 
executes the “Adder” after the 64 operations (b[k]=a[k]*a[k] 
for k=0..63) of the “Multiplier”.  Alternatively, the VRE 

compiler can modify the block size during the implementation, 
i.e., split both the “Adder” and the “Multiplier” into sub-
blocks. Then, the “Adder” can be executed in parallel with the 
“Multiplier” as soon as the multiplier is finished with its first 
block operation, which reduces the overall execution time. 
Such a scenario is depicted in figure 4. Here, a change in the 
block size of data from a vector of 64 values to a vector of 16 
values reduces the overall execution time from 128µs to 80µs. 

Fig. 5. Example of a data flow description. The arrows show the direction of 
data flows.      

Memory-coupled dependencies occur when two modules 
access the same memory location. Memory is used to import 
and export data independent from data flow. In this case, it has 
to be considered what the read/write constellation is, and the 
corresponding order of memory accesses has to be specified. 
The VRE language does not allow memory-coupled 
dependencies between two modules if there is already a 
message-coupled dependency. Memory-coupled dependencies 
described different scheduling information than that of 
message-coupled, as VRE does not support parallel execution 
of blocks (like figure 4 describes a possibility of parallel 
implementation of the algorithm chain described in figure 3) if 
they are accessing the same memory content. Two blocks 
accessing the same memory are described sequentially. VRE 
uses trigger flows between the modules to indicate the order of 
memory accesses. Trigger flows may connect the modules 
directly, or go through other modules in-between. An example 
is depicted in figure 5.  Here, both “Mod1” and “Mod2” 
access memory location “m1”, where the access in “Mod1” is 
a write and the access in “Mod2” is a read. As the write must 
be performed before the read, the trigger is directed from 
“Mod1” to “Mod2”.

Fig. 6. Example of a control dependency. The signals are just triggers that 
describe the sequence of operations, in this case the sequence is: 1 X Init, 16 
X SearchSnyc, 1 X SearchHeader respectively. 

In addition to data dependencies, which we have distinguished 
into message-coupled dependencies and memory-coupled 
dependencies, there are control dependencies, which occur in 
loops and branches. An example is depicted in figure 6, which 
is about searching a synchronization signal. Here, the internal 
contents of the SearchSync composed module are executing 
repeatedly to search different parts of the synchronization 
preamble. After the last iteration, the SearchHeader algorithm 
is called. This sequence is important, because we need the 
result of the SearchSync routine as an input for the 
SearchHeader routine. But this can not be described by 
message-coupled or memory-coupled dependencies only. 



Here, we use a special block parameter (“LoopParam”) to 
describe the internal scheduling behavior of the composed 
module, i.e., repeatedly execute the contents of the 
corresponding loop module as long as the current iteration 
count does not exit the iteration limit.  

At present, the VRE language separates message-coupled and 
memory-coupled dependencies into two different domains: 
message-flow domain and trigger-flow domain. In message-
flow domain, the connections between the modules are data 
type signals, and the algorithms are described in terms of 
message-coupled dependencies. Signals in trigger-flow 
domain, in contrast, refer to trigger flows and describe 
memory-coupled dependencies or control dependencies. In 
general, we describe higher-level algorithms in the trigger-flow 
domain with different hierarchically composed modules, where 
the inner construct of each of these modules can be described 
in either message-flow or trigger-flow domain. Trigger-flow 
domain is also used for loops, which are described by 
composed modules. The description of any one module is 
either in the message-flow domain, or in the trigger-flow 
domain. 

VI. VRE WLAN 802.11 EXAMPLE

To verify the concept of VRE we designed a VRE program for 
the WLAN 802.11 signal processing, which can be used as a 
source text to generate (manually or automatically) an 
implementation for different hardware architecture platforms.  

The 802.11 VRE program can be roughly separated into three 
different areas. The first is the signal processing, where all the 
data stream operations and the dependencies between these 
operations are described. The second area is the application 
control, where the main control for the intra-frame processing 
structure, like initial chip and symbol synchronization, channel 
estimation, header detection and data processing is described. 
The third area covers the MAC layer protocol including the 
interface to the signal processing, which describes the inter-
frame behaviour. The structure of the protocol again is quite 
different to the signal processing, because it is mainly based on 
independent processes communicating via messages.  

Describing all these areas allows a detailed evaluation of the 
overall parallelisation restrictions of the application, which can 
not be seen from the signal processing description only. It is 
for example important to describe in any way, that the initial 
frame synchronization processing is never required in parallel 
to the frame user data demodulation.  All three areas required 
different description structures to allow an efficient 
implementation. Real time requirements are part of the 
description and can be part of any of these three areas. From 
this description we can generate a multithreaded program 
code, considering as much parallelism as possible, which runs 
on a Sandblaster SB3000 [5] hardware platform.   

VII. CONCLUSIONS

There is already a preliminary version of the VRE tool chain 
available that partly consists of commercial tools (like 

MLDesigner for graphically describing the VRE program) and 
own developments. This version was used for the experiment 
described in section VI. The experiment shows the potential of 
the VRE tool chain in SDR application development. The next 
major step will be the incorporation of Mathwork’s Simulink 
tool into the VRE tool chain, such that we can use both 
Simulink and MLDesigner to describe the applications 
graphically. Since both tools are standard industrial 
development environments, it will increase the intuitive 
understanding of applications and simplify familiarisation for 
new programmers. Furthermore, the functionality of the code 
generator has to be extended such that it supports efficient 
implementations for different parallel hardware platforms.  We 
will focus on high level mapping and generation of C code 
tailored to a platform, but continue leaving all hardware-
specific register and other low-level optimizations to hardware 
manufacturers.  
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