
Gianmarco Panza, Matteo Grazioli, Filippo Sidoti

Abstract – This work aims to analyse different design
proposals for a dynamic Weighted Fair Queuing (WFQ)
scheduler to provide Quality of Service (QoS) guarantees in
general at IP level and specifically for the applications of the
PHOENIX project.
Several possible design options and configuration parameters
have been investigated and studied for a dynamic scheduling
discipline able to support QoS in a relative manner according
to factors pre-assigned to each queue at a given interface.
Simulation results have demonstrated that this system can
perform well in various network working conditions.
Finally, guidelines for a designer and a network operator
have been carried out on the basis of the analysis of several
collected simulation results.

I. INTRODUCTION

The PHOENIX project main goal is to effectively
exploit the available bandwidth on wireless links (WLAN,
UMTS, 4G…) that is dynamic by nature, providing
optimised solutions for multimedia transmission over IP-
based wireless networks. To reach this goal, it is proposed
to develop a scheme offering the possibility to let the
application world (source coding, ciphering) and the
transmission world (channel coding, modulation) talk
together over an IP protocol stack, so that they can jointly
develop an end-to-end optimised wireless communication.

However, adequate Quality of Service (QoS) guarantees
must be provided along the communication path through-
out the network, both for the user data and the
control/signalling information to be exchanged.

Advances in computing and network technologies have
made it possible to support QoS guarantees in packet
switching network. There are two approaches that were
proposed in the literature, i.e. Integrated Service (IntServ)
[1] and Differentiated Service (DiffServ) [2][3]. IntServ
tried to ensure end-to-end and per flow QoS of data
traffics. However, it is quite difficult to implement on a
large scale, such as in the Internet. For this reason,
DiffServ that only provides a limited number of service
classes was then proposed. It aggregates the flows with the
same QoS requirements, and serves the packets according
to predefined traffic contracts. Instead of achieving per-
flow QoS, DiffServ provide guarantees at an aggregate
level.

Relative and absolute service differentiation are two
categories of the DiffServ model. Relative DiffServ

 F. Sidoti is with WIND Telecomunicazioni S.p.A., Rome, Italy (e-
mail: Filippo.Sidoti@mail.wind.it)

 G. Panza is with CEFRIEL Network Systems Unit, Milan, Italy (e-
mail: panza@cefriel.it)

 M. Grazioli is with CEFRIEL Network Systems Unit, Milan, Italy (e-
mail: grazioli@cefriel.it)

ensures the ratios of the quality level between classes,
while absolute DiffServ absolute service guarantees.
Obviously, the first is more straightforward to deploy as
well as effective with proper resource provisioning in the
concerned network.

There is a variant in this category, called proportional
differentiation service [5].

Weighted Fair Queuing (WFQ) [4] is a scheduling
discipline nowadays widely applied to QoS-enabled
routers. In WFQ, single flows or traffic classes are served
on the basis of the weight assigned to the related queue.
The weight is determined according to the granted QoS
parameters, such as service rate or delay. An absolute
service rate can be easily achieved by assigning a fixed
weight.

In this paper, we analyze the possible design options
and configuration parameters of a Dynamic Weighted Fair
Queuing scheduler (Dynamic WFQ), which is an
extension of WFQ. The issued dynamic WFQ scheduler
adjusts the weight of each class (queue) dynamically so
that the delay differences between classes can be well
controlled. Based on our model, the network operator can
impose the ratio of the delays between the different
classes, and maximize the network resources utilization.
To simplify the description, in this paper we consider per-
hop queuing delay only. Other QoS parameters and the
characteristics of end-to-end delay are left for future work.

The remainder of this paper is organized as follows.
Next section briefly explains the main achievements in the
field, concerning both the static and the dynamic versions
of WFQ. Then, a description of the work, together with the
main simulation results and analysis are reported.

Finally, last section summarizes the main conclusions
and paves the way for future developments.

II. WEIGHTED FAIR QUEUING DISCIPLINE

A. Static WFQ

Weighted Fair Queuing (WFQ) [4] offers fair queuing
that divides the available bandwidth across queues of
traffic based on weights. Each flow or aggregate thereof is
associated with an independent queue assigned with a
weight, so as to ensure that important traffic gets higher
priority over less important traffic. In times of congestion
the traffic in each queue (a single flow or an aggregate of
them) is protected and treated fairly, according to its
weight.

Arriving packets are classified into different queues by
inspection of the packet header fields, including
characteristics such as source and destination network or
MAC address, protocol, source and destination port and
socket numbers of the session or Diff-Serv-Code-Point

Design and analysis of a dynamic Weighted
Fair Queuing (WFQ) scheduler

(DSCP) value. Each queue shares the transmission service
proportionally to the associated weight. All traffic in the
same class is treated indistinctly.

WFQ can certainly ensure satisfactory response time to
critical applications, such as interactive and transaction-
based ones, that are intolerant to performance degradation,
in particular whether deployed in an Int-Serv architecture.
In a Diff-Serv architecture, WFQ can be IP DSCP-aware.
This means that it is able to detect higher priority packets
marked with precedence and can schedule them faster,
providing superior response time for these traffic
aggregates.

In summary, from a technical point of view WFQ has
three desirable properties. First, because it approximates
GPS (General Processor Sharing) scheduler [4], it protects
traffic of different queues from each other, which is
fundamental in a service differentiation context. Second,
traffic in a queue can obtain worst-case end-to-end
queuing delay that is independent of the number of hops it
traverses and of the behavior of traffic in the other queues.
This allows networks of fair queuing schedulers to provide
real-time performance guarantees. Third, it gives users an
incentive to implement intelligent flow mechanisms at the
end-system. A source is not required to send at a rate
smaller than its currently allocated rate, however if it sends
more than its fair share it can lose packets, so it has an
incentive to match its flow to the currently available
service rate.

B. Dynamic WFQ

A Dynamic WFQ [5][6] is able to dynamically and
consistently adapt the queue weights according to the
time-variant amount of the incoming traffic and the pre-
assigned target QoS.

The fundamental issue is to correlate the burstiness of
the traffic with the weight value in order to achieve given
delay and loss guarantees.

The measurement of the burstiness of the aggregate
entering each queue could be realized by evaluating the
resulting buffer dimension [5], which is somehow related
to the worst-case delay experienced by packets in the
queue.

For what concerns the QoS, we could apply a
proportional relative model. Each queue has assigned a
static parameter and the performance guarantees provided
to the set of queues should be in line with the mutual ratio
of the said parameters. For example, if the queue Qi and
Qj have the parameters Pi and Pj respectively, with
Pj=2*Pi, the QoS provided to Qj should be two times
better then the one granted to Qi. Hence, no absolute QoS
assurances are supported in this case.

As proposed in [5], where also preliminary results are
reported, if in a given interval Tn, Bn represents the
average buffer dimension of Qn, which is associated with
the parameters Pn, the queue weights could be determined
by the resolution of a linear system whose equations are of
the form:

(Bi/Bj)*(Pi/Pj) = (Wi/Wj)
where, Wi and Wj are the weights to be assigned to the
queues Qi and Qj, respectively.

III. WORK DESCRIPTION AND SIMULATION RESULTS

A Traffic Description and Parameter Settings

We considered H.263 video flows at different bit rates,
ranging from 64 to 256 Kbit/s as mean value, generated by
real traces [7] of video streaming and conferencing
applications (see the table below for more details). By
their nature of typical compressed video flows, the related
bit rate is highly variable with a burstiness factor (peak to
mean rate ratio) of even 10.

Encoder Input 176x144 pel (QCIF)
N° of pixels for Chrominance 88

Frame Rate 25 fps
Quantization Parameter 5
Pattern IBPBPBPBPBP
Integer pel search window 15 pels

Table 1 - Characteristics of a considered H.263 compressed video flow

Specifically, the traffic aggregate is composed of 3
video streams at 64 Kbit/s and 12 video streams at 256
Kbit/s.

A FIFO scheduler fed with such an aggregate leads to a
maximum delay of 10 ms for 99% of all packets over a 10
Mbit/s link.

This bound for the 99th percentile of the delay at each
single router interface is just an example, anyway it allows
for an adequate QoS for the applications of the PHOENIX
project (i.e. real-time multimedia applications).

Initially, we studied the performance granted to the
service classes by a static WFQ scheduler with 4 queues,
each one fed with the described traffic aggregate, and a 40
Mbit/s output link. With the goal to highlight the
limitations of an actual static packet scheduler, which
reveals lower performance in providing the desired QoS
parameters than in an ideal case (such as in a GPS system).
This means that it is necessary to allocate more resources,
specifically more bandwidth, to a given queue in order to
achieve the 10 ms delay bound for 99% of packets.

For example, we focused our attention on the third
queue and varied the associated weight to achieve the
target performance. We can think of 4 ordered weights,
from the lowest (first queue) to the highest (fourth queue).
The sum of the weights must be of course equal to one in
all the conducted simulations.

We expect that the third queue requires a weight greater
than 0.25, high enough to compensate for the
approximations and limitations introduced by a real
scheduler.

Subsequently, we investigated a dynamic version of
WFQ and its performance.

In the next paragraph we report and analyze the
simulation results, produced by means of OPNET Modeler
tool by OPNET Technology Inc.. For the Dynamic WFQ
we considered several mechanisms to measure the traffic
and various configuration parameters even in different
working conditions, in order to provide useful guidelines
for the network designer and operator.

B. Simulation Results

In the first simulation scenario the weights of the 4
queues were all set to 0.25. The graphs of figure 1 clearly
have demonstrated the need to increase the third weight to

achieve the target performance in an actual static WFQ
scheduler.

CDF wfq

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,
00

0

0,
00

1

0,
00

2

0,
00

3

0,
00

4

0,
00

5

0,
00

6

0,
00

7

0,
00

8

0,
00

9

0,
01

0

0,
01

1

0,
01

2

0,
01

3

0,
01

3

0,
01

4

0,
01

5

0,
01

6

0,
01

7

0,
01

8

0,
01

9

Delay (sec)

V
al

u
e

Figure 1 – CDF (Cumulative Distribution Function) of the 3rd queue
with a 0.25 weight

The figure below depicts the CDF of the third queue
delay with a bandwidth allocation dictated by weight
values of 0.10, 0.18, 0.32 and 0.4 respectively, for the four
queues. This means that in this scenario the additional
bandwidth to be allocated was about 28% (the weight of
the third queue was 0.32 instead of 0.25).

We realized that the mean delay of the analyzed queue
was quite smaller than in the first case; nevertheless, the
related weight had to be big enough to compensate for the
impact of the worst-case behaviour of the static WFQ in
particular when traffic bursts arrived. It can be noted that
the CDF of the third queue, has higher value at lower
delays with an area approximately equals to 0.99 around
10 ms as in the ideal case.

CDF wfq

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,
00

0

0,
00

1

0,
00

2

0,
00

3

0,
00

4

0,
00

5

0,
00

6

0,
00

7

0,
00

8

0,
00

9

0,
01

0

0,
01

1

0,
01

2

0,
01

3

0,
01

3

0,
01

4

0,
01

5

0,
01

6

0,
01

7

0,
01

8

Delay (sec)

V
al

u
e

Figure 2 – CDF of the 3rd queue with a 0.32 weight
The following figure illustrates the relationship between

the weight of the third queue and the incoming traffic
aggregate rate, when the packet delay was approximately
10 ms. The graph was obtained considering the mean
value of several measurements for the considered rate and
varying the third queue weight, in order to obtain
consistent data (each sample was gathered on a 40 ms
interval).

By analysing such simulation results, it is clear how
with a proper resource allocation, i.e. bandwidth, it is
possible to assure stringent QoS guarantees, such as delay
(and loss, with a proper buffer dimensioning).

However, figure 2 highlights a possibly considerable
waste of resources to achieve the target service parameters
when the traffic has a bursty nature.

For this reason, a dynamic WFQ was proposed [5] and
widely investigated in our work.

Weight / Rate

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Rate (bit/sec)

W
ei

g
h

t

Figure 3 - Relationship between weight and aggregate rate to achieve the
target QoS guarantees

As discussed in sect. II.B, the queue weights could be
calculated according to such equations:

(Bi/Bj)*(Pi/Pj) = (Wi/Wj)
where, Wi and Wj are the weights to be assigned to the
queues Qi and Qj. In our simulations, the parameters Pi
were set to 1, 2, 3 and 4 respectively, for the four queues;
hence, the second queue should have a delay guaranteed
two times better than the first one and the fourth queue
two times better than it.

The measurement interval, at the end of which the
queue weights are updated, was initially fixed, in this first
instance, to a quite small value, such as 40 ms, in order to
well highlight the benefit of a dynamic scheduler.

The buffer dimension was determined according to a
low-pass filter processing as follows:

Bi(n)=k*Bi(n-i)+(1-k)*Biist(n)
Where Bi(n) represent the average buffer dimension at the
n-th interval of Queue i and Biist(n) the instantaneous value
for Queue I in the same interval. The factor k determines
the width of the low-pass filter (the higher the value, the
narrower the filter bandwidth).

Queue Average Delay (ms) 99th percentile (ms)
1 4.8 22
2 4.2 17
3 3.5 11
4 3.2 7

Table 2 – Results with a 0.95 k filter

Queue Average Delay (ms) 99th percentile (ms)
1 6.5 22.5
2 5.2 17.3
3 4.0 10.5
4 3.1 6.9

Table 3 – Results with an optimum filter (0.992 k)

We investigated the impact on the performance of a
different low-pass filter. It is worthwhile to underline that
the goal was to obtain relative QoS differentiation between
the classes as much as possible accordingly to the
associated quality parameters Pi. Absolute delay
guarantees can be achieved with a proper resource
provisioning and admission control policy, which were out
of scope for our work. Just to be compliant to PHOENIX’s
applications, the granted QoS addressed the requirement of
a 10 ms delay for the 99% of packets for the reference
third (and fourth) queue.

 By looking at the results reported in the two tables above,
the proportional relative delay differentiation between the

4 queues was more respected with a more rigid filter.
However, the optimum value of k depends on the bursty
nature of the traffic; we have to set k to a lower value to
follow better the rate variations in case of more bursty
aggregates.

The aim is to properly balance a responsive enough
system dynamics with stability and consistency
requirements that in the end lead to a stricter respect of the
proportionality of the delays experienced by packets in the
different queues, according to the assigned QoS factors.

We also changed the nature of the filter, using a sort of
moving average. The filtering process was as follows:

B(n) = [B(n-1)+B(n-2)+…+B(n-M)] / M
where B(n) is again the average buffer dimension at the n-
th interval and M the number of the intervals taken into
account in the averaging calculus.
By Analysing the average delay with M=8 or M=16, we
realized how increasing M the filter became more rigid
and less receptive to the variation of the rate. The figures
for the 99th percentile were: 24.5, 21.3, 11.6, 8.3 ms for
M=8 and 23.1, 21, 11.9, 10.1 ms for M=16. Hence,
slightly better results were obtained in the first case.

Furthermore, we investigated a different measurement
window of the low pass filter; it was set to 80, 160 and 320
ms (the former value was 40 ms). We point out that in the
various simulations the optimum value for the k factor was
taken (0.86 , 0.8 and 0.69, for the measurement windows
80, 160 and 320 ms, respectively).

Increasing the measurement window of the filter we
obtained more averaged rates. This way, the system
reactivity goes down; hence the instantaneous variations of
the traffic have a less impact. Thus, we needed to set k to a
lower value in order to respect as precisely as possible the
proportionality between the 99th percentile of the delays
experienced by packets in the 4 queues, but we could not
achieve the same performance as in the 40 ms case.

The 99th percentiles of the delays were 20.1, 16.8, 11,
7.9 with an 80 ms measurement window and a 0.86 k
filter, and 18, 16.1, 11.3, 9.1 with a 160 ms measurement
window and a 0.8 k filter, and 18,1 ms, 16.8 ms, 11 ms,
9.4 ms respectively with a 320 ms measurement window
and a 0.69 k filter.

Concerning the issue of the proper design and
configuration of the traffic measurement process, as last
test we considered a measurement system based on
thresholds, let us say a threshold of B bytes, the weights
updating happens only when at least the buffer dimension
of a queue exceeds B.

Certainly, the behaviour of this system strongly depends
on the value of B. We made an analysis with B equal to 1
MTU (Maximum Transfer Unit), 2 MTUs or 10 MTUs.
The typical value of MTU in an IP network IS 1500 bytes.

The 99th percentile became worse (as usual in terms of
consistency with the ratios between the defined QoS
parameters) augmenting the value of B.

More precisely, in order of increasing values of B, the
issued figures were 24.9 ms, 21.4 ms, 11.7 ms, 8.5 ms; or
24.9, 21.4, 11.4 and 9.2 ms, or 23.2, 20, 12.1 and 11 ms,
for the 4 queues respectively. When B was low, the
percentile was not too far from the results obtained by a
moving average filter with a low value of M and by an
optimum low pass filter.

Tables 4 and 5 show the buffer dimensions for the
different queues required to avoid packet losses at all
(100th perc. Min. buffer size) and to achieve 1 percent of
packet loss rate (99th perc. Min. buffer size), in the two
cases of 4 and 7 queues to be managed by the dynamic
WFQ scheduler. The Pi parameters were set to 1, 2, 3, 4,
1.5, 2.5 and 3.5, respectively for the different queues in the
latter case.

Queue 99th perc. Min.
buffer size (bytes)

100th perc. Min. buffer
size (bytes)

1 38254 58521

2 35212 54789

3 34457 53541

4 32587 51512

Table 4 – 99th and 100th perc. Min. buffer sizes in the different 4 queues

Queue 99th perc. Min.
buffer size (bytes)

100th perc. Min. buffer size
(bytes)

1 48981 69842

2 45889 67854

3 44491 65305

4 41672 61478

5 48605 69001

6 45302 65991

7 43510 64215

Table 5 – 99th and 100th perc. Min. buffer sizes in the different 7 queues

Queue Average Delay (ms)

1 6.45

2 5.29

3 4.15

Average Delay at the
interface (ms)

4 3.22 4.81

Table 6– Average Delay in each queue and at the interface as a whole, for
the 4 queues case

Queue Average Delay (ms)

1 7.12

2 5.77

3 4.20

4 3.31

5 6.18

6 4.99

Average Delay at the
interface (ms)

7 3.64 5.11

Table 7– Average Delay in each queue and at the interface as a whole, for
the 7 queues case

The last column reports values about 50% higher than
the second. To save 1 percent of the packets we needed to
spend a lot in terms of buffer space. As expected, the
performance of the system with 7 queues was worse
(bigger buffer sizes were required).
 In tables 6 and 7 are shown the average delay for each
queue and at the interface in general, for the two cases of 4
and 7 queues. The calculus of the Delay essentially
encompassed the queuing delay (determined by the
specifically deployed scheduling discipline) and the

transmission delay (a minor contribution, considering the
MTU value and the link capacity of the concerned
interface).

Although the two investigated systems had the same
capacity for queue (12.8 Mbit/s), the latter was a little bit
slower. This is due to the higher complexity of the system
in presence of more queues that leads to a smaller
efficiency.

C. Design Consideration

The choice of each mechanism and parameter
concerned in the scheduling system is important to obtain
the desired performance.

Before considering the different factors we have to
remember that the WFQ is not an ideal scheduling scheme.
Therefore, the link required to obtain the same
performance as in the corresponding GPS ideal case must
be higher. Only after a proper dimensioning of it, we can
focus on the design options.

First, it is fundamental to set the window filter in
relation to the nature of the traffic. As expected, we have
realized that the shorter the measurement window, the
better; because in this case the reactivity is higher and we
can follow well the traffic rate variations.

A second step is to choose the best filter. We made
experiments with three different filters: low pass filter,
thresholds based filter and moving average filter. We have
demonstrated that the former two are similar in terms of
achieved performance if we used a quite small k
parameter, anyway close to the unit, or thresholds, of the
order of some MTUs, respectively. The bigger the values,
the more static the filters. Such a selection is more suitable
for traffic with not that high burstiness. A low burstiness
could be due either to not too time-variant flows or a high
level of multiplexing, which is quite common in a
backbone network, or in a Differentiated Services
architecture over a wide bandwidth infrastructure. The
moving average filter is effective as well, if employed with
a small number of considered buffer size samples.

Hence, the decisive aspect is the burstiness nature of the
concerned traffic rather than the choice of a specific
filtering process, at least from a performance point of
view, while from a computational point of view the
simpler, the better.

Another important issue is to set the buffer dimension.
We have to consider that the gap from 1 to 0 percent of
packet loss is high. About 50% more of buffer space was
required in fairly common working conditions.

It is important to take into account the number of
queues to be managed in relationships of course, to the
entering traffic and the interface capacity. The system
complexity increases with the number of configured
queues, inevitably leading to a less strict control of the
guaranteed delays (in terms of consistency with the ratios
between the assigned QoS parameters). To be noted that a
higher difference between the ratios of the Pi factors
allows to better differentiate between the QoS provided to
the traffic aggregates of each queue.
At the end, it is not a trivial task to design a scheduling
system as efficient as possible, but it is extremely helpful
to acquire some a priori information about the actual
working conditions.

IV. CONCLUSIONS

In this work, we have investigated and analyzed several
possible design options and configuration parameters for a
dynamic WFQ scheduler.

We have demonstrated that it is possible to provide
proportional relative QoS guarantees consistently to pre-
assigned factors to each queue, and exploiting well the
available bandwidth of a given interface according to the
actual arrival rate of the traffic classes, which are time-
variant in nature.

More complex working conditions, such as in the case
of a high number of queues, affect the achievable
performance in terms of strict control of the granted QoS.

However, even absolute QoS guarantees suitable for
real-time multimedia applications, as in the context of the
PHOENIX project, can be obtained with a proper resource
provisioning and admission control policy.

Finally, guidelines for a designer and a network
operator have been carried out on the basis of the
performed analysis.

REFERENCES

[1] J. Wroclawski, The Use of RSVP with IETF Integrated Services,
RFC 2210. IETF intserv WG. September 1997

[2] K. Nichols et Al. Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers, RFC 2474. IETF difsserv
WG. December 1998.

[3] S. Blake et Al, An Architecture for Differentiated Services, RFC
2475. IETF diffserv WG. December 1998.

[4] S. Keshav, An Engineering Approach to Computer Networking,
Addison-Wesley professional computing series, 1997

[5] Chin-Chang Li, Shiao-Li Tsao, Meng Cheng Chen, Yeali Sun,
Yueh-Min Huang, Proportional Delay Differentiation Service
Based on Weighted Fair Queuing

[6] Kun Pang Xiaokang Lin Junli Zheng Xuedao Gu Nat, Dynamic
WFQ scheduling for real-time traffic in wireless ATM links, Com-
munication Technology Proceedings, 2000

[7] H.263/MPEG4-compressed video traces: http://www-tkn.ee.tu-
berlin.de/research/trace/trace.html

