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Abstract – This work aims to analyse different design 
proposals for a dynamic Weighted Fair Queuing (WFQ) 
scheduler to provide Quality of Service (QoS) guarantees in 
general at IP level and specifically for the applications of the 
PHOENIX project. 
Several possible design options and configuration parameters 
have been investigated and studied for a dynamic scheduling 
discipline able to support QoS in a relative manner according 
to factors pre-assigned to each queue at a given interface. 
Simulation results have demonstrated that this system can 
perform well in various network working conditions. 
Finally, guidelines for a designer and a network operator 
have been carried out on the basis of the analysis of several 
collected simulation results.

I. INTRODUCTION

The PHOENIX project main goal is to effectively 
exploit the available bandwidth on wireless links (WLAN, 
UMTS, 4G…) that is dynamic by nature, providing 
optimised solutions for multimedia transmission over IP-
based wireless networks. To reach this goal, it is proposed 
to develop a scheme offering the possibility to let the 
application world (source coding, ciphering) and the 
transmission world (channel coding, modulation) talk 
together over an IP protocol stack, so that they can jointly 
develop an end-to-end optimised wireless communication. 

However, adequate Quality of Service (QoS) guarantees 
must be provided along the communication path through-
out the network, both for the user data and the 
control/signalling information to be exchanged. 

Advances in computing and network technologies have 
made it possible to support QoS guarantees in packet 
switching network. There are two approaches that were 
proposed in the literature, i.e. Integrated Service (IntServ) 
[1] and Differentiated Service (DiffServ) [2][3]. IntServ 
tried to ensure end-to-end and per flow QoS of data 
traffics. However, it is quite difficult to implement on a 
large scale, such as in the Internet. For this reason, 
DiffServ that only provides a limited number of service 
classes was then proposed. It aggregates the flows with the 
same QoS requirements, and serves the packets according 
to predefined traffic contracts. Instead of achieving per-
flow QoS, DiffServ provide guarantees at an aggregate 
level. 

Relative and absolute service differentiation are two 
categories of the DiffServ model. Relative DiffServ 
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ensures the ratios of the quality level between classes, 
while absolute DiffServ absolute service guarantees. 
Obviously, the first is more straightforward to deploy as 
well as effective with proper resource provisioning in the 
concerned network. 

There is a variant in this category, called proportional 
differentiation service [5].  

Weighted Fair Queuing (WFQ) [4] is a scheduling 
discipline nowadays widely applied to QoS-enabled 
routers. In WFQ, single flows or traffic classes are served 
on the basis of the weight assigned to the related queue. 
The weight is determined according to the granted QoS 
parameters, such as service rate or delay. An absolute 
service rate can be easily achieved by assigning a fixed 
weight. 

In this paper, we analyze the possible design options 
and configuration parameters of a Dynamic Weighted Fair 
Queuing scheduler (Dynamic WFQ), which is an 
extension of WFQ. The issued dynamic WFQ scheduler 
adjusts the weight of each class (queue) dynamically so 
that the delay differences between classes can be well 
controlled. Based on our model, the network operator can 
impose the ratio of the delays between the different 
classes, and maximize the network resources utilization. 
To simplify the description, in this paper we consider per-
hop queuing delay only. Other QoS parameters and the 
characteristics of end-to-end delay are left for future work. 

The remainder of this paper is organized as follows. 
Next section briefly explains the main achievements in the 
field, concerning both the static and the dynamic versions 
of WFQ. Then, a description of the work, together with the 
main simulation results and analysis are reported. 

Finally, last section summarizes the main conclusions 
and paves the way for future developments.

II. WEIGHTED FAIR QUEUING DISCIPLINE 

A. Static WFQ 

Weighted Fair Queuing (WFQ) [4] offers fair queuing 
that divides the available bandwidth across queues of 
traffic based on weights. Each flow or aggregate thereof is 
associated with an independent queue assigned with a 
weight, so as to ensure that important traffic gets higher 
priority over less important traffic. In times of congestion 
the traffic in each queue (a single flow or an aggregate of 
them) is protected and treated fairly, according to its 
weight.  

Arriving packets are classified into different queues by 
inspection of the packet header fields, including 
characteristics such as source and destination network or 
MAC address, protocol, source and destination port and 
socket numbers of the session or Diff-Serv-Code-Point 
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(DSCP) value. Each queue shares the transmission service 
proportionally to the associated weight. All traffic in the 
same class is treated indistinctly.  

WFQ can certainly ensure satisfactory response time to 
critical applications, such as interactive and transaction-
based ones, that are intolerant to performance degradation, 
in particular whether deployed in an Int-Serv architecture. 
In a Diff-Serv architecture, WFQ can be IP DSCP-aware. 
This means that it is able to detect higher priority packets 
marked with precedence and can schedule them faster, 
providing superior response time for these traffic 
aggregates.  

In summary, from a technical point of view WFQ has 
three desirable properties. First, because it approximates 
GPS (General Processor Sharing) scheduler [4], it protects 
traffic of different queues from each other, which is 
fundamental in a service differentiation context. Second, 
traffic in a queue can obtain worst-case end-to-end 
queuing delay that is independent of the number of hops it 
traverses and of the behavior of traffic in the other queues. 
This allows networks of fair queuing schedulers to provide 
real-time performance guarantees. Third, it gives users an 
incentive to implement intelligent flow mechanisms at the 
end-system. A source is not required to send at a rate 
smaller than its currently allocated rate, however if it sends 
more than its fair share it can lose packets, so it has an 
incentive to match its flow to the currently available 
service rate.

B. Dynamic WFQ 

A Dynamic WFQ [5][6] is able to dynamically and 
consistently adapt the queue weights according to the 
time-variant amount of the incoming traffic and the pre-
assigned target QoS. 

The fundamental issue is to correlate the burstiness of 
the traffic with the weight value in order to achieve given 
delay and loss guarantees. 

The measurement of the burstiness of the aggregate 
entering each queue could be realized by evaluating the 
resulting buffer dimension [5], which is somehow related 
to the worst-case delay experienced by packets in the 
queue. 

For what concerns the QoS, we could apply a 
proportional relative model. Each queue has assigned a 
static parameter and the performance guarantees provided 
to the set of queues should be in line with the mutual ratio 
of the said parameters. For example, if the queue Qi and 
Qj have the parameters Pi and Pj respectively, with 
Pj=2*Pi, the QoS provided to Qj should be two times 
better then the one granted to Qi. Hence, no absolute QoS 
assurances are supported in this case. 

As proposed in [5], where also preliminary results are 
reported, if in a given interval Tn, Bn represents the 
average buffer dimension of Qn, which is associated with 
the parameters Pn, the queue weights could be determined 
by the resolution of a linear system whose equations are of 
the form: 

(Bi/Bj)*(Pi/Pj) = (Wi/Wj)  
where, Wi and Wj are the weights to be assigned to the 
queues Qi and Qj, respectively. 

III. WORK DESCRIPTION AND SIMULATION RESULTS

A   Traffic Description and Parameter Settings 

We considered H.263 video flows at different bit rates, 
ranging from 64 to 256 Kbit/s as mean value, generated by 
real traces [7] of video streaming and conferencing 
applications (see the table below for more details). By 
their nature of typical compressed video flows, the related 
bit rate is highly variable with a burstiness factor (peak to 
mean rate ratio) of even 10. 

Encoder Input 176x144 pel (QCIF) 
N° of pixels for Chrominance 88 

Frame Rate 25 fps 
Quantization Parameter 5 
Pattern IBPBPBPBPBP 
Integer pel search window 15 pels 

Table 1 - Characteristics of a considered H.263 compressed video flow 

Specifically, the traffic aggregate is composed of 3 
video streams at 64 Kbit/s and 12 video streams at 256 
Kbit/s.  

A FIFO scheduler fed with such an aggregate leads to a 
maximum delay of 10 ms for 99% of all packets over a 10 
Mbit/s link.  

This bound for the 99th percentile of the delay at each 
single router interface is just an example, anyway it allows 
for an adequate QoS for the applications of the PHOENIX 
project (i.e. real-time multimedia applications). 

Initially, we studied the performance granted to the 
service classes by a static WFQ scheduler with 4 queues, 
each one fed with the described traffic aggregate, and a 40 
Mbit/s output link. With the goal to highlight the 
limitations of an actual static packet scheduler, which 
reveals lower performance in providing the desired QoS 
parameters than in an ideal case (such as in a GPS system). 
This means that it is necessary to allocate more resources, 
specifically more bandwidth, to a given queue in order to 
achieve the 10 ms delay bound for 99% of packets. 

For example, we focused our attention on the third 
queue and varied the associated weight to achieve the 
target performance. We can think of 4 ordered weights, 
from the lowest (first queue) to the highest (fourth queue). 
The sum of the weights must be of course equal to one in 
all the conducted simulations. 

We expect that the third queue requires a weight greater 
than 0.25, high enough to compensate for the 
approximations and limitations introduced by a real 
scheduler.  

Subsequently, we investigated a dynamic version of 
WFQ and its performance. 

In the next paragraph we report and analyze the 
simulation results, produced by means of OPNET Modeler 
tool by OPNET Technology Inc.. For the Dynamic WFQ 
we considered several mechanisms to measure the traffic 
and various configuration parameters even in different 
working conditions, in order to provide useful guidelines 
for the network designer and operator.

B. Simulation Results 

In the first simulation scenario the weights of the 4 
queues were all set to 0.25. The graphs of figure 1 clearly 
have demonstrated the need to increase the third weight to 



achieve the target performance in an actual static WFQ 
scheduler. 
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Figure 1 – CDF (Cumulative Distribution Function) of the 3rd queue 
with a 0.25 weight

The figure below depicts the CDF of the third queue 
delay with a bandwidth allocation dictated by weight 
values of 0.10, 0.18, 0.32 and 0.4 respectively, for the four 
queues. This means that in this scenario the additional 
bandwidth to be allocated was about 28% (the weight of 
the third queue was 0.32 instead of 0.25). 

We realized that the mean delay of the analyzed queue 
was quite smaller than in the first case; nevertheless, the 
related weight had to be big enough to compensate for the 
impact of the worst-case behaviour of the static WFQ in 
particular when traffic bursts arrived. It can be noted that 
the CDF of the third queue, has higher value at lower 
delays with an area approximately equals to 0.99 around 
10 ms as in the ideal case. 
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Figure 2 – CDF of the 3rd queue with a 0.32 weight
The following figure illustrates the relationship between 

the weight of the third queue and the incoming traffic 
aggregate rate, when the packet delay was approximately 
10 ms. The graph was obtained considering the mean 
value of several measurements for the considered rate and 
varying the third queue weight, in order to obtain 
consistent data (each sample was gathered on a 40 ms 
interval). 

By analysing such simulation results, it is clear how 
with a proper resource allocation, i.e. bandwidth, it is 
possible to assure stringent QoS guarantees, such as delay 
(and loss, with a proper buffer dimensioning).  

However, figure 2 highlights a possibly considerable 
waste of resources to achieve the target service parameters 
when the traffic has a bursty nature. 

For this reason, a dynamic WFQ was proposed [5] and 
widely investigated in our work. 
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Figure 3 - Relationship between weight and aggregate rate to achieve the 
target QoS guarantees 

As discussed in sect. II.B, the queue weights could be 
calculated according to such equations: 

(Bi/Bj)*(Pi/Pj) = (Wi/Wj)  
where, Wi and Wj are the weights to be assigned to the 
queues Qi and Qj. In our simulations, the parameters Pi 
were set to 1, 2, 3 and 4 respectively, for the four queues; 
hence, the second queue should have a delay guaranteed 
two times better than the first one and the fourth queue 
two times better than it. 

The measurement interval, at the end of which the 
queue weights are updated, was initially fixed, in this first 
instance, to a quite small value, such as 40 ms, in order to 
well highlight the benefit of a dynamic scheduler. 

The buffer dimension was determined according to a 
low-pass filter processing as follows: 

Bi(n)=k*Bi(n-i)+(1-k)*Biist(n)  
Where Bi(n) represent the average buffer dimension at the 
n-th interval of Queue i and Biist(n) the instantaneous value 
for Queue I in the same interval. The factor k determines 
the width of the low-pass filter (the higher the value, the 
narrower the filter bandwidth).  

Queue Average Delay (ms) 99th percentile (ms) 
1 4.8  22  
2 4.2 17  
3 3.5  11  
4 3.2 7  

Table 2 – Results with a 0.95 k filter 

Queue Average Delay (ms) 99th percentile (ms) 
1 6.5  22.5  
2 5.2  17.3  
3 4.0  10.5  
4 3.1 6.9  

Table 3 – Results with an optimum filter (0.992 k) 

We investigated the impact on the performance of a 
different low-pass filter.  It is worthwhile to underline that 
the goal was to obtain relative QoS differentiation between 
the classes as much as possible accordingly to the 
associated quality parameters Pi. Absolute delay 
guarantees can be achieved with a proper resource 
provisioning and admission control policy, which were out 
of scope for our work. Just to be compliant to PHOENIX’s 
applications, the granted QoS addressed the requirement of 
a 10 ms delay for the 99% of packets for the reference 
third (and fourth) queue.

 By looking at the results reported in the two tables above, 
the proportional relative delay differentiation between the 



4 queues was more respected with a more rigid filter. 
However, the optimum value of k depends on the bursty 
nature of the traffic; we have to set k to a lower value to 
follow better the rate variations in case of more bursty 
aggregates.  

The aim is to properly balance a responsive enough 
system dynamics with stability and consistency 
requirements that in the end lead to a stricter respect of the 
proportionality of the delays experienced by packets in the 
different queues, according to the assigned QoS factors. 

We also changed the nature of the filter, using a sort of 
moving average. The filtering process was as follows: 

B(n) = [B(n-1)+B(n-2)+…+B(n-M)] / M 
where B(n) is again the average buffer dimension at the n-
th interval and M the number of the intervals taken into 
account in the averaging calculus.
By Analysing the average delay with M=8 or M=16, we 
realized how increasing M the filter became more rigid 
and less receptive to the variation of the rate. The figures 
for the 99th percentile were: 24.5, 21.3, 11.6, 8.3 ms for 
M=8 and 23.1, 21, 11.9, 10.1 ms for M=16. Hence, 
slightly better results were obtained in the first case. 

Furthermore, we investigated a different measurement 
window of the low pass filter; it was set to 80, 160 and 320
ms (the former value was 40 ms). We point out that in the 
various simulations the optimum value for the k factor was 
taken (0.86 , 0.8 and 0.69, for the measurement windows 
80, 160 and 320 ms, respectively).

Increasing the measurement window of the filter we 
obtained more averaged rates. This way, the system 
reactivity goes down; hence the instantaneous variations of 
the traffic have a less impact. Thus, we needed to set k to a 
lower value in order to respect as precisely as possible the 
proportionality between the 99th percentile of the delays 
experienced by packets in the 4 queues, but we could not 
achieve the same performance as in the 40 ms case.  

The 99th percentiles of the delays were 20.1, 16.8, 11, 
7.9 with an 80 ms measurement window and a 0.86 k 
filter, and 18, 16.1, 11.3, 9.1 with a 160 ms measurement 
window and a 0.8 k filter, and 18,1 ms, 16.8 ms, 11 ms, 
9.4 ms respectively with a 320 ms measurement window 
and a 0.69 k filter. 

Concerning the issue of the proper design and 
configuration of the traffic measurement process, as last 
test we considered a measurement system based on 
thresholds, let us say a threshold of B bytes, the weights 
updating happens only when at least the buffer dimension 
of a queue exceeds B. 

Certainly, the behaviour of this system strongly depends 
on the value of B. We made an analysis with B equal to 1 
MTU (Maximum Transfer Unit), 2 MTUs or 10 MTUs. 
The typical value of MTU in an IP network IS 1500 bytes. 

The 99th percentile became worse (as usual in terms of 
consistency with the ratios between the defined QoS 
parameters) augmenting the value of B. 

More precisely, in order of increasing values of B, the 
issued figures were 24.9 ms, 21.4 ms, 11.7 ms, 8.5 ms; or 
24.9, 21.4, 11.4 and 9.2 ms, or 23.2, 20, 12.1 and 11 ms, 
for the 4 queues respectively. When B was low, the 
percentile was not too far from the results obtained by a 
moving average filter with a low value of M and by an 
optimum low pass filter.

Tables 4 and 5 show the buffer dimensions for the 
different queues required to avoid packet losses at all 
(100th perc. Min. buffer size) and to achieve 1 percent of 
packet loss rate (99th perc. Min. buffer size), in the two 
cases of 4 and 7 queues to be managed by the dynamic 
WFQ scheduler. The Pi parameters were set to 1, 2, 3, 4, 
1.5, 2.5 and 3.5, respectively for the different queues in the 
latter case.  

Queue 99th perc. Min. 
buffer size (bytes) 

100th perc. Min. buffer 
size (bytes) 

1 38254 58521 

2 35212 54789 

3 34457 53541 

4 32587 51512 

Table 4 –  99th and 100th perc. Min. buffer sizes in the different 4 queues 

Queue 99th perc. Min. 
buffer size (bytes) 

100th perc. Min. buffer size 
(bytes) 

1 48981 69842 

2 45889 67854 

3 44491 65305 

4 41672 61478 

5 48605 69001 

6 45302 65991 

7 43510 64215 

Table 5 – 99th and 100th perc. Min. buffer sizes in the different 7 queues 

Queue Average Delay (ms) 

1 6.45  

2 5.29 

3 4.15 

Average Delay at the 
interface (ms) 

4 3.22 4.81 

Table 6– Average Delay in each queue and at the interface as a whole, for 
the 4 queues case 

Queue Average Delay (ms) 

1 7.12 

2 5.77 

3 4.20 

4 3.31 

5 6.18 

6 4.99 

Average Delay at the 
interface (ms) 

7 3.64 5.11 

Table 7– Average Delay in each queue and at the interface as a whole, for 
the 7 queues case 

The last column reports values about 50% higher than 
the second. To save 1 percent of the packets we needed to 
spend a lot in terms of buffer space. As expected, the 
performance of the system with 7 queues was worse 
(bigger buffer sizes were required). 
     In tables 6 and 7 are shown the average delay for each 
queue and at the interface in general, for the two cases of 4 
and 7 queues. The calculus of the Delay essentially 
encompassed the queuing delay (determined by the 
specifically deployed scheduling discipline) and the 



transmission delay (a minor contribution, considering the 
MTU value and the link capacity of the concerned 
interface).

Although the two investigated systems had the same 
capacity for queue (12.8 Mbit/s), the latter was a little bit 
slower. This is due to the higher complexity of the system 
in presence of more queues that leads to a smaller 
efficiency. 

C. Design Consideration 

The choice of each mechanism and parameter 
concerned in the scheduling system is important to obtain 
the desired performance.  

Before considering the different factors we have to 
remember that the WFQ is not an ideal scheduling scheme. 
Therefore, the link required to obtain the same 
performance as in the corresponding GPS ideal case must 
be higher. Only after a proper dimensioning of it, we can 
focus on the design options. 

First, it is fundamental to set the window filter in 
relation to the nature of the traffic. As expected, we have 
realized that the shorter the measurement window, the 
better; because in this case the reactivity is higher and we 
can follow well the traffic rate variations.   

A second step is to choose the best filter. We made 
experiments with three different filters: low pass filter, 
thresholds based filter and moving average filter. We have 
demonstrated that the former two are similar in terms of 
achieved performance if we used a quite small k 
parameter, anyway close to the unit, or thresholds, of the 
order of some MTUs, respectively. The bigger the values, 
the more static the filters. Such a selection is more suitable 
for traffic with not that high burstiness. A low burstiness 
could be due either to not too time-variant flows or a high 
level of multiplexing, which is quite common in a 
backbone network, or in a Differentiated Services 
architecture over a wide bandwidth infrastructure. The 
moving average filter is effective as well, if employed with 
a small number of considered buffer size samples.  

Hence, the decisive aspect is the burstiness nature of the 
concerned traffic rather than the choice of a specific 
filtering process, at least from a performance point of 
view, while from a computational point of view the 
simpler, the better. 

Another important issue is to set the buffer dimension. 
We have to consider that the gap from 1 to 0 percent of 
packet loss is high. About 50% more of buffer space was 
required in fairly common working conditions.  

It is important to take into account the number of 
queues to be managed in relationships of course, to the 
entering traffic and the interface capacity. The system 
complexity increases with the number of configured 
queues, inevitably leading to a less strict control of the 
guaranteed delays (in terms of consistency with the ratios 
between the assigned QoS parameters). To be noted that a 
higher difference between the ratios of the Pi factors 
allows to better differentiate between the QoS provided to 
the traffic aggregates of each queue. 
At the end, it is not a trivial task to design a scheduling 
system as efficient as possible, but it is extremely helpful 
to acquire some a priori information about the actual 
working conditions. 

IV. CONCLUSIONS 

In this work, we have investigated and analyzed several 
possible design options and configuration parameters for a 
dynamic WFQ scheduler. 

We have demonstrated that it is possible to provide 
proportional relative QoS guarantees consistently to pre-
assigned factors to each queue, and exploiting well the 
available bandwidth of a given interface according to the 
actual arrival rate of the traffic classes, which are time-
variant in nature.  

More complex working conditions, such as in the case 
of a high number of queues, affect the achievable 
performance in terms of strict control of the granted QoS. 

However, even absolute QoS guarantees suitable for 
real-time multimedia applications, as in the context of the 
PHOENIX project, can be obtained with a proper resource 
provisioning and admission control policy. 

Finally, guidelines for a designer and a network 
operator have been carried out on the basis of the 
performed analysis.
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