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Abstract—An effective technique in locating a source based 

on intersections of hyperbolic curves defined by the time 

differences of arrival of a signal received at a number of 

sensors is proposed. By making use of the knowledge of the 

cell’s ID, the approach uses coverage shrinkable improved 

genetic algorithm to search the position coordinates. It is an 

approximation of the maximum-likelihood estimator and is 

shown to attain the Cramer-Rao lower bound. Comparisons of 

performance with the fixed coverage genetic algorithm and 

the Chan’s method are made. The proposed method has 

higher accuracy than the fixed coverage algorithm and follows 

closely to the Cramer-Rao bound even at high noise level. 

 

Index Terms—Hyperbolic location, TDOA, genetic 
algorithm, coverage shrinkable, un-uniform 
mutation 

 

I. INTRODUCTION 

HE TDOA (Time Difference of Arrival) technique has 
been found suitable for CDMA wireless cell location 

system. This technique is based on estimating the 
difference in the arrival times of the signal from the source 
at multiple receivers. This is usually accomplished by 
taking a snapshot of the signal at a synchronized time 
period at multiple receivers. The cross-correlation of the 
two versions of the signal at pairs of receivers is done and 
the peak of the cross-correlation output gives the time 
difference for the signal arrival at those two base stations. 

A particular value of the time difference estimate defines 

a hyperbola between the two receivers on which the mobile 
may exist, assuming that the source and the receivers are 
coplanar. If this procedure is done again with another 
receiver in combination with any of the previously used 
receivers, another hyperbola is defined and the intersection 
of the two hyperbolas results in the position location 
estimate of the source. This method is also sometimes 
called a hyperbolic position location method. 

Once the TDOA estimates have been obtained, they are 
converted into range difference measurements and these 
measurements can be converted into nonlinear hyperbolic 
equations. As these equations are non-linear, solving them 
is not a trivial operation. Several algorithms have been 
proposed for this purpose having different complexities and 
accuracies. Fang [1] gave an exact solution when the 
number of TDOA measurements is equal to the number of 
unknowns (coordinates of transmitter). This solution, 
however, cannot make use of extra measurements, available 
when there are extra sensors, to improve position accuracy. 
The more general situation with extra measurements was 
considered by Friedlander [2], Schau and Robinson [3], and 
Smith and Abel [4]-[5]. Although closed-form solutions 
have been developed, the estimators are not optimum. The 
divide and conquer (DAC) method [6] from Abel can 
achieve optimum performance, but it requires that the 
Fisher information is sufficiently large. To obtain a precise 
position estimate at reasonable noise levels, the 
Taylor-series method [7]-[8] is commonly employed.  It is 
an iterative method: it starts with an initial guess and 
improves the estimate at each step by determing the local 
linear least-squares (LS) solution. An initial guess close to 
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the true solution is needed to avoid local minima. Selection 
of such a starting point is not simple in practice. Chan [9] 
proposed a kind of two-step LS algorithm. The solution is 
in closed-form and is an approximation of the 
maximum-likelihood (ML) estimator when the TDOA 
estimation errors are small. Chan’s method performs 
significantly better than spherical interpolation and has a 
higher noise threshold than DAC before performance 
breaks away from the Cramer-Rao bound. But if the 
estimation errors are higher than the threshold, the 
performance of this algorithm is not optimum too.  

This paper gives a new algorithm for hyperbolic position 
fix. The solution is based on improved genetic algorithm 
(GA). By making use of the knowledge of the cell’s ID, the 
algorithm searches the optimum solutions directly. Section 
II considers a 2-D localization problem with an arbitrary 
array manifold. Section III gives the algorithm. Section IV 
compares the estimator’s localization accuracy with the 
CRLB and Chan’s method. Conclusions are drawn in 
section V. 

II. MATHEMATIC MODEL OF THE HYPERBOLIC 
POSITIONING 

Assume that there are M sensors distributed arbitrarily in 

a 2-D plane as shown in Fig.1. Let ir  be the measured 

distance between the mobile and the receiver i . Let 

],,[ 1,1,31,2 Mrrrr K
r
=∆  be the estimated TDOA vector, 

where 

11, rrr ii −= , Mi ,,3,2 K=                  (1) 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Denote the noise free value of { }*  as { }0* . TDOA 

1,ir  will then be 
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with 11, nnn ii −=  representing the noise (delay 
estimation error) component. c  is the light speed. Define 
the noise vector as ],,[ 1,1,31,2 Mnnnn K

r
= . icn , 

Mi K,2,1=  are assumed to be independent, zero mean, 
white Gaussian noise with the variance 2σ . Then the 
covariance matrix of ncr  is  
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Let ),( yx  be the coordinates of the mobile and 
),( ii yx , Mi K,2,1=  be the coordinates of the 

receiver i , then 
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 rr∆  can be written as 
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The likelihood function of rr∆ that depends on the 

parameter vector [ ]Tyx,=θ  is 
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Fig.1 Localization in a 2-D plane 



where T
Mrrr ],,[ 0

1,
0

1,3
0

1,2 K
r
=
∆
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III. IMPROVED GENETIC ALGORITHM FOR THE HYPERBOLIC 

POSITIONING 

According to (6), the maximum-likelihood estimate of 
the unknown coordinates will be  
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Substituting (3) to (7), and omitting the scale 2σ , we 
can get 

[ ] [ ]{ })()(minarg, 1 µµ rrrr
−∆Ω−∆= − rryx TT       (8) 

Solving the nonlinear equations in (8) is difficult. We 
propose improved genetic algorithm to search the 
coordinates. With GA we look for the best solution among 
a number of possible solutions in the search space. In the 
process of using GA, the process of finding solutions 
generates other points as evolution proceeds. This is very 
useful in finding the global optimum solution. 

First, get the cell’s ID by protocol analyzing. The ID 
gives the area in which the mobile may exist. Thus the 
solution space can be determined. Let chromosomes 
represent the unknown coordinates. The fitness is defined 
as )]()/[(1 1 µµ rrrr

−∆Ω−∆ − rr T .  The chromosomes 
are value encoded. Un-uniform mutation[10] is used to 
improve the accuracy. The mutation operator is defined as 
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where zr  is the chromosome vector. t  is the iterative 
number. 0T  is the maximum iterative number. KKN ×  is 
a diagonal matrix and the diagonal elements are random 
numbers in [0,1]. K  is the dimension of the chromosome 
vector. UB is the upper bound of the chromosome vector 
and LB is the lower bound of the chromosome vector. Here, 
the values of UB and LB depend on the cell’s ID. And b  
is a parameter that determines to what degree the system 
depends on the iterative number. Usually it is between 
4-6[10]. In (11), the item b

KK TtyN )/1( 0−×  ( y is 
)( tzUB r

− or )( LBz t −
r ) returns the value between 

[0, y ]. When the iterative number increases, the item will 
return the value near zero in high probability. At the 
beginning, the GA searches in the whole space. And when 
the iterative number increases, the probability that the new 
offspring are around the parents will increase. By this way, 
the search in the local space is strengthened, which will 
help to increase the accuracy. 

Based on the un-uniform mutation operator, we propose 
range shrinkable improved genetic algorithm. When the 
iteration comes to some extent, the chromosomes will 
concentrate into a smaller space that the global solutions 
exist in. And then the new upper bound BU ′ and lower 
bound BL ′ can be decided based on those chromosomes. 
In the following iteration, the new bounds will work. In this 
way, the new offspring generated by the mutation will be in 
the local space. The density of the new offspring in the 
local space will increase, which helps to strengthen the 
search and increase the accuracy. 

In hyperbolic positioning, supposing the size of the 
population is popsize  and the chromosomes of the t th 
iteration are ),( 21

t
popsize

tt zzz r
K

rr
, when 0tt > , define  

α+= )]1,1(max['
t
iUB zx r

, 
α+= )]1,2(max['

t
iUB zy r

,  
α−= )]1,1(min['

t
iLB zx r

, 
α−= )]1,2(min['

t
iLB zy r

, popsizei K2,1=    (10) 
where α  is a parameter decided by the cell’s radius and 

0>α . Then, ],[ BUBL xx ′′  and ],[ 'UBBL yy ′  outline a 
rectangular area in which the mobile exist. As shown in 
Fig.2, the search coverage shrinks. 

Supposing the maximum iteration is 0T , the crossover 
probability is cp , the mutation probability is mp , the 
algorithm is as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0←t  

initialize the chromosomes； 
0=flag ； 

while 0Tt <  
calculate the fitness for each chromosome vector; 

roulette wheel selection； 
evenly crossbreed according to cp ; 

0ttif <  

Random number is 0

Random number is 1
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Fig.2 Search coverage 
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mperrandomnumbif <  

un-uniformly mutate based on the cell’s 
size； 

end  
0&0 ==> flagttelseif  

outline the new search coverage; 
1=flag ； 

end  

0ttif >  

mperrandomnumbif <  

un-uniform mutation based on the new 
search coverage; 

end  
end  

record the chromosome vector that has the best fitness 
in this iteration； 

1+= tt ； 

end 
Tyx ],[  is the chromosome vector that is finally 

recorded； 

In the algorithm, the selection of 0t  is important. If 0t  

is small, the algorithm may encounter the problem of 

prematurity. However, if 0t  is too large, there will be little 

improvement as the iteration based on the new bounds will 
not be enough. According to computer simulation, when 

0t  is between 06.0 T ~ 07.0 T , the accuracy of the range 

shrinkable algorithm is better than the fixed range 
algorithm with the same population size. 

IV. SIMULATION RESULTS 

Two kinds of simulations are performed. One is to 
compare the accuracy of the range shrinkable algorithm and 
the fixed range algorithm. The other is to compare the 
location performance of the improved genetic algorithm 
and Chan’s two-step LS algorithm. As Fig.3 shown, there 
are five receivers distributed arbitrarily in a 2-D plane. The 
sensor positions are: 

)0,0( 11 == yx , )500,500( 22 == yx , 
)500,500( 33 =−= yx , )500,500( 44 −=−= yx , 
)500,500( 55 −== yx . The source is at  

)230,100( 00 == yx .  
 

 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

The parameters of the genetic algorithm are as follows: 
50=popsize , 800 =T , 00 7.0 Tt = , 

15.0=cp , 25.0=mp , 5=b . 
First, the accuracy of the proposed genetic algorithm and 

the fixed coverage genetic algorithm is compared. The 
MSE= ])()[( 2

0
2

0 yyxxE −+−  are obtained from the 
average of 1,000 independent runs. The results are shown 
in Fig.4. 

 
 

 
 

In Fig.4, the MSE of the proposed algorithm and the fixed 
coverage algorithm are compared with the Cramer-Rao 
bound (CRLB). Both of these genetic algorithms follow 
closely with the Cramer-Rao bound. And the accuracy of 
the coverage shrinkable improved genetic algorithm is 
better than that of the fixed one. 

To give a performance comparison of the proposed 
method and Chan’s two-step LS algorithm, the MSE is 
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Fig.3 Localization in a 2-D plane 

)(10log 2σ
Fig.4 Comparison of MSE for the proposed genetic 

algorithm and the fixed coverage genetic algorithm 



studied by varying the TDOA noise power.  The condition 
and parameters are the same as the former simulations. The 
results are shown in Fig5.  

 
 
 

 
It can be seen in Fig.5 that the proposed genetic 

algorithm follows the CRLB more closely than Chan’s 
method. Especially, when the noise power becomes large, 
the MSE of Chan’s method jumps to a large value. The 
reason is that Chan’s method ignores the square noise item. 
When the noise is small, this kind of approximation is 
justified. However, when the noise level is high, the 
approximation is no longer justified. The coverage 
shrinkable improved genetic algorithm searches the ML 
solutions directly and the MSE can follow the CRLB 
closely even at the high noise level. 

V. CONCLUSION 

A new approach for localizing a source from a set of 
hyperbolic curves defined by TDOA measurements is 
proposed. By making use of the knowledge of the cell’s ID, 
a coverage shrinkable improved genetic algorithm can find 
the position coordinates directly. Simulation results show 
that this kind of method follows the CRLB closely even at 
high noise level. No initial guess near to the true solution is 
needed.  

The complexity of the algorithm is larger than other 
methods. But with the improvement of the CPU, this kind 
of complexity is acceptable. And in this paper, we have 
only considered TDOA error. In practical localization 
system, sensor position uncertainty is often encountered 
[11]. If the variances of the uncertainties of individual 
sensors are known, it will not be difficult to incorporate the 
reciprocal of the variances as weights in equation (10) to 

give an ML estimator. 
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