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Abstract— In this paper we investigate an active vision
technique implemented in an embedded system for 3D
shapes reconstruction. The main objective of the work is to
have a balance in the accuracy of all components in the
system where the size and autonomy of such an embedded
sensor are hard constraints. This is achieved through the
improvement of the pre-processing algorithms by reducing
the time needed to compute the spots centers. In addition,
lens distortion of the camera is included in the model to
increase accuracy when reconstructing objects.
Experimental evaluation shows that the size and the time
are reduced, precision increased, when the resources spent
on processing are relatively acceptable in comparison to the
benefits.

Index Terms— 3D reconstruction, Active stereovision,
Camera calibration, Lens distortion.

I. INTRODUCTION

ECONSTRUCTING 3D shapes is needed in several
applications in computer vision and computer graphics,
namely object recognition for robotic vision.

Numerous techniques have been developed to give
solutions to the 3D reconstruction problem. The most
common are those based on vision systems basing on either
passive or active stereovision methods, where image sensors
are used to provide the necessary information to retrieve the
depth, since is not the case in traditional photography. The
most commonly employed passive method consists of taking
two images of a scene at two different shooting angles using
either two cameras or only one camera for which an
acquisition in two different positions is done. Then the 3-D
coordinates of any point can be deduced from the 2-D
coordinates by triangulation. Using this method, only
characteristic points, with high gradient or high texture can
be detected [1].

The active stereovision methods offer an alternative
approach to the use of two cameras. They consist in
replacing one of the two cameras by a projection system
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which projects a set of structured rays. In this case, only one
image is necessary. Many implementations of active
stereovision methods have been realized. Some of them [2,9]
provided significant results using traditional computer for
application of such methods. In our research work, we have
focused on an integrated 3D active vision sensor: "Cyclope"
[1]. This sensor allows making real time 3D reconstruction
while respecting the size and power consumption constraints
of embedded systems [12] to be used in special applications
like wireless capsule endoscopes, robotic heart surgery, or
even asteroids exploration [11].

To realize this sensor, many techniques should be
involved, starting with image capturing, spatial filtering,
morphological operations, conversion gray-scale image to
binary, segmentation, region labeling, correction of lens
distortion, computation of spot centers, matching centers to
epipolar lines, and finally 3D shape reconstruction. All these
techniques will be realized in real-time. Beside, other
necessary techniques should be executed off-line, like
calibration of camera lens distortion, determination of
epipolar lines and depth model.

Among the steps listed above, we will focus in this paper
on two influencing parts to improve the accuracy of our
sensor: the computation method of the spots centers, and the
correction of lens distortion that highly affects the resulting
measures.

The second section describes briefly Cyclope. Section 3
deals with the principles of the active stereovision system
and 3D reconstruction method, explaining problem
statement. In section 4 we discuss lens distortion and its
influence on hardware implementation. In section 5, we
present methods used to extract the centers of laser spots
taking into account time and size demands. In section 6 we
summarize the experimental results. And finally we conclude
in section 7.

II. CYCLOPE

Cyclope is our integrated wireless 3D vision system based
on active stereovision technique, it uses many different
algorithms to increase accuracy and reduce processing time
and sensor size. Such properties let this sensor more
compatible for emergent and demanding applications where
size and autonomy are hard constraints. The block diagram
of “Cyclope”(figure 1) is composed of three essential parts
[1]:

Accuracy Amelioration of an Integrated Real-
time 3D Image Sensor
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Instrumentation
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Structured
light source

Image sensor

Processing Block

RadioCommunication Block

FPGA
µP

Processing
Unit

Fig. 1. Block diagram of CYCLOPE

- Instrumentation block: containing CMOS camera and a
structure light projection system.

- Processing block: integrates a microprocessor core and
a reconfigurable array. The microprocessor is used for
sequential processing and the reconfigurable array is
used to implement time consuming algorithms.

- Wireless communication block: This part is dedicated
to the OTA (Over the Air) communication to have a
wireless sensor.

To test and validate our system, a large scale demonstrator
have been realized using an original CMOS imager, a
generator of structured light constituted by an array of 361
(19x19 laser each being separated from its neighbors by a fix
angle equal to 0.77°), XUP Virtex-II Pro Development
System Board, and a Zigbee module.

III. ACTIVE STEREOVISION SYSTEM AND 3D
RECONSTRUCTION

A. Principle and mathematical model
Active stereovision system consists of a single camera and

a generator of laser-structured light that replaces the second
camera of the passive stereovision system [1].

The laser projector is combined with a diffraction network
in order to illuminate the studied scene with an array of laser
beams. Each ray is separated from its neighbors by a fix and
equal angle. The setup of active stereovision system is

represented in figure 2.
The calibration is processed according to a workspace

delimited by two planes P0 and P1 perpendicular to the
central ray of the beam, within which the object to be
analyzed is placed [3].

The 3D reconstruction is achieved through triangulation
between laser and camera. Each point of the projected
pattern on the scene represents the intersection of two lines:

 The line of sight, passing through the pattern point
on the scene and its projection in the image plane.

 The laser ray, starting from the projection center and
passing through the chosen pattern point.

The calibration process provides two sets of parameters for
each of the 361 points of the mesh [3]:

 A set of segments (eq.1), each representing the
projection, in the image plane, of the part of a ray
which crosses the workspace. This projection is the
epipolar line in a passive stereovision system with
two cameras where the laser ray is identified to the
second camera line of sight (see Fig. 4(b)).

 The relationship between the center position of a
given point on the corresponding segments of the
ray and depth of the physical point corresponding to
the point. This relation is modeled through an
hyperbolic curve (eq.2).

buav . with ),( ba 2 (eq.1)

 uz 1 with ),(  2 (eq.2)

(u,v) are the image coordinate of a laser point.

B. Calibration
The values of parameters of equations (1) and (2) are

obtained off-line using a least-square fit on the experimental
data obtained through a calibration process. Note that the
data are calculated considering lens distortion correction of
the camera. Figure 4(a) represents the sequence of 12 planes
used for calibration.

The calibration process yields a set of segments that
represents the projections of the laser rays on the image
plane (see Figure 4(b)). Our goal is to determine, for each
spot appearing on the image, the segment on which it lies
and, consequently, to associate the spot with the ray from
which it stems [3].

C. Workflow of 3D reconstruction process
As shown in Figure 3, the scene illuminated by structured

light source is captured by a CMOS camera and then stored
into memory. The captured image submits a pre-processing
phase to extract the useful data concerning the light spots.

The first stage of the pre-processing phase is to apply a
median filter to blur the boundaries between bright spots and
dark background and to remove outlier pixel intensities. The
next stage is to apply a thresholding operation in order toFig. 2. Active stereovision system

DASIP 2008 November 2008

- 20 - 



(a)

(b)
Fig. 4. (a) Calibration process: workspace delimited between

42cm and 64cm. (b) Epipolar lines

classify the bright areas and the dark area. The threshold
process often produces an image that is less than perfect
is not sufficient to separate objects from their background
common problems are noise produced by incoherent lighting.
It is often desirable to process a binary image before analysis
to remove these abnormalities. This accomplished by
applying morphological operations (erosion) on the binary
picture to remove pepper noise remaining from the median
filtration process that was applied in the first stage
segmentation process is applied to extract and label the
foreground subjects from the scene, to compute later their
centers positions.

After that, the spots centers have to be matched to
corresponding epipolar lines that were obtained off

Fig. 3. A flowchart showing different phases of 3D image reconstruction

Image
capture

Pre
processing MatchingCenters

detection

Distortion
correction

Accurate
computation

workspace delimited between

classify the bright areas and the dark area. The threshold
process often produces an image that is less than perfect and

to separate objects from their background,
common problems are noise produced by incoherent lighting.

process a binary image before analysis
to remove these abnormalities. This accomplished by
applying morphological operations (erosion) on the binary

remaining from the median
pplied in the first stage. Then a

segmentation process is applied to extract and label the
foreground subjects from the scene, to compute later their

After that, the spots centers have to be matched to
ere obtained off-line

through a calibration process [2].
At the end, the distance between each

stereoscopic system is computed from the depth
is also obtained off-line through calibration process

This workflow is represented in Figure
solid lines. Since, the blocks with dashed lines represent the
improvement implemented in our work to ameliorate the
accuracy of such a system.

D. Problem statement
As equations (1) and (2) show, the

object depends on the centers coordinates
in the image plane. Thus, any inaccurate representation of
these points will highly affect the accuracy of our results in
the 3D estimation stage. Indeed,
encountered when performing this procedure, in this paper
we will focus on two important aspects:

 Lens distortion prevents accurate
range [5], just because the true coordinates of laser
spots are deviated due to lens distortion. That makes
measurement and distance judgment difficult. So,
distortion correction process will be necessary to
accurately reconstruct the 3D coor
object. In our work, we will focus on correcting
distortion taking into account the size, time, and
power consumption constraints of embedded
system.

 How to compute the coordinate of spot centers
without consuming a considerable amount o
resources, and considering high accuracy of our
embedded system?

IV. DISTORTION CORRECTION

A. Pinhole camera model:
Physical camera parameters are commonly divided into

extrinsic and intrinsic parameters [14
define the location and orientation of the camera reference
frame with respect to the world coordinate system. Whereas
the intrinsic parameters are used to link the pixel coordinates
of an object with corresponding world coordinates in the

D image reconstruction

3D
Reconstr-

uction

Yc

Xc
r

f

v

u

v

O’O

(u,v)

Fig. 5. Pinhole camera model
(Xw,Yw,Zw): World coordinates, (O,Xc,Yc,Z

(O’,u,v): image plane coordinates.

At the end, the distance between each spot and the
stereoscopic system is computed from the depth model that

line through calibration process [2].
This workflow is represented in Figure 3 by blocks with

solid lines. Since, the blocks with dashed lines represent the
improvement implemented in our work to ameliorate the

the 3D reconstruction of an
object depends on the centers coordinates (u,v) of light spots
in the image plane. Thus, any inaccurate representation of
these points will highly affect the accuracy of our results in

, many problems were
encountered when performing this procedure, in this paper

focus on two important aspects:
Lens distortion prevents accurate perception of

just because the true coordinates of laser
spots are deviated due to lens distortion. That makes
measurement and distance judgment difficult. So,
distortion correction process will be necessary to

D coordinates of studied
object. In our work, we will focus on correcting
distortion taking into account the size, time, and
power consumption constraints of embedded

How to compute the coordinate of spot centers
without consuming a considerable amount o f
resources, and considering high accuracy of our

ISTORTION CORRECTION

Physical camera parameters are commonly divided into
14]. Extrinsic parameters

define the location and orientation of the camera reference
frame with respect to the world coordinate system. Whereas

intrinsic parameters are used to link the pixel coordinates
of an object with corresponding world coordinates in the

zc

x

y

r

P(Xw,Yw,Zw)

u)

Pinhole camera model
,Zc): camera coordinates,

plane coordinates.
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camera reference frame, they characterize the optical,
geometric, and digital characteristics of the camera.

As a first approximation, we will consider our model as a
pinhole camera (see fig. 5) that neglects all optical distortion.

The relationship between world coordinate (Xw,Yw,Zw)
and camera coordinates (Xc,Yc,Zc) defines the image
extrinsic parameters [13], and is expressed in expression (3):

T
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Where R is a 3x3 rotation matrix defining camera
orientation, and T is a 3x1 translation vector representing the
distance from the origin of the camera coordinate system to
the origin of the world coordinate system.

Since, the intrinsic parameters are obtained by using
simple triangulation for the pinhole model; the projection of
the point P to the image plane is expressed in (4), where f is
the focal length:


c
c

c
i

i
Y
X

Z
f

v
u 











~

~

(4)

Where ),(
~~

ii vu represents true coordinates (undistorted).
the relationship between the image pixel coordinates and

the image coordinates is given by the expressions:
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Where (u0,v0)are the coordinates of the principal point O’, 
(Du, Dv) are conversion factors that change metric units to
pixels, and su is the scale factor [13].

B. Lens Distortion
Pinhole camera model is based on the principle of co-

llinearity where each point in the object space is projected by
a straight line through the projection center into the image
plane. This model can be used only as an approximation of
the real camera that is actually not perfect and sustains a
variety of aberration [13]. So, pinhole model is not valid
when high accuracy is required like in our expected
applications (Endoscopes, robotic surgery..). In this case, a
more comprehensive camera model must be used, taking into
account the corrections for the systematically distorted image
coordinates.

As a result of several types of imperfections in the design
and assembly of lenses composing the camera optical
system, the real projection of the point P in the image plane
expressed above in expressions (5) , will be replaced by
expressions that take into account the error between the real
image observed coordinates and the corresponding ideal (non
observable) image coordinates.
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),('

vuvv
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u


 (6)

Where (u,v) are the ideal non-observable, distortion-free
image coordinates, and (u',v') are the corresponding real
coordinates, δu and δvare respectively the distortion along
the u and v axes.

Usually, the lens distortion consists of radial symmetric
distortion, decentering distortion, affinity distortion, and
non-orthogonality deformations.

i) Radial distortion: is caused by flawed radial curvature of
a lens and causes the actual image point to be displaced
radially in the image plane. A negative radial displacement
of the image points is referred to as barrel distortion, and due
to the fact that many wide angle lenses have higher
magnification in the image center than at periphery. This
causes the image edges to shrink around the center and form
a shape of a barrel. The pincushion distortion is the inverse
effect when the edges are magnified stronger.

As illustrated in Figure 6, this type of distortion is strictly
symmetric about the optical axis, and can be approximated
[15] using the expression (7) in terms of the Cartesian
coordinates (u,v):

k1 is the coefficient of radial distortion.

ii)Decentering distortion: This type of distortion caused
from the fact that the optical centers of lens surfaces are not
strictly collinear. This distortion has both radial and
tangential components [16], which can be written as
resulting along the u and v axes in the following form [14]:

p1 and p2 are coefficients for decentering distortion.

iii)Thin prism distortion: It arises from imperfection in
lens design and manufacturing, as well as camera assembly.
This type of distortion can be modeled by the adjunction of a
thin prism to the optical system, causing additional amounts
of radial and tangential distortions [17]. Such distortions can
be expressed [14] with distortion coefficients s1 and s2 along
the u and v axes as:

ur=k1u(u2+v2)+O[(u,v)5]
vr=k1v(u2+v2)+O[(u,v)5] (7)

ud=p1(3u2+v2)+2p2uv+O[(u,v)4]
vd=2p1uv+p2(u2+3v2)+O[(u,v)4]

(8)

Fig. 6. : (a) The ideal undistorted grid. (b) Barrel distortion.
(c) Pincushion distortion

(a) (b) (c)
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Other distortion types have also been proposed in the
literature [13], in most cases the error is small and the
distortion component is insignificant. However, it is
impossible and unnecessary to consider into account all types
of distortion. Only the major three types listed above need to
be considered in practice.

iv)Total distortion:
The effective distortion can be modeled by addition of the

corresponding expressions. Combining (7, 8, and 9), gives
the total amount of distortion along the u and v axes:

Assuming that only the first and second order terms are
enough to compensate for the distortion, and the terms of
order higher than three are negligible, we obtain [18] a
camera model to become fifth order polynomials (expression
11), where (ui,vi) are the distorted image coordinates in

pixels, and ),(
~~

ii vu are true coordinates (undistorted).

Where:
2~2~

20
~

0
~
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The unknown parameters a1,..,a8 are solved using direct
least mean squares fitting [18] in the off-line calibration
process.

C. Geometric camera calibration
The objective of the geometric camera calibration

procedure is to determine the intrinsic and extrinsic
parameters of the camera model [13]. There are many

proposed methods that can be used to estimate these
parameters, and there are also methods that produce only a
subset of the parameter estimates. We chose a traditional
calibration method based on observing a planar checkerboard
in front of our system at different poses and positions (see
Figure 7) to solve the equations of unknown parameters (12).
Some Matlab toolbox are available to perform this
calibration procedure [20]. The results of the calibration
procedure are presented in Table 1.

It is clear from the results that the two first parameters a1
and a2 are the dominant parameters, this fact is expected
because they belong to the radial distortion, known in the
literature [13, 14, 15] as the dominant distortion model. And
for this reason some proposed correction methods simplify
their models by restricting the lens distortion effect to radial
distortion [5, 16].

In this section we have introduced the distortion correction
model that we applied to both off-line calibration process
needed to estimate the eppipolar lines, and to section dealing

up=s1(u
2+v2)+O[(u,v)4]

vp=s2(u2+v2)+O[(u,v)4] (9)

u(u,v)= ur+ud+up

v(u,v)= vr+vd+vp
(10)

Fig. 7. Different checkerboard positions used for calibration
procedure

TABLE. 1 CALIBRATION RESULTS

Parameter Value error

u0 [pixels] 178.04 1.28
v0 [pixels] 144.25 1.34
f.Du.su [pixels] 444.99 1.21
f.Dv [pixels] 486.39 1.37
a1 -0.3091 0.0098
a2 -0.0033 0.0031
a3 0.0004 0.0001
a4 0.0014 0.0004
a5 0.0021 0.0002
a6 0.0002 0.0001
a7 0.0024 0.0005
a8 0.0011 0.0002

(11)
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The inverse model is deducted in expression (12):
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with spots centers computation. To reduce the computation
time, we have implemented the correction model only to the
active light spots (361 points), where the remaining part of
the picture belong to background. This improvement will
increase the accuracy of our system, specially in the last
stage of our work, where the essential feature of our sensor,
“Cyclope”, is to compute the 3D coordinates of the
illuminated spots, characterized by their centers. The
computation methods of these centers will be the object of
the next section.

V. COMPUTATION OF SPOTS CENTERS

The Threshold and Labeling processes applied to the
captured image allow us to determine the area of each spot
(number of pixels). So, the centers coordinates of these
points could be calculated as follow:

I

Ii
i

gI N

u
u


 (eq. 13) and

I

Ii
i

gI N

v
v


 (eq. 14)

ugI , vgI : abscissa and ordinate of Ith spot center.
ui and vi: coordinates of pixels constructing the spot.
NI : Number of pixels of Ith spot (area in pixels).

The goal of our work in this section is to compute the spots
centers taking into account precision demand of our
implementation, where the sub-pixel precision is important
because its influence to distance prediction stage (see
equation 2). The hardest step in center computation part is
the division operations A/B in equations (13) and (14).
Several methods are established to solve this problem.

A. Implementation of a hardware divider
Hardware dividers are computationally expensive and

consume a considerable amount of resources, and not
completely acceptable for high accuracy embedded systems.
Even the completely parameterized designs like Xilinx
pipelined divider [8] are not less expensive in slices (see
table 2). Since, some other techniques are used to compute
the center of laser spots avoiding the use of hardware
dividers. A comparison between different approaches is
present in section VI.

B. Approximation method
Some studies suggest approximation methods to avoid

implementation of hardware dividers .Such methods like that
implemented in [7] replace the active pixels by the smallest
rectangle containing this region, and then replace the usual
division by simple shifting (division by 2).

2
)min()(

* Ii
i

Ii
i

gI

uuMax
u 


 (eq. 15)

2
)min()(

* Ii
i

Ii
i

gI

vvMax
v 


 (eq. 16)

This approach is approximated in equations (15) and (16),
where (ui,vi) are the active pixel coordinates, (u*

gI, v*
gI) are

the approximated coordinates of the spot center.
The determination of rectangle limits needs two times

scanning of the image, detecting in every scanning step,
respectively, the minimum and maximum of pixels
coordinates.

For each spot, we should compare the coordinates of every
pixel by last registered minimum and maximum to assign
new values to um, uM, vm, and vM. (m: Minimum; M:
maximum). While Np is the average area of spots (number of
pixels), we can estimate the number of operations needed to
calculate the center of each spot by 4Np+6. And in global,
Nop≈ 25×N×(4NP+6) operations are needed to calculate the
centers of N spots (video-cadence 25 fps).

Such approximation is simple and easy to use but still
needs considerable time to be calculated. Beside, the error is
not negligible.

The error in such method is nearly 0.22 pixel, and the
maximum error is more than 0.5 pixel [7]. Taking the spot of
Figure 8 as an example of inaccuracy of such a method, the
real center position of these pixels is (4.47 ; 6.51). But when
applying this approximation method, the center position will
be (5;6). This inaccuracy will result mismatching problem
that affects the measurement result when reconstructing
object.

C. Our method
The area of each spot (number of pixels) is always a

positive integer, while its value is limited in a pre-
determinate interval [Nmin , Nmax]. Where Nmin and Nmax are
respectively the minimum and maximum areas of laser spots
in the image.

The spot areas depend on object illumination, distance
between object and camera, and the angle of view of the
scene.

TABLE 2 : 32 BIT, FIXED POINT, XILINX PIPELINED DIVIDER IP
CORE SPECIFICATIONS

Property
Divisor and dividend width

8 32
Number of slices 129 1666

Fmax , MHz 385 203

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10
Fig. 8. Smallest rectangle containing

active pixels

DASIP 2008 November 2008

- 24 - 



Our method consists on realizing a FIR filter to replace the
division by multiplication, to calculate the centers of each
spot.

ugI=a1.u1 + a2.u2+ … + aNI.uI

vgI=a1.v1 + a2.v2+ … + aNI.vI

In our case, the filter coefficients ai are constants and
equals. For the spot I, with area equal NI, the filter
coefficients are: a1 = a2 = ... = aNI = 1/NI .

In other words, it is sufficient to perform a simple
convolution between inputs that are the pixels coordinates of
each spot, and a short pre-determinate sequence formed of
constant filter coefficients registered in a Look Up Table (see
Table 3) with inverse proportionality relationship with the
area of each spot, the contents of LUT are indexed by spot
size.

The implementation of such a filter is very easy, regarding
that the most of DSP functions are provided for earlier
FPGAs. For example Virtex-II architecture [10] provides an
18x18 bits Multiplier with a latency of about 4.87ns at
205MHz, and optimized for high-speed operations.
Additionally, the power consumption is lower compared to a
slice implementation of an 18-bit by 18-bit multiplier [10].

For N luminous spots source, the Number of operations
needed to compute the centers coordinates is Nop≈ 25×N×NP,
Np is the average area of spots. When implementing our
approach to Virtex II Pro FPGA (XC2VP30), it was clear
that we gain in execution time and size. Comparison of
different implementation approaches is described in the next
section.

VI. EXPERIMENTAL RESULTS

The implementation results of distortion correction method
to Xilinx Virtex II Pro FPGA (xc2vp30) are summarized in
Table 4. Figure 7(a,b) presents image example before and
after correction of lens distortion. Regarding size and
Latency, it is clear that their results are suitable for our
application, and the cost-benefits assessment is acceptable
regarding high precision demands of our applications.

Comparing our method used to compute the spots centers
with two other methods (see table 5), it is clear that our
approach has higher accuracy, smaller size than
approximation method. Since it has nearly the same accuracy
of method using hardware divider, but still have a
considerably small size and uses less resources. Regarding
latency, the results of all three approaches respect real time
constraint of video cadence (25 fps).

Comparing many measures on the depth estimation before
and after the implementation of our improvements, the
results indicate that the precision of the system increased, so
that the residual error is reduced about 33% (see Figure
7(c)).

VII. CONCLUSION AND FURTHER WORK

In this paper, we have described an easy and simple
method to compute spots centers in an active stereovision
system, to guarantee accurate results respecting the
constraints of an embedded system. Whereas the accuracy
increased, because the error is approximately negligible. On
the other hand, the correction of lens distortion will increase
the response time because the model becomes fifth order
polynomials. But this cost appears acceptable regarding the
benefits in precision needed to reconstruct the 3D shape of

(a) (b)

(c)
Fig. 7. a)Checkerboard image before distortion correction b) Checke-

rboard image after correction. c) error comparison before and after
applying distortion correction and centers re-computing

TABLE 5: CENTERS COMPUTATION PERFORMANCE CARACTERISTICS

Method Slices Latency
(s)

Error
(pixels)

Approximation 287 4.7 0.21
Hardware divider 1804 1.77 0.0078
Our approach 272 2.34 0.015

TABLE 4: DISTORTION CORRECTION PERFORMANCE
CARACTERISTICS

Slices 1795 (13 %)

Latency 11.43 s
Error < 0.01 pixels

TABLE 3: FILTER COEFFICIENTS INDEXED BY SPOT SIZE
1 2 3 4 Nmax-1 Nmax

1 0.5 0.25 0.125 . . . 1/(Nmax-1) 1/Nmax
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the object, where experimental results show that we reduced
the residual error.

Since, we have a reliable model witch allows us to
determine, with high accuracy, the 3D coordinates of the
studied object from its 2D image. Our future researches will
focus on recognition of this object basing on features
extraction and statistical analysis of the shape, with
implementation of such theories on FPGA.
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Abstract --- This paper discusses the design of an entire 

Multiple Target Tracking (MTT) system. Use of MTT in driver 

assistant systems makes them very efficient and effective in 

collision avoidance and early warning. We describe the 

procedure that we chose for implementing an MTT system on 

a reconfigurable platform. We also examine in detail each of 

the task composing the MTT chain. In our implementation, 

several independent parallel tasks have been identified and 

mapped onto a multiprocessor architecture to achieve the 

deadlines imposed by the application. An Automotive-radar is 

used as the front end sensor in our application. We also take 

into account the constraints imposed by our embedded system. 

This study demonstrates that the joint utility of reconfigurable 

circuits (namely FPGA) and MPSoC, facilitates the 

development of a flexible and efficient MTT system.  

I. INTRODUCTION 

Unfavorable weather, low visibility conditions,   

misjudgment of delicate situations and physical or mental 

stress are among the reasons that put the lives of the driver 

and his/her passengers in danger. Relieving the driver of the 

stressful driving conditions guarantees a drop in road 

accidents. Driver Assistant Systems (DAS) help drivers take 

correct and quick decisions in delicate situations. These 

systems provide the driver a realistic assessment of the 

dynamic behavior of potential obstacles well before it is too 

late to react.  

Use of Multiple-Target Tracking (MTT) enhances the 

affectivity of driver assistance systems to aid drivers in 

taking correct decisions in critical situations. The purpose of 

target tracking is to collect data from the sensor field of 

view (FOV) containing one or more potential targets of 

interest and to partition the sensor data into sets of 

observations, or tracks [1]. In context of driver assistance, a 

target tracking system detects and monitors the dynamic 

behavior of one or more obstacles in the way of the host 

vehicle. 

Our implementation of the MTT system has two main 

features among others. First, being radar-based, it has the 

advantages of longer range as compared to camera based 

systems. It performs better in bad visibility conditions and 

has lower computational requirements [3]. Radar based 

multi-target tracking is achievable with relatively more ease 

and less complexity as compared to camera based tracking. 

Moreover, radar helps detect obstacles at longer distances 

and hence ensures longer reaction time for vehicle drivers. 

Secondly, we implement our system on FPGA using 

MPSoC architecture which is inherently flexible and 

adaptable. This feature capitalizes on advances in FPGA 

fabrication technology allowing a cost effective 

implementation of complex embedded applications. 

Charting of processor properties over the last three decades 

shows that the performance of a single processor has leveled 

off in the last decade[13]. Dedicated hardware 

implementation may be useful for high speed processing but 

it does not offer the flexibility and programmability desired 

for system evolution. Applications with tight resource-

consumption and runtime constraints are increasingly 

resorting to MPSoC architectures. The move to MPSoC 

design elegantly addresses the power issues faced on the 

hardware side. Creating multiple processors that execute at 

lower frequency, results in comparable overall performance 

in terms of instructions per second while allowing designers 

to slow down the clock speed, which is a major constraint 

for low power designs [13]. 

Many studies have been done on the isolated parts of 

MTT system [2, 3 7,8] but implementation of the complete 

MTT system on a reconfigurable platform and its 

application to automotive safety is rather rare. 

II. THE APPLICATION 

A. Terminology 

In context of target tracking applications, a target 

represents an obstacle in the way of the host vehicle. With 

every obstacle is associated a state which is represented as a 

vector that contains parameters defining target’s position 

and its dynamics in space e.g. its distance, speed, azimuth or 

elevation etc. A state vector with n elements is called n-state 

vector. A concatenation of target states defining the target 

trajectory or movement history at discrete moments in time 

is called a track. As detailed below in MTT, tracking deals 

with 3 quantities: the Observation, which corresponds to the 

measurement of a target’s state by a sensor (radar) at 

discrete moments in time. It is one of the two 

representations of the true state of the target. The other 

representation is a calculated “guess” or prediction of the 

DASIP 2008 November 2008

- 27 - 



target’s true state before the observation arrives. Taking into 

account the observation and the prediction, an estimate 

about the true target state is made. Estimate is the corrected 

state of the target that depends upon the variances of both 

the observation and the prediction. In this paper, the term 

scan is used to name the periodic sweep of radar FOV 

giving observations of all the detected targets.  

 

B. MTT building blocks 

 

A simplified view of Multiple Target Tracking (MTT) 

system is given in figure 1. The system can broadly be 

divided into two main functions namely Data Association 

and Filtering & Prediction. The two functions work in a 

close loop. The data association function is further divided 

into three sub-functions; “Track maintenance”, 

“Observation-to-Track Assignment” and “Gate 

Computation”. Detailed description of these functions and 

sub-functions is given in the next section. 

 

III. APPLICATION DEVELOPMENT 

For the purpose of parallelized implementation we 

organized the application into sub-modules as shown in 

figure 2. The functioning of the system is explained as 

follows.  

Assuming recursive processing as shown by the loop in 

figure 1, tracks would have been formed on the previous 

radar scan. When new observations are received from the 

sensor the processing loop is to be executed. Incoming 

observations are first considered by the “Gate checker” for 

updating of the existing tracks. Gating tests determine 

which possible “observation-to-track” pairings are 

reasonable, by attributing a cost to each pairing. The costs 

are calculated as the statistical distance between the 

predictions of the target states given by the filters and the 

observed state coordinates received from the radar. These 

costs are put together in a cost matrix which is then passed 

on to the assignment solver to determine the finalized 

pairings. The pairings are made in a way to ensure minimum 

total cost for all the pairings. The finalized observation-track 

pairings are passed on to the tracking filters which use them 

for  estimating the current states of targets and predicting the 

next states as well as the error covariance associated with 

these predictions.  

The predicted states and predicted error covariance are 

used by the “Gate compute” function to define probability 

gates or windows around the predicted states. The 

dimensions of the gates being dictated by the prediction 

error covariance, these gates demarcate the probability 

boundaries for the next state coordinate measurements. The 

“Gate Compute” sub-function can be viewed as a first level 

of “screening out” the unlikely target-track associations in 

case of multiple observations falling close to a single 

prediction or vice versa. In the second level of “screening”, 

namely observation-to-track assignment, a strictly one-to-

one coupling is established between observations and tracks. 

The “Track Maintenance” sub-function consists of three 

blocks. The “obs-less Gate Identifier” identifies the gate 

where no observation falls. This indicates a probable 

disappearance of an already known target and hence the 

deletion of its track after confirmation.  The “New Target 

Identifier” detects observations that fall outside all the gates. 

These observations are potential candidates for initiating 

new tracks after confirmation. The “Track Init/Del” block 

initiates new tracks or deletes existing ones when needed. In 

context of this work, 3 observations out of 5 scans for the 

same target initiate a new track while 3 consecutive misses 

out of 5 scans for an existing target prompts the deletion of 

its track. The “Tracking filters” block in figure 2, is 

particularly important. We use Kalman filters for this block. 

The number of filters employed is equal to the maximum 

number of targets to be tracked. In our current work we have 

fixed this number at 10.  In the final system we will increase 

it up to 20 as the radar we are using can measure the 

coordinates of a maximum of 20 targets. Hence this block 

will use 20 similar filters in final system. 

At start up, at most 10 of the “incoming observations” 

would simply pass through the “Gate Checker”, “Cost 

Matrix Generator” and “Assignment Solver” on to the 

filters’ inputs. The filter takes an observation as an 

“inaccurate” representation of the “true state” of the target 

and the amount of inaccuracy of the observation depends on 

the measurement variance of the sensor. The filter then 

estimates the current state of the target and predicts its next 

state before the next observation is available. To estimate 

the true state we need a process model, a measurement 

model and an estimator. These are all detailed below. 

Filtering  
& 

Prediction  
Obs-to-Track 

Assignment 

 

Data Association 
Track  

Maintenance 

 

Gate 

Computation 

 

Incoming 

Observations 

Estimated 

Target- 

Coords 

Figure 1:  A simplified view of MTT 
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A. Process Model 

The process model mathematically projects the process 

current state to the future. This can be presented in a linear 

stochastic difference equation as 

 

 

In equation (3.1) Yk-1 and Yk are n-dimensional state 

vectors that includes the quantities to be estimated. Vector 

Yk-1 represents the state at instant k-1 while Yk represents the 

state at instant k. The n x n matrix A in the difference 

equation (3.1) relates the state at time step k-1 to the state at 

time step k, in the absence of either a driving function or 

process noise. Matrix A is the assumed known state 

transition matrix which may be viewed as the coefficient of 

state transformation from instant k-1 to instant k, in absence 

of any driving signal and process noise. The n x l matrix B 

relates the optional control input kU ∈ ℜℓ  to the state Yk 

whereas  Wk-1 is zero-mean additive white Gaussian  process 

noise (AWGN) with assumed known covariance Q. Matrix 

B is the assumed known control matrix and Uk is the 

deterministic input, such as the relative position change 

associated with the host-vehicle (own ship) motion.  

B. Measurement Model 

To describe   the relationship between the true state and 

the measurements (observations) a measurement model is 

required. It can be described as a linear expression  

 

                 Zk = HYk + Vk  (3.2) 

 

Here Zk is the measurement or observation vector 

containing two elements distance d and angleθ  as shown 

below.  The m x n observation matrix H in the measurement 

equation (3.2) relates the current state to the measurement 

(observation) vector Zk. The terms V
k
 in equation (3.2) is a 

random variable representing the measurement noise.  

For implementation we chose the example case given in 

[2]. In this example the matrices and vectors in equations 

(3.1) and (3.2) have the forms shown below. In the rest of 

the paper the numerical values of all the matrix and vector 

elements are borrowed from this example. Quantity T is 

equal to 0.02 seconds and it is the radar Pulse Repetition 

Time (PRT) specific to the radar unit we are using in our 

project. Yk, A and Zk have the following forms: 
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Here y11 is the target range or distance, y21 is range rate or 

speed, y31 is angle (azimuth), y41 is angle rate or angular 

speed. In vector Zk the element d is the distance 

measurement and θ  is the azimuth angle measurement. 

Matrix B and control input UK are ignored here because 

they are not necessary in our application.  

Having devised the process and measurement models, we 

need an estimator which would use these models to estimate 

the true state. Our solution is based on the Kalman filter 

which is a recursive Least Square Estimator (LSE) and is 

considered to be the optimal estimator for linear systems 

[4,5]. 

C. Kalman Filter  

Many good derivations of the Kalman filter and 

discussions of its applications are presented in the literature 

[4,5,6], so only the resulting equations are given here.  

Given the process and the measurement models from (3.1) 
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Figure 2:  The Proposed MTT implementation 
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and (3.2), the Kalman filter equations are 

Here ˆ
kY is state estimation vector, ˆ

kY
−

is state prediction 

vector, K is Kalman gain matrix, kP
− is prediction error 

covariance matrix, kP is estimation covariance matrix and I 

is an identity matrix of the same dimensions as Pk . 

The newly introduced vectors and matrices in equations 

(3.3) have the following forms. 

 

Here 
11ŷ
−

is range Prediction 
21ŷ
−

 is speed prediction 
31ŷ
−

 

is azimuth angle prediction, 
41ŷ
−

 is angular speed prediction 

11ŷ is range estimate, 
21ŷ  speed estimate, 

31ŷ is angle 

estimate and
41ŷ is angular speed estimate, all for instant k.  

Matrices K and kP
− have the following forms.  

 

Matrix kP is similar in form to kP
− except for the 

superscript ‘-‘. The scan index k has been ignored in the 

elements of these matrices and vectors for the sake of 

notational simplicity.  
The Kalman filter cycles through the “prediction–

correction” loop shown pictorially in figure 3. In the 

prediction step (also called time update), the filter predicts 

the next state and error covariance associated with the state 

prediction using equations (3.3a) and (3.3b) respectively. In 

the correction step (also called measurement update), the 

filter calculates the filter gain and estimates the current state 

and the error covariance of this estimation using equations 

(3.3c) through (3.3e).  

 

Figure 4 shows the state (position) of a target estimated by 

the Klaman filter against the true position and that measured 

by the radar. Notice how closely the estimated position 

follows the real position as compared with the measured 

position after the 20 transitional iterations.   

 

As we are dealing with multiple targets at the same time, we 

have to identify which of the incoming observed states to 

associate with which of the predicted states for making the 

estimations. This is the job of data association function. The 

data association sub-modules are explained in the following 

paragraphs. 

D. Gate Computation 

The first step in data association is gate computation. The 

“Gate Compute” block receives ˆ
kY
−

  and kP
−  form the 

Kalman Filters for all the tracks. Using these two quantities 

the “Gate Compute” block defines the probability gates or 

windows which are used to verify whether an incoming 

Figure 4: Estimated target position 
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observation can be associated with an existing track. The 

gate computation process is summarized below. 

Define Yɶ to be the residual or innovation vector which is 

the difference between the actual measurement kZ  and the 

expected (predicted) measurement vector ˆ
k

HY
− 

 
. In 

general at scan k, 

 

              ˆii iZ HY Y
−

= −ɶ   (3.4) 

 

Time index k is ignored for simplicity. Now define a 

rectangular region such that an observation vector Z
k
 (with 

elements z
kl

) is said to satisfy the gate of a given track if all 

elements ilYɶ  of residual vector iYɶ  satisfy the relationship 

         Gll il rk ilZ KYH Y σ−− = ≤
⌢

ɶ  (3.5) 

Here i is an index for track i, G signifies for gate and l is 

replaced either by d or byθ , whichever is appropriate (see 

equations 3.10 and 3.11). The term rσ  is the residual 

standard deviation and is defined in terms of the 

measurement variance 2
zσ  and prediction 

variance 2

ˆ
ky

σ − .Typical choice for GlK is [ ]3.0GlK ≥ . This 

large choice of gating coefficient is typically made in order 

to compensate for the approximations involved in modeling 

the target dynamics through the Kalman filter covariance 

matrix [1]. This concept comes from the famous “3 sigma 

rule” in statistics. 

In its matrix form equation (3.4) can be simplified down 

to 

11

21

11

31

ˆ

ˆ

i

i

i

i

i

dy y
Y

y yθ

−

−

 − 
 = = 
 −   

ɶ
ɶ

ɶ
         (3.6) 

 

Consequently equation (3.5) gives 

      

 11

21

i

i

Gl r

y
K

y
σ≤

ɶ

ɶ
        (3.7) 

 

The residual standard deviations for the two state vector 

elements are defined as follows 

 

  11 22rd
prσ

−
= +            (3.8) 

22 44r prθ
σ

−
= +                      (3.9) 

 

From (3.7), (3.8) and (3.9) we get  

 

11 11 223.0
i idy y pr

−
= ≤ +ɶ ɶ        (3.10) 

21 22 443.0
i iy y prθ

−
= ≤ +ɶ ɶ       (3.11) 

 

Equations (3.10) and (3.11) together put the limits on the 

residuals 
idyɶ and

iy θ
ɶ . In other words, the difference between 

an incoming observation and prediction for track i must obey 

equations (3.10) and (3.11) for the observation to be assigned 

to track i. 

E. Gate Checker 

The “Gate checker” tests whether an incoming 

observation fulfills the conditions set in equations (3.10) and 

(3.11).  In effect, this block sets or resets the binary elements 

of an NxN matrix termed as the “Gate Mask” matrix M.  

Here N is the maximum number of targets and tracks 

being processed. If an observation j fulfills both these 

conditions for a track i, the corresponding element mij of 

matrix M is set to 1 otherwise it is reset to 0.   

Matrix M would typically have more than one 1’s in a 

column or a row.  The ultimate goal is to have only one ‘1’ 

in a row or a column for a one-to-one coupling of 

observations and predictions.  

 

To achieve this goal, the first step is to attach a cost to 

every possible coupling. This is done by the “Cost 

Generator” block explained next.  

 

F. Cost Matrix Generator 

The “Cost Matrix Generator” associates a cost with every 

possible observation-prediction pairing. The cost cij for 

associating an observation j with a prediction i is the 

statistical distance 2
ijd  between the observation and the 

prediction when mij is 1. The cost is an arbitrarily large 

number when mij is 0.  

The distance 2
ijd  is calculated as follows. 

 

Define   T
kijS H P H R
−= +       (3.12) 

 

Here j is an index for observation j and i is the index for 

trackij in a scan,  ijS  is the residual covariance matrix. The 

statistical distance 2
ijd  is the norm of the residual vector

ijYɶ  

1 if obs j obeys (3.10) & (3.11) for track i 

 

0 otherwise 
 mij = 

11 12 1

21 22 2

1 2

N

N

N N NN

M

m m m

m m m

m m m

• • • 
 

• • • 
 • • • • • •
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            2 1T
ij ijij ijd SY Y

−= ɶ ɶ       (3.13) 

 

 

 

Equation (3.12) can be written in its matrix form and 

simplified down to 

 

    1111 13

2231 33

ij

p pr
S

p p r

− −

− −

 +
 =
 + 

     (3.14) 

 

Using equations (3.6), (3.13) and (3.14), 2
ijd  is calculated 

as follows. 

( ) ( )( )

2233 13 11
11 21

211131 112

11 2211 33 11 33
* *

i

i i
i

ij

p p yr
y y

yp p r
d

p p p pr r

− −

− −

− − − −

 + −  
     
 − +   

=
+ + −

ɶ
ɶ ɶ

ɶ

  

 

Recall here that
 

11i idy y=ɶ ɶ  and
21i iy y θ=ɶ ɶ .  

 

 

The cost matrix demonstrates a conflict situation where 

several observations are potential candidates to be 

associated with a particular prediction and vice versa. A 

conflict situation is illustrated in figure 5.  

To resolve the conflicts, the cost matrix is passed on to 

the “Assignment Solver” block which treats it as the well 

know assignment problem. 

G. Assignment Solver 

The assignment problem is stated as follows. 

Given a cost matrix of elements ijc , find a 

matrix { }ijX x= , such that 
1 1

n m

ij ij
i j

C c x
= =

= ∑ ∑   is minimized 

  subject to         

1

1

ij
i

ij
j

jx

ix

= ∀∑

= ∀∑
 

  Here xij is a binary variable used for ensuring that an 

observation is associated with one and only one track and a 

track is associated with one and only one observation. This 

requires xij to be either 0 or 1 i.e. { }0,1ijx ∈ .  

There are several algorithms for finding matrix X. The 

most commonly used among them are Munkres algorithm 

[9] and Auction algorithm. We use the former in our 

application. Matrix X below shows a result of the 

“Assignment Solver” for a 4x4 cost matrix. It shows that 

observation 1 is to be paired with prediction 3, observation 2 

with prediction 1 and so forth.  

 

 
 

These pairs are then finally passed on to the relevant 

Kalman filters to estimate the states of the concerned targets.  

All the steps “A” through “G” are repeated for ever in the 

loop in figure 1. However, there are certain cases where 

some additional steps have to be taken too.  These steps and 

the circumstances where they become relevant are explained 

in the next section. Together these three steps are called 

“Track Maintenance”. 

H. Track Maintenance 

In real conditions there would be one or more targets that are 

detected in the current scan but did not exist in the previous 

scans. On the other hand there would be situations where one 

or more of the targets being tracked would no more be in the 

radar FOV. The first case is the “New target Identification” 

whereas the latter one is the “Observation-less Gate 

Identification” case.  A new target is identified when its 

observation fails all the already established gates i.e. when all 

the elements of a row in the “Gate Mask” matrix M are zero. 

The “new target identifier” starts a counter for the newly 

identified target. If the counter reaches 3 in five scans, the 

target is confirmed and a new track is initiated for it. The 
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counter is reset every five scans. The case of “Observation-

less Gate” indicates the disappearance of a target from radar 

FOV. This is manifested when all the elements of a column 

in the “Gate Mask” matrix M are zero. The “Obs-less Gate 

Identifier” looks for 3 consecutive “misses” in 5 scans to 

confirm the disappearance of a target. The “Track Init/Del” 

initiates or deletes a track when needed. 

IV. APPLICATION MAPPING TO MPSOC 

We coded the application in ANSI C and distributed the 

application over different processors as distinct functions. 

Communication among the function is such that we have to 

implement a producer-consumer architecture for the system 

as shown in figure 6. Details of this architecture can be 

found in [15]. Similar considerations have been proposed in 

[10, 11, 12]. 

 

Kalman filter, as mentioned earlier above, is recursive 

algorithm looping around prediction and correction steps. 

Both these steps involve matrix operations on floating point 

quantities. This makes the filter a strong candidate to be 

mapped onto a separate processor. Thus for tracking 10 

targets at a time, we need 10 identical processors executing 

10 Kalman filters.  

The assignment-solver is an algorithm consisting of six 

distinct iterative steps [9]. Looping through these steps 

demands a long execution time hence this function cannot 

be combined with any of the other functions. So the 

assignment solver is another strong candidate to be mapped 

onto a separate processor 

The “Gate Compute” block regularly passes information 

to “Gate Checker” which in turn, is in constant 

communication with “Cost Matrix Generator”. So we group 

these three blocks together and map them onto a single 

processor to minimize inter-processor communication 

which would have required extra buffers and would have 

added to the complexity of the system. Avoiding 

unnecessary inter-processor communication is also desirable 

for saving power. 

The three blocks of the “Track Maintenance” sub-

function individually don’t demand heavy computational 

resources, so we grouped them together for mapping onto a 

processor.  

Using Altera’s Quartus II and SOPC design tools, we 

implemented the system with the NIOS II processors. The 

choice of using NIOS II (e) or NIOS II (s) is driven by the 

results of several tests done on the codes. Inserting time 

stamps into the code at strategic points, we came to know 

that the filter spent more than 90% of the time in 

multiply/divide operations. So the optional “hardware 

multiply” and “hardware divide” are included with the 

standard processors for the filters to augment their ALU’s. 

This augmentation is termed as “custom instruction” in 

NIOS II literature [14]. It is helpful in speeding up the 

filtering functions because the filters involve numerous 

multiply/divide operations on floating point numbers. 

V. DISCUSSION AND RESULTS 

In the very early stages of the work, we implemented a 2-

state Kalman filter in hardware using VHDL. It not only 

took enormous design efforts but also consumed 23,327 

LUTs on the FPGA. In fact one 2-state Kalman filter needs 

about 48% of the Stratix II 2S60 FPGA resources. 

In our current design we are using ten 4-state filters apart 

from the other system components. Implementing a fully 

hardware system with ten 4-state filters would have been 

simply infeasible. The NIOS II (e) consumes 600 to 700 

logic elements (LEs) whereas NIOS II (s) consumes 1200 to 

1400 LEs. The whole MPSoC that we propose consumes 

almost 30,000 logic elements which are 50% of the 

reconfigurable resources on Stratix II 2S60 FPGA.  

The radar sensor we are using has a PRT of 20 ms so we 

have to go round the “data association-filtering” loop for all 

the 10 targets in less than 20 ms. Using 100 MHz clock, the 

slowest function in the application i.e. the filter takes 15 ms 

to complete the prediction-correction loop discussed earlier. 

This is well below the 20 ms threshold set by the radar PRT.  

 

Figure 7 shows how the run times of different functions 

vary with respect to the maximum number of targets being 

tracked. Because there are as many filters as the maximum 
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number of targets and all the filters run concurrently on 

separate processors, their run time remains unchanged 

whatever the number of targets and filters. The run time for 

the combined functions of Gate-Compute, Gate-Checker 

and Cost-Matrix-Generator varies almost linearly with the 

number of targets. Here it would be expected that the run 

time vary exponentially because the number of elements in 

Gate Mask matrix M and cost matrix C is the square of the 

number of targets. But a higher number of targets also 

increase the number of observations failing one or several 

gates. As discussed above, the computations reduce 

considerably when an observation does not pass one or 

several gates. This accounts for the almost linear change in 

the run time for these functions. The Assignment Solver 

shows an exponential rise in run time because the algorithm 

is O(N
2
). The Track Maintenance function behaves 

randomly since the numbers of disappearing and new targets 

vary randomly. 

VI. RELATED WORK 

To our understanding, comprehensive literature about 

implementation of complete MTT system in FPGA does not 

exist. Some work has been done on isolated parts of the 

MTT system. For example in [2] the authors propose an 

FPGA implementation of the estimation part of MTT 

system. Apart from being limited only to estimation, this is 

a fully hardware implementation. As mentioned earlier in 

the introduction, fully hardware designs lack the flexibility 

and programmability needed for the ever evolving modern 

day applications. A fully hardware implementation of the 

Kalman filter only, is also proposed in [3]. This 

implementation also has all the above mentioned limitations 

for the same reasons. An attempt to implement an MTT 

system in hardware for maritime application is documented 

in [7]. Besides being a completely hardware implementation 

and specific to maritime applications, the work presented 

here is inconclusive.  

In contrast to the works mentioned above, we consider a 

complete MTT system implementation. Our MPSoC 

architecture of the system is inherently flexible, 

programmable and scalable. Thus it can evolve very easily 

with advances in technology, improvement in application 

algorithms and market demands. The use of several 

concurrently running processors achieves the overall run 

time constraints. Several low frequency processors running 

concurrently consume less power compared to a single 

processor with a high frequency [13]. The reconfigurability 

of the components enables their customization according to 

application and further saving FPGA resources. 

VII. CONCLUSIONS AND FUTURE WORK 

We presented an application-specific MPSoC architecture 

for MTT based driver assistant system. The system is 

implemented in FPGA with Altera’s SOPC builder and 

NIOS II processors. The system uses 50% of the 

reconfigurable resources on a Stratix II 2s60 FPGA which 

contains 60,000 logic elements. We currently cater for a 

maximum of 10 targets. The system is easily evolvable. It is 

not only a complete embedded MTT solution but is also 

economical and power efficient as compared to fully 

hardware implementations. We plan to take the system 

further up the evolution hierarchy in the near future. On the 

application side, we intend to take dynamically varying 

number of targets into account. This would require us to 

dynamically vary the number of filter configurations on the 

FPGA. Tracking precision can be improved through better / 

newer algorithms e.g. extended Kalman Filter (EKF), 

auction algorithm for assignment, radar-signature aided data 

association etc.  

On the architecture side, new processor configurations and 

interconnections shall be evaluated for run time and power 

consumption improvement. To integrate the system with 

other electronic safety systems onboard a vehicle, we shall 

add a CAN (Controller Area Network) interface to the 

system. 
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Abstract— Biometric verification methods have proven to be
very efficient, more acceptable and easy for users than traditional
token based methods. This paper presents an efficient yet
simple Palmprint verification system based on the discrete cosine
transforms (DCT) and linear discriminant analysis (LDA). First,
the dimensionality of the original palmprint images is reduced by
applying DCT on the non-overlapping blocks. Next, the truncated
DCT coefficients for all the blocks are concatenated to form an
independent 1-D data vector. This process makes the subsequent
LDA more efficient for data discrimination since implementing an
LDA on the DCT space helps to maintain the most discriminating
and variant palmprint features. Finally, a cosine measure is used
to calculate the similarity between registered and claimedperson
based on palmprint data. The proposed method was assessed on
PolyU palmprint database of 2000 images giving a verification
rate of 99.17%.

I. I NTRODUCTION

Automatic verification systems that make use of biometric
data, such as, distinctive physiological and behavioral char-
acteristics of the human, are becoming ever more widely
used for access control, surveillance, computer security,and
in law enforcement applications. Such biometrics are iris,
retina, fingerprint, face, palmprint and voice. In the past few
years palmprint based authentication has been regarded as
a new attempt and a necessary complement to the existing
biometric measures, due to its high acceptance by users in
many access control applications. For example, users accept
palmprint biometrics as is being less stressful than fingerprint.
Moreover, users admit that they feel less comfortable when iris
is used as a biometric system since they have to present their
eyeball to the sensing device. Furthermore, when compared to
other biometrics traits, palmprint offers a large palm areafor
feature extraction with plenty of discriminating featuressuch
as principal lines, wrinkles, ridges, minutiae points, singular
points, texture, ... etc.

Recently a number of research papers on palmprint based
biometrics have been proposed. The proposed methods can
be divided into two approaches: line-based and statical-based.
In a line-based approach, recognition is based on extracting
lines and creases features from the palmprint using different
edge detection methods [1][2][3]. The success of this ap-
proach relies highly on the accuracy of the feature detection

schemes. However, this method is quite complex due to the
difficulties in extracting line structures. In addition, creases
and ridges of the palm very often overlap, which complicate
the feature extraction task. Moreover, line-based approaches
are not invariant against rotation, translation and illumination
changes. The second statical-based approach is more reliable
and is based on an attempt to capture and define the palmprint
as a single data set. The palmprint image is treated as a
two-dimensional pattern of intensity variations. Under this
approach, palmprint matching is carried out by identifyingits
basic statistical regularities. Well known statical methods such
as principal component analysis (PCA) and Karhunen-Loeve
transform (KLT) are then employed to describe, analyze and
classify palmprint data [4][5]. Other more reliable statistical
approaches such as Fisherpalms technique in which a linear
discriminant analysis (LDA) is performed on the reduced
dimensionality feature vector resulting after a PCA is applied
of raw feature data [6]. Compared with an eigenpalms ap-
proach (i.e., through using a PCA approach), the Fisherpalms
approach is more insensitive to illumination variations and
seeks projections that are efficient for data discrimination
and dimension reduction. Another statistical approach such
as independent component analysis (ICA) which computes
the basis components that are statistically independent oras
independent as possible based on de-correlating higher order
statistics from the training images has also been used in palm-
print recognition problems[7][8]. However the discriminating
power and computational requirements of these approaches
are greatly related to the dimensionality of the original data
and the number of training samples. When a palmprint data-
base becomes large, the training time, memory requirements
will significantly increase and the discrimination performance
will be affected (i.e., large covariance matrix). Consequently,
dimensionality reduction is a very important step which will
greatly improve the feature extraction accuracy, verification
speed and storage capacity especially for palmprint biometric
problems where data is (i) high dimensional, (ii) very often
contains information that is less discriminative or that isnot
useful for recognition (irrelevant information) and (iii)data
dimensionality reduction will reduce the system’s memory and
computational complexity.
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(a) (b)

Fig. 1. Palmprint image and its DCT image

In this paper, a DCT is applied on non-overlapping blocks
in the image for dominant feature compactness and then
the significant DCT components are selected to form 1-D
independent data vector. Once this done, an LDA is performed
on the sorted data vectors to extract the most discriminating
features. By combining the DCT and LDA those useful/highly
discriminating features can be obtained efficiently. Finally,
the similarity between a registered vectors and the tested
ones is carried out using a cosine measure in order to clas-
sify/recognise palmprint data.

The rest of the paper is organized as follows. A review
of discrete cosine transform (DCT) is described in Section
II. The proposed approach is described in detail Section III
while Section IV gives some experimental results. Finally,
conclusions are drawn in Section V.

II. D ISCRETECOSINE TRANSFORM

The discrete cosine transform (DCT), which has been
widely used in numerous problems such as signal processing,
computer vision and image processing applications, can be
seen to be asymptotically equivalent to the original Karhunen-
love transform (KLT) for signal de-correlation [9]. For an
MxN image, the 2-D DCT can be calculated as follows:

F (u, v) = a(u)a(v)

M−1
∑

x=0

N−1
∑

y=0

f(x, y)

x cos[
(2x + 1)uπ

2M
] cos[

(2y + 1)vπ

2N
] (1)

with:
0 ≤ u ≤ M − 1, 0 ≤ v ≤ N − 1 (2)

and:

a(u) =

{

1/
√

M for u = 0
√

2/M for 1 ≤ u ≤ M − 1
(3)

a(v) =

{

1/
√

N for v = 0
√

2/N for 1 ≤ u ≤ N − 1
(4)

It can be noticed that theMxN DCT coefficient matrix covers
all the spatial frequency components of the image. Fig.1(a)
and (b) represent a palmprint image and its DCT coefficients,
respectively. From Fig.1(b) it can be clearly seen that the
coefficients with large magnitude (energy) are mainly located
in the upper-left corner of the DCT matrix.

III. DCT COEFFICIENTSSELECTION

In our proposed method, a DCT is used as a pre-processing
step followed by a more sophisticated method for extracting
the significant features from a palmprint image. The advantage
of using DCT can be attributed to its de-correlation power and
feature compactness properties. As shown in Fig.2, the first
step in our proposed scheme is to subdivide the palmprint
image into non-overlapping pixel blocks of size 8 x 8. They
are subsequently processed from left to right then top to
bottom and its DCT is computed. Once each block’s DCT
coefficients are carried out, they are re-ordered in a zig-
zag fashion as illustrated in Fig.3. The resulting 1-D re-
ordered vector is qualitatively arranged according to increasing
spatial frequency from the low frequency (large magnitude)
to the high frequency (small magnitude). In each block, the
coefficients with less information can be empirically discarded
since there is none rule that can be used to exactly distinguish
between the spectrum pass and high frequencies. Determining
the number of the discarded coefficients is a crucial task
and needs an careful care. In our method, a range of a
DCT coefficients are kept the same for each block after the
zig-zag scan in order to use them in the construction of
the eigen space. For example for an image of 128 x 128
palprint image divided into 256 non-overlapping blocks with
35 coefficients each, a 1-D vector of 8960 coefficients are
obtained. The 1-D vector x representing a palmprint image
is composed by concatenating the truncated coefficient of the
blocksBlock1, Block2, ...Block256 (see Fig.3).

Finally, in order to obtain the most discriminant features
of the palmprint, an LDA is applied onto the truncated DCT
coefficients obtained. This is useful since an LDA will not only
reduce the high dimensionality of the truncated 1-D feature
vector but also will identify those features that are highly
efficient for feature discrimination. In other words, it will
determine a low-dimensional space which clusters the images
of the same class and separates images of different classes.

Given a set of anN training images [x1, x2, ..., xN ]
where each image belongs to one ofc classes images
[X1, X2, ..., Xc], an LDA selects a linear transformation ma-
trix W in such a way that the ratio of the between-class scatter
and the within-class scatter is maximized. Mathematically, the
between-class scatter matrix and the within-class scattermatrix
are defined by:

SB =

c
∑

i=1

Ni(ui − u)(ui − u)T (5)

and

SW =

c
∑

i=1

∑

xk∈Xi

(xk − ui)(xk − ui)
T (6)

respectively, whereui denotes the mean image of classXi, u
denotes the mean image of entire training set andNi denotes
the number of images in classXi. However, all the scatter
matrix SW can be singular since the dimension of image
vector exceeds, in general, the number of data points (usually
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known as singularity problem). To circumvent this problem a
PCA technique is used to reduce the vector dimension before
applying LDA. Then, LDA computes an orthonormal matrix
Wopt to maximize the ratio of the determinant of the between-
class scatter matrix to the determinant of the within-class
scatter matrix.

|WT SBW |
|WT SW W | (7)

Wopt is known to be the solution of the following eigenvalue
problem:

SBwi = λiSW wi, i = 1, 2, ..., m (8)

where [w1, w2, ..., wm] is the set of generalized eigenvectors
corresponding to them(m ≤ c − 1) largest generalized
eigenvaluesλi, i = 1, 2, ..., m. The dimensionality reduction
also allows SW and SB to be efficiently calculated. The
optimal linear feature extractorWopt is then defined as:

Wopt = WT
lda ∗ WT

pca (9)

where Wpca is the PCA projection matrix andWlda is the
optimal projection obtained by maximizing:

Wlda = argmax
|WT WT

pcaSBWpcaW |
|WT WT

pcaSW WpcaW | (10)

The discriminating feature vectorsy projected from the trun-
cated DCT domain to the optimal subspace can be calculated
as follows:

P = WT
opt x (11)

where x are the truncated DCT coefficient vectors.
The similarity between a training and testing images is

carried out using cosine distance given by:

sim(P, Q) = 1 −
∑n

i piqi
√

∑n

i p2

i ∗
∑n

i q2

i

(12)

whereP = [p0, p1, ..., pn] is the database feature vector,Q =
[q0, q1, ..., qn] is the claimed feature vector andn is the length
of the feature vector.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed method, the
PolyU palmprint Database [7] consisting of 2000 palmprint
images of 100 subjects was used. The resolution of all of the
original palmprint images is 384x284 pixels taken with 75 dpi
(see Fig.8). 20 samples from each subject were collected in
two sessions: 10 samples were captured in the first session
and the other 10 in the second session. The average interval
between the first and the second collection was around two
months. The palmprint images are orientated and the central
part of the image where an area of 128x128 pixels is cropped
to represent a palmprint. The lighting conditions in the two
sessions clearly result to variation of visual texture of the
images (see Fig.8).

The 5 images of the first session are chosen randomly as
training samples while the remaining 15 images are chosen for
testing.P is stored as the template for each palmprint class. In
the verification stage, the input palmprint image is transformed
to the DCT domain, then projected onto the optimal eigen
subspace to compute its feature vectorQ. Finally, the resulting
feature vectors are compared with the registered templatesto
obtain the verification result.

Block 1 Block 1

1-D DCT coefficient vector

1-

Fig. 3. DCT feature vector formulation using blocks coefficients
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TABLE I

PERFORMANCE VERSUS NUMBER OF THEDCT COEFFICIENTS

Nbr of Coeffs Feature vector length Threshold EER (%)

9 2304 0.394 1.325

14 3584 0.390 1.135

20 5120 0.387 1.054

27 6912 0.390 0.905

35 8960 0.390 0.835

63 16128 0.381 0.821

A. Number of DCT Coefficients

In order to determine the effect of the number of DCT
coefficients on the verification performance, the verification
rate with a varying numbers of DCT coefficients from each
block has been evaluated using the equal error rate (ERR)
which is the rate when both false acceptance rate (FAR) and
false acceptance rate (FRR) are equal. Table I depicts the
corresponding ERR values on the optimal operating point.
It is clearly shown that varying the number of coefficients
from 19, 14, 20, 27, 35 to 63 in each block does not yield
to much improvement which mean that the discriminating
features are located on a few AC coefficients. Fig.4 depicts the
corresponding receiver operating characteristic (ROC) curves
showing clearly the system performance at different FAR
values. It can be seen that, if 35 and 63 DCT coefficients
are selected from each block, the difference in the verification
accuracy is marginal. Therefore, 35 coefficients provide a good
compromise between vector feature length and verification
accuracy and this has been used thereafter in this work since
it also gives a good memory saving and verification accuracy
compromise, in order to distinguish between genuine subject
and imposters

In the investigation, each of the testing palmprint images
was matched with all of the registered palmprint templates.
Since a registered palm has 5 templates in the templates
databases, a palmprint image of the testing database is matched
with all the templates to produce 5 correct cosine distances.
The minimum of these 5 distances has been taken as the
correct verification distance. Similarly, a palmprint image in
the testing database is compared with all templates to produce
495 incorrect cosine distances. A matching is noted as a
correct match if two palmprint images are from the same palm.
The total number of matchings is 750,000. The number of
comparisons that have a correct matching are 7500 (1500 x 5)
and the rest are incorrect matchings. The higher the distance
is, the higher is the dissimilarity between the registered and
claimed palmprint images. Fig. 5 shows that the distance
distributions of the genuine and imposter matching scores have
two distinct and distant peaks. The corresponding ROC curve
depicting the values of FAR and FRR is illustrated in Fig. 6.
This corresponds to an EER of 0.83% for a threshold of 0.390
and the genuine acceptance rate (GAR) of 99.17% at a value
of FAR of 0.83%. From this investigation, one can conclude
that a truncated number of DCT coefficients contains the

Fig. 8. Palmprint images samples from the polyU database

dominant discriminating feature (energy) since the verification
rate does not improve by much and seems to stabilize beyond
the number of the DCT coefficients used. This comes from the
fact that the higher frequency coefficients do not carry much
energy and might be related to noise. It is also interesting to
mention that the use of truncated DCT coefficients guarantees
an optimal projection direction for the LDA. In addition, the
use of just 35 coefficients per each block yields to significant
saving in memory requirement and computation complexity.

The proposed approach has also been compared with the
following approaches: (i) raw (spatial domain) linear discrim-
ination analysis (raw LDA), which is a widely used discrim-
ination criterion in biometrics, (ii) raw principal component
analysis (raw PCA) and (iii) a similar approach in which
the DCT coefficients are replaced by Fourier spectrum (FS +
LDA and FS + PCA)[10]. All the above techniques have been
implemented on the same database using 5 images for training
and 15 images for testing. The length of the eigen vectors
that have been used to feed the matcher (cosine distance) are
99 and 100 using LDA and PCA techniques, respectively.
The performances are depicted by the ROC curves (Fig.7)
suggesting that the eigen vectors calculated from the frequency
domain (DCT or Fourier space) efficiently model the palmprint
images and yield to a significant improvement compared to the
raw domain (spatial domain ). For example, the DCT + LDA
yields an EER of 0.83% , a verification rate of 99.17% and
reduces the training (or testing) feature vector length (FVL)
from 16384 components to about half (8960). It is interesting
to observe that DCT and FS spaces provide more or less the
same performance if combined with PCA and LDA.

V. CONCLUSION

This paper proposes an efficient approach for palmprint
verification. The proposed technique is based on a combination
of DCT and LDA techniques. It can clearly be concluded from
the results that using DCT for dominant feature extraction is
a very useful pre-processing step since it helps to remove the
irrelevant/redundant information from the original palmprint
image. In addition, this process of constructing an optimal
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eigen subspace helps to keep the more useful discriminating
information that can efficiently characterize the palmprint. The
determination of the exact number of the DCT coefficients
that can give the best compromise between the verification
accuracy and feature vector length is also crucial task and
will be investigated carefully in our future work.
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Abstract— In this paper, techniques based on the use of the image 

phase only are suggested for the problem of shoe print 

recognition. With the aim of automatically classifying rotated and 

shifted partial prints, in frequency domain, only the phase 

component of the transformed images is taken into account while 

the magnitude component is completely discarded. Two phase 

only correlation filters are suggested for such task. The designed 

filters are rendered invariant to rotation within the range -10 to 

10 degrees by using rotated versions of the original images in the 

training phase of the filter design, with a rotation step of 1 degree. 

For classification, only the phase of the query image is used for 

correlation. In the resulting correlation plane, classification is 

based on a Peak to Side lob Ratio (PSR) metric. Our experiments 

were carried out on a database of 100 images. Both filters attain 

high recognition rates that near a perfect 100% rate for the first 

hit and better the performances of available work in the 

literature. 

I. INTRODUCTION 

As a form of physical evidence, a shoemark, which is a mark 

made when the sole of a shoe comes into contact with a 

surface, can provide an important link between the criminals 

and the place where the crime occurred. It has been reported 

that there should be equal and perhaps even greater chance that 

footwear impressions could be present at a crime scene, 

compared with the presence of latent fingerprints [1]. So far, 
the later has been widely accepted as a powerful tool in 

forensic applications, however, footwear impressions possess a 

great potential in playing an assistant role in forensic 

investigations. As a matter of fact, a study in [2] suggests that 

footwear impressions could be located and retrieved at 

approximately 35 per cent of all crime scenes. A shoeprint 

lifted from a Scene of Crime (SoC) can be checked against a 

database that includes the shoeprints of shoes in the market to 

determine its model. It can also be matched against other SoC 

prints and shoeprints taken from the crime suspects so that a 

given shoeprint can be identified as being made by a specific 

shoe. An example of such a database is the commercial 
database ‗SoleMate‘ maintained by Foster and Freeman Lt [3], 

which stores more 20,000 shoeprint images from popular 

footwear maker in UK. The company provides matching 

services of a SoC print against prints in the company database 

[3]. 

Several techniques and algorithms have been reported in the 

literature for automatic classification, recognition, indexing 

and retrieval of shoe prints. The authors in [4] used a technique 

based on Fourier features, invariant moments and neural 

networks. Such technique was reported to work well for simple 

shapes such as circles and triangles. However, it is not well 

adapted for the more complex shapes in shoe soles 

[5].Alexander et all [2,6], developed an approach for the 

detection and classification of shoeprints based on fractal 

geometry. Chazal et al. [7] proposed a system for 
automatically sorting a database of shoeprints based on the 

outsole patterns in the Fourier domain in response to a 

reference shoeprint. As shown in [7], the Power Spectral 

Density (PSD) coefficients of the image are calculated using 

the Fourier Transform and used as features. A correlation 

function of the PSD coefficient from a reference database and 

a query images is used as a similarity metric [7]. Multi 

resolution based techniques have been used in [8], where 

images features are extracted from wavelet maxima points. 

Other techniques employed for shoe print image retrieval and 

classification are based on extracting local features, which are 

either points or regions of interests, and using a SIFT like 
descriptor to describe them [9]. A major issue in automatic 

classification of shoe prints is that a real scene of crime print 

can be a noisy, clustered image of poor quality with a textured 

background. This can lower the performances of the above 

mentioned techniques and leads to poor extraction of the basic 

shapes and local features [10]. One solution that can be very 

robust to such deteriorations of image quality was proposed in 

[5]. It is based on phase only correlation which captures more 

discriminative information when compared to amplitude and/or 

PSD methods. Such technique has been shown to be robust to 

high level of noise and to textured background [5].  
In this paper we show that phase only correlation can be made 

invariant to rotation within a training range and to partial 

occlusion, in addition to the well know invariance to 

translation. We suggest two correlation filters, which in our 

experiments have achieved a very high recognition rate. The 

remainder of the paper is organised as follows Section 2 

discusses the phase only techniques and introduces the 

proposed phase only correlation filters trained to be rotation 

invariant in the range [-10 10] degrees. Results and analysis 

are presented in section 3. Conclusions are drawn in section 4. 

II. PHASE ONLY TECHNIQUES 

Work on image reconstruction from its Fourier transform has 

shown that an image can be fully specified by its phase only 
under some rather general conditions [11-12]. Even for a 1-D 

signal, when the signal has minimum or maximum phase, 

magnitude and phase are related through the Hilbert transform 

[11-12]. An illustration of the importance of phase in retaining 
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an image discriminating features is shown in Fig 1. The figure  

shows an image reconstructed purely form the phase of the 

original image in Fourier domain. Therefore, image processing 

techniques that are based on phase only have received a lot of 

attention [13-18]. In pattern recognition and biometrics, phase 

based correlation has successfully been adopted for efficient 

matching of fingerprints that are either very poor in quality or 

represent partial fingerprints [13-14]. For palm print 

recognition, two successive Fourier transforms can be used, 

where the magnitude of the first transform is converted into a 

log polar representation and the phase of the second Fourier 
transform is used for registration and correlation [15]. Phase 

only correlation is coupled with a PCA representation in [16], 

where a robust illumination-tolerant face recognition is 

presented. Such technique has lead to very high recognition 

rates [16]. The correlation deals with the fact that PCA on 

phase on its own is not invariant to translation. However, in 

this case, PCA itself consists of a representation of images and 

when combined with phase only correlation, it is the inverse 

Fourier transform of angle difference which determines the 

classification result.  

(a.) (b.)  

Fig 1. a original image. b. Its reconstruction from only its phase. 

Let the Fourier transform of an image g(x,y) be: 

                        (1) 

This can be expressed in terms of phase and magnitude 
components as: 

                                                 (2) 

Let us now consider two images g1(x,y) and g2(x,y) with 

Fourier transforms and 

, respectively. 

The phase-only correlation function is given as: 

                                                          (3) 

It is defined as the inverse Fourier transform of the difference 

of the two phases. Under the constraint that the maximum 

result is 1, it is clear (which can be shown by a Lagrange 

multiplier for instance) that the maximum can only be attained 

if there is a perfect match between the two phases in equation 

(3); that is: 

 

              (4) 

 

The metric from equation (4), is the peak of the correlation 

plane. The bottom row of Fig 2 shows the correlation plane of 

the images in the top row with the original image of Fig 1. 

Clearly, the better the match, the higher the maximum peak in 

the correlation plane and the lower are the side lobes. For the 

wrong match in Fig 2.d, the peak value in the correlation plane 

is low. Its neighbours‘ values which form the side lobes are 

comparable to the peak. However, in the case of the shoeprint 

in Fig 2.c, which is only a 1/16 fraction of the original image, 

the meaningful peak is that in the middle of the correlation 
plane (indicated by an arrow), which is smaller in value than 

other peaks in the plane. However, its neighbourhood is 

completely flat. Thus, beyond looking for the peak as a 

matching metric, one can adopt, the Peak to Side lob Ratio 

(PSR) given in equation (5) which is invariant to illumination 

changes [14]. 

 

                                                                   (5) 

 

One can also examine many local correlation peaks and their 

neighbourhood to look for the best PSR. The mean and 

standard deviation are computed in the neighbourhood of the 

peak, as depicted in the outer square of Fig 3. The sizes of the 

inner and outer squares are determined empirically. In the 
context of this work the outer square size is 15 pixels.  

In the case of multiple images per class, the average of image 

phases can be used to represent the class. Such approach was 

adopted in [16] for face recognition, where the average phase 

was used to replace and simplify the computation of the 

minimum average correlation energy (MACE) advanced 

correlation filter. However, in the context of our work, one 

aims to make the filter invariant to rotation within a certain 

range, namely [-10 10] degrees and to partial occlusion as it is 

well known that correlation filters are intrinsically invariant to 

translation. We only retain the average phase of a given class 

of images. Such class contains rotated version of the original 
one, with the rotation angle increased by a constant step within 

the desired range. In the proposed design, the rotation angle 

step is of one degree, thus, there are 19 images per class. From 

the various definition of average phase, we adopt the phase of 

the average of transformed images, which is weighted by their 

magnitude. In the remainder of the paper, this correlation filter 

is referred to as Filter1.  

Let the non-rotated original image be denoted by g0(x,y). The 

index i in equation (6) refers to the rotated image gi(x,y) 

obtained by rotating g0(x,y) by i degrees. Filter1 is given by: 

 

                      (6) 

In addition we defined a modified phase only correlation filter, 

termed Filter2 as follows. Let S be a similarity matrix defined 

as a similarity between individual phases of the 
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transformed images gi(x,y) and the average phase  

denoted by: 

 

                                              (7) 

 

The matrix S is diagonal of dimension  given that the 

dimension of the training images is N . The entry in 

position (Nu+v,Nu+v) in the matrix S is computed using the 

elements  and  : 

 

                                                       

                                                                                                (8) 

 

One attempts to maximise the peak of the correlation plane, 

which usually occurs at the origin (however, it shifts with 

translation) and minimises the similarity matrix S. Let f be the 

frequency response of Filter2 arrange in a single column and 

let g be Fourier transform of Filter1 also arranged in a single 
column. Finding the correlation filter which maximises the 

peak in the origin of Filter1 and minimising the similarity 

matrix is equivalent to maximising the quantity: 

 

                                                                                      (9) 

 
By setting the gradient of the above equation with respect to f 

to zero, the filter f which maximises equation (9) should 

satisfy: 

 

                                                                        (10) 
 

Which is a generalised eigenvalue problem [23] as the value of 

S at the origin S(0,0) is always equal to zero. Nevertheless, in 

our experiments we set S(0,0) to a constant which can be equal 

to the minimum of S, to its average or to its maximum with 

very little impact on the results. Taking account of this 

modification, the generalised eigenvalue problem of equation 

(10) is simplified to an eigenvalue problem [23] and its 

solution f is given by: 
 

                                                                            (11) 

 

III. EXPERIMENTS AND RESULTS 

The proposed recognition system is illustrated in Fig 5. The 

correlation filters are generated form a database of 100 

reference images. In addition to storing the generated 100 

filters for each of the two proposed correlation filters, we also 

store their average class filter. As a matter of fact, to reduce the 

number of selected peaks to compute equation (5), in the 

recognition phase, the average filter is subtracted form the 

reference filter before point wise multiplication in Fourier 
domain can take place. It is then followed by the inverse 

transform. For our experiments, the query images are 

generated by randomly selecting a quarter of a reference image 

and then randomly rotating it by an angle equal to x + 0.5 

where x is randomly selected integer within the range [-10, 9]. 

For classification, only a single peak, which is the maximum of 

the correlation plane is taken into account when computing 

equation (5). 

 

(a). (b.) (c.) (d.)  

(a.)  

        (b.)  

(c.)  

(d.)  

Fig 2. Top: Query images to be matched against the original image of 

Fig 1. Bottom: Result of phase only correlation. 
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Fig 3. Computation of the PSR 

 
Fig 4. Cumulative match characteristic of the proposed filters and 

work in [7]. ‗+‘ Filter2, ‗.‘ Filter1, ‗-‗ PSD in [7].  

 

The experiments were run twice, that is for each filter, we 

attempted to classify 200 query images. The results, as shown 

in Table I and Fig 4, demonstrate that both filters achieve a 

high recognition rate, and that Filter2 attains a 100% 
classification rate for the top hit. Both filters are superior to 

available work in the literature [7]. The PSD technique attains 

less than 90% of top rank classification success. 

 
Table I. Performances comparison 

Technique Top 

rank 

<= 5 <=10 <=25 <=50 

PSD [7] 89.5% 96% 97% 99.5% 100% 

Filter1 99.5% 100% 100% 100% 100% 

Filter2 100% 100% 100% 100% 100% 

IV.  CONCLUSIONS 

In this paper, two correlation filters are suggested for the 

classification of partial, shifted and rotated shoe prints. The 

training step of the two filters using rotated versions of the 

original image has made the proposed correlation filters 

invariant to rotation within the training range of [-10 10] 

degrees. The proposed work achieve better performances than 

comparable solutions in the literature. 
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Abstract— This paper describes a hardware implementation of 
an elliptic curve cryptography (ECC) over GF(2m) using FPGA 

technology. Elliptic curve encryption is becoming increasingly 

popular as they provide the highest strength per bit of any 

cryptosystem commonly used today and can be used in wide 

range of electronic devices, smart cards and hardware security 

modules. The processor consists of special handling of the point 

multiplication that is the main operation of any elliptic curve 

cryptosystem and, hence, it must be implemented efficiently. The 

new implementation will take the advantage of Xilinx mapping 

within Precision to produce good area results. The ECC 

architecture described can also perform the encryption for 

different binary curves, making it suitable for use in many 

different ECC applications and environments. 

 
Index Terms—Elliptic Curve Encryption (ECC), FPGA 

implementation, digital signatures, public-key cryptography, 

Federal Information Processing Standards 

 

I. INTRODUCTION 

Elliptic Curve Cryptography [ECC] is a relatively new 

cryptosystem, suggested independently in 1986 by Miller [1] 
and Koblitz [2]. At present, ECC has been commercially 
accepted, and has also been adopted by many standardizing 
bodies such as ANSI [3], IEEE [4], ISO [5], SEC [6] and 
NIST [7].  Currently FPGA are used in the prototyping phase 
and production versions of electronic systems. FPGA has 
strong commercial drivers in which it has the ability to update 
the design and reduce time to market. 

A number of hardware implementations for standardized 
elliptic curve cryptography have been suggested in literature, 
but very few of them are aimed for low-end devices. A survey 
of different ECC implementations can be found in [8]. The 
different ECC processor implementations that have been 
suggested for such low-end applications [9, 10, 11] normally 
use non-standardized curves and hence are not acceptable for 
commercial applications. Standards compliant 
implementations are however very important for mass 
acceptance of a reliable public key infrastructure.  

For efficient hardware implementation of elliptic curve 
processor, it is necessary to have an efficient method of 
multiplying and adding in the underlying field.  

 

Among the most significant hardware architectures for 
elliptic curves defined over fields GF(2m) are [12], [13]-[17]. 
The fastest prototyped GF(2m) processor was the one designed 
by Orlando [17] and could compute an arbitrary point 
multiplication for curves defined over fields GF(2167) in 0.21 
milliseconds. In this paper, we designed a new GF(2m) 
processor using FPGA whose functionality is programmable 
unlike traditional very large scale integration (VLSI) hardware 
possessing fixed functionality after fabrication. And it exploits 
the abilities of reconfigurable hardware to deliver optimized 
circuitry for different elliptic curves and finite fields.  

This paper is organized as follows. Section II briefly 
described the ECC followed by a description of the point 
multiplication processor in Section III. The results for the 
FPGA implementation together with other FPGA 
implementations comparison are given in Section IV. The 
paper ends with some conclusions in Section V.  
 

II. ELLIPTIC CURVE CRYPTOSYSTEM 

The Federal Information Processing Standards [7] 
recommends some collection of elliptic curves, which can be 
used to generate a digital signature. Digital signatures are used 
to detect unauthorized modifications to data and to 
authenticate the identity of the signatory. In addition, the 
recipient of signed data can use a digital signature in proving 
to a third party that the signatory in fact generated the 
signature. Choice of private key length and underlying fields 
are very important for the application being used. These are 
the different choices used to select the proper curve. 

 
A.  Key Lengths 

The principal parameters for elliptic curve cryptography are 
the elliptic curve E and a designated point G on E called the 
base point. The base point has order r, a large prime. The 
number of points on the curve is n = fr for some integer f (the 
cofactor) not divisible by r. For efficiency reasons, it is 
desirable to take the cofactor to be as small as possible. 

The curves used have cofactors 1, 2, or 4. As a result, both 
the private and public keys are approximately the same length. 
Each length is chosen to correspond to the cryptovariable 
length of a common symmetric cryptologic. In each case, the 
private key length is, at least, approximately twice the 
symmetric cryptovariable length. 
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B.  Underlying Fields 

There are given two kinds of fields for each cryptovariable 
length. A prime field is the field GF(p) which contains a prime 
number p of elements. The elements of this field are the 
integers modulo p, and the field arithmetic is implemented in 
terms of the arithmetic of integers modulo p. Other is the 
binary field GF(2m) which contains 2m elements for some m 
(called the degree of the field). The elements of this field are 
the bit strings of length m, and the field arithmetic is 
implemented in terms of operations on the bits. 

 
C.  Basis 

This is to describe how a bit string is to be interpreted. This 
is referred to as choosing a basis for the field. There are two 
common types of bases: a polynomial basis and a normal 
basis. A polynomial basis is specified by an irreducible 
polynomial modulo 2, called the field polynomial. The bit 
string (am-1 … a2 a1 a0) is taken to represent the polynomial  

 
am-1 t 

m-1 +…+ a2 t
2 + a1 t + a0                                                            (1) 

 
The field arithmetic is implemented as polynomial 

arithmetic modulo p(t), where p(t) is the field polynomial. A 
normal basis is specified by an element ө of a particular kind. 
The bit string (a0 a1 a2 … am-1) is taken to represent the 
element 

 
a0 ө + a1 ө

 2 + a2(ө
 2)2
+ am-1(ө

 2)m-1 
                                                  (2) 

 

Normal basis field arithmetic is not easy to describe or 
efficient to implement in general, but is for a special class 
called Type T lowcomplexity normal bases. For a given field 
degree m, the choice of T specifies the basis and the field 
arithmetic. 

 
D.  Curves 

There are two kinds of curves; one is a Pseudo-random 
curve whose coefficients are generated from the output of a 
seeded cryptographic hash. If the seed value is given along 
with the coefficients, it can be verified easily that the 
coefficients were indeed generated by that method. Other is the 
Special curves whose coefficients and underlying field have 
been selected to optimize the efficiency of the elliptic curve 
operations. For each size, the following curves are given: 

 
1) A pseudo-random curve over GF(p) 
2) A pseudo-random curve over GF(2m) 
3) A special curve over GF(2m) called a Koblitz curve 

 
The pseudo-random curves are generated via the SHA-1 

based method given in the ANSI X9.62 [3] and IEEE P1363 
standards [4]. 
 
 

 
E.  Curves over Binary Fields 

Elliptic curve domain parameters over GF(2m) are a 
septuple: T = (m,f(x),a,b,G,n,h) consisting of an integer m 
specifying the finite field 2m, an irreducible binary polynomial 
f(x) of degree m specifying the polynomial basis representation 
of F2m, two elements a,b є GF(2m)  specifying an elliptic curve 
E defined by the equation: 

 
E: y

2 + xy = x3 + ax2 + b                                                                         (3) 
 
a base point G=(xG, yG), a prime n which is the order of G, and 
an integer h which is the cofactor h =#E/n. Again following 
SEC 1 [18], elliptic curve domain parameters over F2m must 
have: 
 

m ∈   {113,131,163,193,233,239,283,409,571} 
 
Elliptic curve domain parameters over GF(2m) must use the 

reduction polynomials listed in Table 1 below. This restriction 
is designed to encourage interoperability while allowing 
implementers to supply efficient implementations at commonly 
required security levels. 

 
Table 1. Elliptic curve adopted in the ECC processor 

Field Reduction Polynomial(s) 
GF(2113) F(x) = x

113
 + x

9
 + 1 

GF(2131) F(x) = x
131
 + x

8
 + x

3
 + x

2
 + 1 

GF(2163) F(x) = x
163
 + x

7
 + x

6
 + x

3
 + 1 

GF(2193) F(x) = x
193
 + x

15
 + 1 

GF(2233) F(x) = x
233
 + x

74
 + 1 

GF(2239) F(x) = x
239
 + x

36
 + 1 

GF(2283) F(x) = x
283
 + x

12
 + x

7
 + x

5
 + 1 

GF(2409) F(x) = x
409
 + x

87
 + 1 

GF(2571) F(x) = x
571
 + x

10
 + x

5
 + x

2
 + 1 

 

III. ELLIPTIC CURVE PROCESSOR 

The GF(2m) elliptic curve processor is designed to meet the 
specification of ANSI X9.62 [3] optimized for the use of 
efficient elliptic curve algorithms, which is also well suited for 
implementations in reconfigurable hardware. Table1 
represents the elliptic curve and curve parameters used in the 
ECC processor. 

The processor includes the Core Unit and Control Unit as 
shown in Fig 1. Core Unit can perform point multiplication 
(kP), point addition (p + Q), point doubling (2P) finite-field 
division operations. Sel signal determines m-bit key size. To 
implement the above operations, the point multiplication core 
is developed which consists of GF adder, squarer, multiplier 
and inverter shown in Fig 2. 
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Fig. 1. Architecture of GF(2m) elliptic curve processor 
 

 
Fig. 2. Architecture of Point multiplication core. 

 
A.  Point addition 

Let P(x, y) ∈  E(F2
m) be a point defined on the curve E, then 

the computation of point addition can be obtained from the 
execution of the sequence indicated in (4)  

 
                                       T = x 
                                  p = X1 χ  Z2 

                                  q = Z1 χ  X2 

                                      r = p + q                                    (4) 
                                        Z3 = r2 

                                     m = p χ q 

                                    n = T χ  Z3 

                                     X3 = m + n 
 
Thus, the point addition computation consists on 4 

multiplications, 2 additions and only one squaring. The 
multiplier used is based on the binary strategy [11] and the 
addition is a simple XOR operation executed for final outputs. 
Field squaring is easy to perform if irreducible polynomials are 
fixed. 

 
B.  Point doubling 

The computational complexity of Point doubling (Mdouble) 
is simpler than the one of point addition. The following 

equation (5) is the sequence of instructions needed to compute 
a single point doubling operation. 
 

                                          T = c 
                                          p = X2 

                                          q = Z2 

                                        Z2 = p χ q                                 (5) 

                                           l = T χ  q 

                                          m = l2 

                                           n = p2
 

                                        X2 = m + n 
 

C.  Multiplication 

The multiplication is the critical operation of an ECC 
implementation thus the multiplication must be implemented 
carefully. Large Galois fields GF(2m), are used in ECC 
implementations which leads to large multipliers. The 
multiplication c(x) = a(x)b(x) in GF(2m) consists of two 
separate operations: an algebraic multiplication of polynomials 
and a reduction modulo the irreducible polynomial. 
Coefficients di of the result of the algebraic multiplication 
d(x)=a(x) b(x) are calculated through convolution formula of 
equation (6)  

 

  di =  ∑
=

i

k 0

ak bi-k                                                                  (6) 

 
This convolution calculated in blocks called LUT-trees. A 

LUT-tree consists of three different kinds of blocks: and2xor2-
LUTs, xor4-LUTs and 1-bit registers. An and2xor2-LUT is a 
block that calculates a0b0 +a1b1 in GF(2), i.e. the addition is 
performed with a 2-bit xor-operation and the multiplication is 
a 2-bit and-operation. Thus, an and2xor2-LUT can be 
implemented with one 4-input LUT. A xor4-LUT is a 4-bit 
xor-operation and, therefore, it calculates a0 +b0 +a1 +b1 in 
GF(2). Also a xor4-LUT can be implemented with one 4-input 
LUT. The first level of a LUT-tree consists of and2xor2-LUTs 
and all the other levels are composed of xor4-LUTs. Part of 
the LUT tree is illustrated in Fig 3. A complete LUT-tree with 
k levels calculates the following formula: 

 

      c =  ∑
−

=

1

0

T

j

aj bj                                                                           (7) 

where aj, bj and c are elements in GF(2), i.e. bits, and T is 
the length of the inputs of the LUT-tree in bits. The length of 
the inputs is calculated as follows: 

 
   T = 2 * 4k-1                                                                       (8) 
 

D.   Point Multiplication 

The elliptic curve point multiplication Q = kP, where Q and 
P are points on the curve and k is an integer, is implemented 
using the Montgomery point multiplication shown in Fig 4. 
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Fig. 3. LUT-Tree 
 

Consecutive point addition and point doubling operations 
are the heart of the point multiplication algorithm. These 
operations are implemented as presented in Section 4.2.1 and 
4.2.2. The point multiplication is performed in projective 
coordinates and, therefore, the point P = (x, y) must be mapped 
from affine coordinates to projective coordinates by setting X 
= x, Y = y and Z = 1. This mapping is done for the point P and 
for a doubled point 2P in step 1 of Fig. 4. Because the point 
multiplication is performed using the Montgomery method, 
information of the y-coordinate is not needed in the point 
multiplication and, thus, the mapping has to be done only for 
the x-coordinates of the points P (X1, Z1) and 2P (X2, Z2). 
After the Montgomery point multiplication in projective 
coordinates, affine coordinates of the result point Q = (x, y) are 
calculated with the Mxy algorithm implemented in [20].  

 
Input: k = (kn-1, kn-2….,k1, k0)2 with kn-1 = 1, P(x, y) ∈  

E(F2
m) 

Output: Q = kP 
1. Set X1 ←  x, Z1 ←  1, X2 ←  x4 + b, Z2 ←  x2 

2. For i from n - 2 downto 0 do 
3.  if (ki = 1) then 
4.   Madd(X1, Z1, X2, Z2), Mdouble(X2, Z2) 
5.  else 
6.   Madd(X2, Z2, X1, Z1), Mdouble(X1, Z1) 
7. Return(Q = Mxy(X1, Z1, X2, Z2)) 
 

Fig. 4. Montgomery point multiplication Algorithm 
 

IV. RESULTS 

The proposed elliptic curve point multiplication processor is 
implemented using VHDL and synthesized using Precision® 
RTL which is the Mentor Graphics synthesis tool [20] and 
implemented on Xilinx Virtex-E device using 4-input LUTs. 
[21]. A set of recommended elliptic curves for cryptography 
given by Standards for Efficient Cryptography Group (SECG) 

have been implemented using VHDL. The synthesis was 
performed with Precision and the place & route done using 
Xilinx ISE 9.2. Virtex-E XCV2600E-8 device is chosen from 
the Virtex-E family. Virtex-E was chosen because it is the 
most commonly used device family in other published ECC 
implementations and, thus, the comparison presented is easier 
to perform. The implementation results on Virtex-E are 
presented in Table 2.  Clock is the achieved clock frequency 
after the implementation process. As can be seen the point 
multiplication can be performed very efficiently on elliptic 
curves over relatively small Galois fields (m < 200) but, when 
the field sizes grow, the results become poorer. The main 
reason for the poorer results is the area requirements, which 
grow near to the limits of the target device. Thus, the place & 
route process cannot be performed as efficiently as in the case 
of smaller implementations. This leads to smaller clock 
frequencies, which further causes longer point multiplication 
times. When small implementations are considered, it can be 
said that it is worthwhile to use two multipliers with small 
latency in order to achieve short point multiplication times. 
However, if the area requirements of the design are close to 
the limits of the target device, the choice of the number and 
latency of the multipliers is not as straightforward.  Curves 
using the largest fields, for which m = {409,571}, do not fit 
into Virtex-E XCV2600E at all. These curves must be 
implemented on a larger target device.   

 
Table 2. Implementation results of the elliptic processor 
 

Elliptic 
Curve 

m Slices Clock 
Mhz 

GF(2113) 113 8500 98.2 
GF(2131) 131 10900 106.1 
GF(2163) 163 14305 99.6 
GF(2193) 193 18970 80.5 
GF(2233) 233 25234 55.3 
GF(2239) 239 19433 65.9 
GF(2283) 283 23851 51.2 
GF(2409) 409 28974 N/A 
GF(2571) 571 45583 N/A 

 
Another experiment had been done targeting Xilinx Virtex5 

synthesizing the VHDL using Precision capabilities to support 
Virtex-5 family technology that is based on 6-input LUT 
architectures. The Virtex-5 family is the first FPGA platform 
to offer a real 6-input LUT with fully independent (not shared) 
inputs. This leads to some very compelling advantages. The 6-
input LUT leads to several benefits, as it implements wider 
functions directly in the LUT. Hence, the number of logic 
levels between registers is reduced, leading to higher 
performance. It also implements significantly more logic than 
a LUT with four inputs, which reduces the amount of, required 
interconnect and routing resources. That makes Virtex5 is 
more suitable for application such as ECC especially that 
Precision Synthesis [20] offers some advanced synthesis 
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capabilities during the mapping and optimization targeting 
Virtex5, which lead to these good results. 

 FPGA-based designs implemented on Xilinx devices are 
collected into Table 3. Results show that for Virtex5, our 
implementation gives the smallest area (43% improvement in 
number of slices) for m=193 together with approximately the 
same frequency compared to SIG-ECPM [19] which we share 
the same architecture. 

 
Table 3. FPGA Based Implementations 

V. CONCLUSION 

We have presented the high-performance reconfigurable 
elliptic curve processor for GF(2m). The architecture of the 
proposed processor is based on the Galois Field of GF(2m) and 
is configurable for the binary elliptic curves standards.  The 
design was successfully tested on a Xilinx VirtexE and 
Virtex5. The processor implement the Galois field operations, 
i.e. multiplication, squaring, addition and possibly inversion in 
GF(2m). Future work to be addressed includes further 
improvements in the performance of the algorithms, especially 
by reducing the critical path trying to balance between 
required area and speed. 
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Design Device 
Family m Slices Clock (Mhz) 

SIG-ECPM [19] VirtexII 113 
163 
193 
233 

10686 
18079 
19250 
23020 

108.3 
90.2 
90.2 
73.6 

Our-impl Virtex5 193 10977 91.9 

Bednara [22] Virtex 191 N.A 50 
Gura [23][24] VirtexE 163 

193 
233 

N.A 
N.A 
N.A 

66.4 
66.4 
66.4 

Eberle [23] VirtexII 163 
193 
233 

N.A 
N.A 
N.A 

66.4 
66.4 
66.4 

Nguyen [25] VirtexII 233 13180 N.A 
Orlando [17] VirtexE 167 N.A 76.7 
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Abstract—This paper focuses on the design and implementa-
tion of a high-quality and high-throughput true-random number
generator (TRNG) in FPGA. Various practical issues which we
encountered are highlighted and the influence of the various
parameters on the functioning of the TRNG are discussed. We
also propose a few values for the parameters which use the
minimum amount of the resources but still pass common random
number generator test batteries such as DieHard and TestU01.

I. INTRODUCTION

Random numbers are at the very core of cryptographic
algorithms. They are used to generate either the public /
private key pair in asymmetric algorithms, or the shared secret
/ initialisation vector in symmetric cyphers. The ability of
an adversary to predict the random numbers used, voids the
security of the cypher. In fact, the only cypher whose security
is proven to be perfect (one time pad) relies on the fact that the
random number source is perfectly uniform and unpredictable.

Random number generators are of two types. The first one,
pseudo-random number generators (PRNG), are the ones in
which a person who designed the system, or has access to its
internal state can predict the next random number. The system
is a deterministic Finite State Machine, whose evolution can
usually be described based on an arithmetic formula which
determines its transition from a given internal state to another
state, while outputting a random number based on a portion
of the state. They have the advantage of having high speeds
and some of them are cryptographically secure. However,
all of them require an initial state (also called seed), which
determines the sequence of numbers which will be generated.
The importance of well seeding a pseudo-random number
generator has recently been highlighted in a Debian security
vulnerability[1].

The second type of random numbers generators are true-
random number generators (TRNG), whose output cannot be
predicted, not even by the person who designed them. They are
usually based on sampling some kind of physical phenomenon
(such as noise) which has a lot of randomness. Although one
would be tempted to use only TRNGs in cryptography, their
smaller throughput prohibits this, so they are commonly used
to seed PRNGs.

1Financiar support from INRIA is hereby greatly acknowledged.
2This work was supported by the CNMP funded CryptoRand project, nr.

11-020/2007.

FPGAs are becoming a popular choice for implementing
cryptographic devices, due to the fact they represent the middle
ground between the flexibility of the microprocessor and the
speed of an ASIC. They allow creating high-throughput cryp-
tographic devices while at the same time making it possible to
change or improve the underlying algorithms, should a security
flaw be discovered.

Many papers [3][6][7][8][9] have explored the possibility of
implementing TRNGs in FPGAs, motivated by the avoidance
of additional hardware, and the impossibility to intercept the
data stream between the TRNG and the actual cryptographic
implementation. While all of them claim to obtain good-
quality TRNG, few mention explicitly the methods involved
in transforming a hardware which is supposed to work pre-
dictably into a source of entropy.

This paper elaborates on the design and implementation of
the TRNG principle presented by Martin and Stinsonin in
[6] and highlights a few practical issues encountered while
implementing a high-quality TRNG based on it. We identified
a few generic parameters, whose influence on the TRNG will
also be presented in this paper. The ultimate purpose is to
enable the reader to easily implement this TRNG on a low-
cost FPGA development board, such as one featuring a Xilinx
Spartan 3E.

II. PRINCIPLE

Like many TRNG implemented in FPGA, this design is
based on sampling jitter. In essence, due to various noise
sources such as that induced by the power supply but also
by nearby components, the behaviour of ”demanding a 0 or
1” from the transition slope of an output is unpredictable. This
is caused by the fact that each technology defines a low (L)
threshold, which is the upper limit for voltages which represent
a logic 0, and a high (H) threshold which is the lower limit
of logic 1. Output behaviour between these two values is not
well defined. This can be modelled as if the output of the
component would have a perfectly vertical slope, but the time
of the transition is unknown and can range from the beginning
until the end of the real slope (figure 1).

In order to produce jitter, TRNGs employ one or more ring
oscillators (RO) (figure 2). These are composed of a ring of
odd number of inverting elements and an arbitrary number
of delaying elements. The simplest RO is composed of a
single inverter and a buffer. The output of a RO is never
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stable and does transitions from 0 to 1 and back to 0 with
a frequency given by the propagation delay of the constituting
elements. Due to the above described phenomena, the period
of an oscillation will not be constant, because it will vary by
a small amount each time. This is the manifestation of jitter
and the source of entropy which our TRNG will collect.

Our first attempt was to create a TRNG based on [3],
which uses one RO to sample the output of the other RO. We
appreciated this approach due to the fact that the whole stream
before the post-processing phase is random (although it might
be biased a little bit). We also favoured this design, because, if
there is some kind of predictable jitter (such as coming from
the power source), both ROs are influenced the same way
which should cancel out at the sampler. However, we found
that putting this design into practice is very challenging. The
two ROs have to be nearly identical, which requires manual
placing and routing. Even after achieving that, the design
proved to be very sensitive to other components in the FPGA.
At the time of this writing we have been able to create a
TRNG which outputs very good numbers on a serial interface,
but have been unable to obtain good quality random numbers
at the TRNG’s highest speed.

Therefore, we chose to implement [6] which uses multiple
ROs whose outputs are XOR-ed. A flip-flop whose clock
is driven by a fixed frequency will sample the combined
output of the ROs. The obtained stream will hit both jitter
zones (our source of entropy) and flat zones (which are
highly predictable). A post-processing phase is required which
consists in a resilience function[2]. In essence, the function
takes an m-bit input, out of which n-bits are known to be
random (but we can’t determine which ones) and outputs n-
bits which are known to be random. For n = 1, the simplest
resilience function is to xor all the input bits. Suppose all but
one bits are deterministic, but the probability of a 0 or 1 value
of one bit are equal, the output of the xor will also have equal

probability of being 0 or 1.

III. IMPLEMENTATION ISSUES

A. Creating ROs in VHDL

Our first goal was to create a VHDL component which
would implement a ring oscillator with a parametrised length.

We first studied what resources are available in the FPGA to
create ring oscillators. The main building block of the FPGA,
the CLB are the only ones that actually contain logic, and
are interconnected by a network of routing wires. The CLB
contains a LUT, an invertor and a memory element which can
be either used as a latch or as a flip-flop. The output of latch
/ FF goes directly out of the CLB into the interconnection
network. Two CLBs are grouped together in a slice, however
in order to connect the output of one latch / FF to the other
CLB in the same slice, the wire has to exit the slice, go
through the interconnection network and reenter the CLB.
From Xilinx’s reports we noticed that the main delays in
FPGA come from latches and routing. The inverter induces
a negligible delay. Another interesting thing we noticed is
that during the mapping phase, a GLOBAL_LOGIC1 signal is
created which provides logic ”1” for all the CLBs that require
it.

Having the knowledge above, we chose to have a single
inverter at the beginning of the chain and a variable number of
latches as delay components (like in figure 2). A single inverter
allows us to create ROs which both even and odd number of
latches. By default Xilinx’s synthesis tool optimises out all
but one latch, due to the fact that they seem redundant from
its viewpoint. In order to prevent this, we must set the ”keep”
attribute[10] of the d bus which interconnects the latches:

attribute keep : string;
attribute keep of d : signal is "true";

This tells the synthesis and mapping tool that we want the
individual d signals not to be absorbed into a CLB. Each of
them must pass through the interconnection network, which
forces the tools to map the redundant latches to CLBs.

To make sure that the inverter does not add more delay, we
added the not keyword directly into the port map of the first
latch, without assigning it a signal. This has the effect that the
inverter and the first latch are mapped to the same CLB.

B. Sampler

We chose to give the whole TRNG circuit the same interface
as the one used by [3], to which we added an input clock
signal (figure 3). The BitReady output signal is high when
the TRNG has a new random bit, which will appear at the
RandomBit pin. When the external circuit has stored the
random bit, it will acknowledge the TRNG by rising the
ReadAck pin.

Although our particular TRNG is synchronous, all three
signals are assumed to be asynchronous, both inside the TRNG
and the external circuitry that connects to it. We took this
decision for two purposes: first, we wanted to be able to use
a RO’s output as the sampling clock, which would make the
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TRNG truly asynchronous, and secondly, we wanted to used
the very same design to test future TRNG, which might be
asynchronous in nature.

C. Resilience Function

Contrary to the design employed by others, we chose as
the resilience function a simple XOR of 2r-bits (where r
is a generic parameter). We did this because we feared that
using a more complex resilience function may hide possible
defects in our TRNG, which we obviously want to avoid.
Moreover, some resilience functions (such as cyclic codes)
are implemented using shift registers and XORs which might
act as PRNG. We specifically want to test how well the TRNG
works with minimal post-processing. Using the TRNG to seed
a PRNG (although a possibly weak one) is against the purpose
of our paper.

D. High-throughput Measurements

It was very important for us to validate the TRNG at its
maximum speed. We feared that the output interface from the
FPGA to the computer (where the random bits are collected
and analysed), whether RS232 or USB, would do additional
sampling of the (possible partially) random stream. This would
return more optimistic results compared to the TRNG being
used only inside the FPGA.

In order to achieve this, we created a design which would
first fill a 16 Kbit BlockRAM with TRNG output, then transfer
this to the output interface (figure 4). We think that this is very
close to how a TRNG would be used in a FPGA cryptographic
application: the cypher gets values from the entropy buffer and
while the algorithm proceeds, the TRNG fills back the entropy
buffer.

The design is able to handle burst transfers from the TRNG.
The data-in port of the RAM is directly connected to the
TRNGs output. The control signals of the address counter and
the write-enable port of the RAM are directly connected to
the BitReady port of the TRNG, provided the FSM is in
the FillRAM state. A separate circuit is used to drive the
ReadAck port of the TRNG which sets it to 1 at the very

next clock rising edge, exactly when the RAM has stored the
random bit.

The FSM which controls this circuit has 8 states (figure 5).
The first, Idle is the state in which the FSM is set im-
mediately after reset. Transition is made immediately to the
PrepareFillRAM state, which resets the address counter.
Next, the FillRAM state allows the counter to increase and
the RAM to store values when a new random bit is ready.
The FSM stays in this state until the RAM is filled (i.e. the
RAM address counter wraps around). The next three states
(ReadRAM, ShiftIn, CheckSR) serialise the bits stored
in the RAM into a byte for being transmitted to the UART
module. The same counter is used to control the address of
the RAM, but it is only incremented in the ShiftIn state.
Finally, when a byte is complete (i.e. the Serialiser sets
the ready port to 1) the FSM will wait for the UART to
complete the previous transmission (WaitUART), then dis-
patch the data (UARTSend). If there is more data to transmit
(i.e. RAM address counter is non-zero) then the FSM will
transition to the ReadRAM state, serialising the next byte.
If the whole contents of the RAM has been transmitted, it
will be freshly filled with random numbers, by jumping to the
PrepareFillRAM state.

IV. TUNING THE TRNG

A very important practical aspect of the TRNG is to know
the influence of its generic parameters on the quality of its
output. We also wanted to test practically what is the smallest
number of FPGA resources which are required for this TRNG.
We used the DieHard[5] and the TestU01[4] (NIST, Rabbit and
Alphabit battery) suites to test the quality of the TRNG output.
We only considered parameters for which the output of the
TRNG passed all tests, i.e. all DieHard p-values are different
from 0 or 1, and TestU01 prints ”All tests were passed”.
All files which we downloaded had at least 10 MB, due
to limitations in DieHard. Interestingly, the TestU01 library
proved to be a lot more sensitive than DieHard.

The proposed TRNG has the following generic parameters:
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number of ring oscillators (n), length of ring oscillators (l),
sampling frequency divisor (2d) and resilience function input
width (2r).

The first two aspects in which we were interested is the
throughput and the amount of resources this design uses. The
throughput can be easily computed as the output rate of the
TRNG is the input clock frequency, divided first by the clock
divider, then the resilience function. The formula is:

b =
f

2r ∗ 2d
(1)

where f is the input clock frequency of the TRNG and b is
the throughput in bps.

The amount of resources can also be easily estimated. Each
RO uses l CLBs. The xor stage is synthesised as a tree of
LUTs. Due to the fact that the slice of a Spartan 3E device
contains 4-bit input LUTs the number of CLBs is

⌈
n−1

3

⌉
. The

clock divisor uses approximately d
4 CLBs. The counter uses

about r
4 CLBs, while the and stage at its output uses

⌈
r−1
3

⌉
.

The other components (sampler FF, resilience XOR and FF,
acknowledge circuit) use 3 CLBs. Therefore the total number
of used CLBs (C) is:

C = l +
⌈

n− 1
3

⌉
+

d

4
+

r

4
+

⌈
r − 1

3

⌉
+ 3 (2)

During our experiments we concluded that the quality of
the output random bit stream increases with the increase of
d, r and n. As the number of ring oscillators (n) increases
and because the ring oscillators don’t have the exactly same
frequency, the signal after xoring them will be composed of
much more jitter than flat zones. This means that the sampler
will return much more non-deterministic bits compared to the
amount of deterministic bits. The more input bits the resilience
function has the more non-deterministic bits will be xored with
the deterministic bits, which in effect will increase the chance
of the TRNG to output a truly random bit.

Regarding the clock divider, if d is too small (even compara-
ble to the frequency of the ring oscillators), the sampler tends
to hit the same flat zone or return the same non-deterministic
bit several times. The resulting correlated bits can of course
be eliminated in the resilience stage, provided that r is large
enough. We can clearly see that the well-known throughput
vs. resources conflict also holds in case of this TRNG.

We haven’t found any significant influence of l on the
quality of the random numbers. This might be due to the fact
that while each delay element increases the output period of
the ring oscillators, it also increases the amount of jitter, so
the percentage of the jitter after the sampling stage remains
roughly the same. Although one is tempted to use ring oscil-
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Table I
PARAMETERS FOR HIGH QUALITY TRNG

d r n l
throughput

(Kbps)
0 2 20 3 12500
0 3 10 3 6250
2 2 10 3 3125
5 3 5 3 195

lators with the minimum length, we recommend to use l ≥ 3
to make sure that the system does not remain without jitter in
extreme conditions such as sudden temperature variations.

In our experiments the parameters values presented in table I
created a TRNG which passed all tests, while minimizing the
number of ring oscillators. Please note that in case one wants
to be absolutely sure that the TRNG will output high-quality
random numbers, higher values should be used for r or, if
bandwidth is an issue, n.

V. SPEEDING UP THE TRNG

FPGAs are becoming large enough to allow massive pipelin-
ing of arithmetic operands and compute one result per clock.
In some applications it might be desirable to generate random
numbers at the maximum frequency of the FPGA. In the above
design, both the resilience function (characterised by r) and
the sample clock divider (d) lower the frequency of the TRNG.
While we could set d to zero, so that the sampling clock is set
to maximum, we can never set r to zero, while at the same
time obtain good quality random numbers.

First solution which would come to one’s mind is to use
multiple parallel TRNGs and multiplex their outputs. Suppose
the sample clock divider is equal to zero, each TRNG would
output one bit each 2r cycles. This means that we would
need 2r TRNGs for generating one random bit on each FPGA
clock. While this solution would surely work (due to the fact
that by interleaving truly random streams one obtains another
truly random stream), we wanted to find a design that would
minimise the resource utilisation.

Our idea is that we require the resilience function because
not all our bits are sampled from jitter. The same would apply
if we would XOR bits coming from different samplers. This
way, we would save 2r counters, FFs and AND gate and
replace them with one big XOR.

Indeed, we have practically validated the fact that good qual-
ity random numbers are generated using the above concept, for
8 samplers and 20 ROs / sampler. Interestingly, the number of
samplers required is equal to the number of bits which enters
the resilience function in the design presented in figure 3.

Note however, what for the mentioned values, we used 160
ROs, eight times more. An interesting question is whether this
number of ROs could be used to generate a random bit stream,
without using a resilience function (d = 0 and r = 0 in
figure 3). We have practically shown that this is not possible,
as explained in [7]. In essence, the probability of sampling
a random bit increases with the number of ROs, but never
reaches 1. The small percent of the resulting correlated bits is
enough to make the TRNG fail quality tests.

VI. CONCLUSION

In this paper we have shown how a simple yet of high-
quality and high-throughput TRNG can be implemented on
a low-end Xilinx Spartan 3E FPGA and presented the main
implementation issues one might encounter. We have also dis-
cussed the various parameters of the TRNG and the influence
they have on the design. We believe that this paper has paved
the way to implementing secure cryptographic applications in
low-end FPGAs, without requiring any external component.
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Abstract— This paper presents a light adaptive system which 
allows an automatic management of the integration time value 

of a standard 3 transistors (3T) CMOS imager. A low resolution 

network of high dynamic range pixels is included in this 

standard CMOS sensor. This low resolution network is 

regularly distributed on the entire photosensitive array, and 

computes the average incident light information. This value 

allows the control system to choice the best integration time 

value which provides the optimal image quality. This imager has 

been designed in a 0.35µm, 3.3V CMOS technology. The basic 

photosensitive block layout contains four 3T standard pixels and 

one non linear 2T pixel. Due to this distribution, we obtain a 

3.5T per pixel. This sensor has been tested and TV video 

sequences show the efficiency of this very simple control  system.  

 

Index Terms—CMOS image sensor, light adaptive system, 
optimized integration time value, low-cost camera 

I. INTRODUCTION 

The CMOS image sensors currently present on the market 

have average performances such as: a dynamic range (DR) 

and a SNR about 60-70dB, a correct sensitivity (limited by 

the integration time and the small size of the photodiode) and 

a correction of the fixed pattern noise (FPN) carried out in 

the column amplifier [1].  

In comparison with CCD sensors, CMOS Active Pixel 

Sensors (APS) propose lower performances in term of 

dynamic range, sensitivity and noise (including dark current, 

temporal noise and fixed pattern noise). But CMOS 

technology offers advantages in term of production cost, 

power consumption and integration capabilities. 

Researches are undertaken to improve CMOS imagers and 

to reduce their major drawbacks. Basically, the sensitivity 

improvement and the dark current minimization could be 

resolved with optimized CMOS technology. But, dynamic 

range, temporal noise and FPN problems concern the 

electronic design. To minimize the noise, several structures 

exist [1]. To increase the input dynamic range over 100dB 

(thus better than CCD sensors), several works propose a lot 

of methods or pixel structures: a long integration time [2], a 

variable integration time [3], multiple exposures [4], 

multigain [5] and continuous operating pixels using a pixel 

with a logarithmic response [6].  

Majors disadvantages of these high dynamic range  (HDR) 

integration pixels are a higher pixel area compared to a 

standard 3T pixel (Figure 1), a very long readout phase 

(cumulative integration time) or complex external 

computation in order to obtain the final HDR image. In 

another way, continuous operating pixels have the advantage 

of being very simple (pixel with 3 transistors, Figure 2), 

providing an instantaneous high dynamic range, about 

120dB. But this very simple architecture presents a lower 

sensitivity, a huge Fixed Pattern Noise (FPN) and a non 

linear response. 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic and timing diagram of a standard 3T pixel 
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Figure 2.  Logarithmic pixel architecture and phototransduction curve  

For consumers market, like webcams or mobile phones, all 

these improved propositions are not really profitable due to 

the extra costs.  

In this work, an intermediate solution is proposed: the 
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70dB dynamic range of a standard CMOS imager is 

automatically adapted to the light conditions. It means that 

the sensor changes instantaneously its integration time value 

in order to obtain the best image quality. To obtain this light 

adaptive system, an in-pixel system detects the variation of 

the average incident light power and modifies automatically 

the integration time value. The major constraints are to 

preserve the linear response of a standard pixel and to 

minimize the silicon area overhead. Another constraint is to 

implement the simplest possible solution, in order to 

minimize the cost, the power consumption and to preserve 

the main electrical and electro-optical characteristics of a 

standard CMOS imager. 

In the state of the art, [7], [8] and [10] propose very 

interesting solutions: they obtain a specific phototransduction 

curve (based on logarithmic pixel) and they propose to shift 

this curve according the illumination condition. These works 

are bio-inspired systems (Silicon Retina). The major 

disadvantages of these methods are a large silicon area pixel 

and a non linear response. Another solution, proposed by [9], 

explains how authors control the image variation (with the 

same scene) based on histogram information. But their pixels 

contain a high number of transistors.  

The following section presents the principle of our low-

cost light adaptive system. In section III, the sensor 

architecture is described. In section IV, experimental results 

are reported and an overview of the sensor is dressed. Finally, 

conclusions and perspectives are presented.  

II. AUTOMATIC CONTROL OF THE INTEGRATION TIME VALUE 

In order to detect the variation of the average incident light, 

a specific array has been designed and inserted inside the 

photosensitive array with a lower resolution. The goal of this 

matrix is to provide an output voltage (Vph_average) in relation 

to the average incident light (Figure 3).  

Through a feedback loop, this output voltage controls the 

integration time value. As shown in Figure 4, the analogue 

voltage Vph_average, is amplified and converted in a 3bits binary 

word. Once digitalized, this information drives the pixel 

integration time through the reset control signal, managed by 

the row decoder.  

To provide the average incident light value, we have 

chosen to implement an independent photosensitive array 

with a high dynamic range. The first feature, the 

independency, has been decided in order to keep a 

completely standard functional array (3T pixels), without any 

interaction with this dedicated array. The second feature, a 

high dynamic range, has been decided in order to always 

obtain a valid output, whatever the light condition, without 

saturation effect.  

The chosen pixel architecture is the logarithmic one, 

originally presented in [6], as it is simple, robust and 

allowing a high dynamic range. The logarithmic pixel we 

have designed includes only two NMOS transistors and a 

photodiode (Figure 5).  

 

Vs_pixel_col_i

Vph_average

Vs_pixel_col_i+3Vs_pixel_col_i+2Vs_pixel_col_i+1Vs_pixel_col_i
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Vs_pixel_col_i+3Vs_pixel_col_i+2Vs_pixel_col_i+1  
Figure 3.  Block diagram of our CMOS imager 
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Figure 4.  Integration time control system 
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Figure 5.  Logarithmic pixels network 

The structure implemented is derived from the one 

proposed in [8]. All logarithmic pixels have a common node 

and this node voltage is logarithmically dependent of the 

average photocurrent value. The simulated transfer function 

curve of this pixel is presented in Figure 6. The output 

voltage Vph_average is logarithmically dependent of more than 

five decades of photocurrent, from 1pA to 100nA. The output 

buffer curve Vs_buffer gives a voltage variation of about few 

hundred millivolts (in the logarithmic part), which allows to 

provide several integration time values. 

 

DASIP 2008 November 2008

- 58 - 
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Iphoto (A)  
Figure 6.  Simulation of the logarithmic pixel response 

III. ARCHITECTURE OF THE SENSOR 

The proposed image sensor, called IMAGYNE2, is 
composed of two arrays: a 128x128 standard integration 3T 
pixel array and a 64x64 logarithmic pixel array, which is 
regularly distributed with the standard array, and 128 column 
amplifiers. Two address decoders drive respectively the array 
rows and the column amplifiers. 

The basic layout is shown in Figure 7. This block contains 
four standard integration pixels and one logarithmic pixel. By 
abutment of this block, we obtain 128 x 128 standard pixels 
including a 64 x 64 sub-matrix which provides the average 
value of luminosity. The area of this basic block layout is 24 x 
24µm². The standard pixel includes three NMOS transistors 
and a 36µm² N+-P-well photodiode. In this layout, the 
logarithmic pixel photodiode area is 17µm². The fill factor is 
about 25%. 

Pixel 1 Pixel 2

Pixel 3 Pixel 4

Log. pixel 

 

Figure 7.  Layout of our light adaptive system basic block: four standard 

integration pixels including a logarithmic pixel  

The integration pixel outputs are connected to the column 
amplifiers. These readout circuits are located at the bottom of 
each column. These amplifiers allows to sample and hold the 
two pixel levels corresponding to the photocurrent output 
level and the reset output level (according to the classical 
readout of the standard integration imagers, Figure 1). A 
special care has been carried out in their design because 
column amplifiers are a Fixed Pattern Noise (FPN) source. To 
reduce this offset variation, our column amplifiers present a 
traditional structure described initially by [1]. This structure 
allows Correlated Data Sampling (CDS) and Double Delta 
Sampling (DDS) techniques in order to minimize the pixel to 
pixel and column to column FPN. The logarithmic sub-matrix 
provides only one output corresponding to the analogue 

voltage Vph_average This voltage is amplified by a buffer and 
converted by an external ADC into a 3bits code. This code is 
used by the row decoder, driving the reset control signal of 
each line and providing the optimized integration time value. 

IV. OVERVIEW AND MEASURES OF OUR CIRCUIT 

This 128x128 pixel image sensor IMAGYNE2 has been 

designed in a standard, 0.35µm, four-metal layers, 3.3V 

CMOS technology. This sensor has been designed in a multi-

projects IMAGYNE test chip, integrating four different 

imagers. One is a standard 3T imager called REFERENCE.  

The Figure 8 shows an overview of this chip. Sensors 

IMAGYNE1 has been presented in [11]. 
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Figure 8.   Chip photograph  

Figure 9 illustrates the light adaptive capability of our 

sensor. This figure shows 2 films (TV video format) of the 

same scene with the same evolution of the light condition. On 

the left, a film with the REFERENCE array is shown. This 

standard REFERENCE imager consists in a 128x128 3T 

pixel array without any feedback loop control. The 

integration time is controlled with an external command. The 

images obtained with the light adaptive system (IMAGYNE 

2 array) are shown on the right. 

Under ambient light (Figure 9a), the light adaptive system 

allows obtaining an image with a good trade-off of grey 

levels. An appropriate integration time value is choosing in 

order to obtain the same trade-off with the reference imager. 

When a high power light is switched on, the light adaptive 

system adapts instantaneously the integration time, allowing 

a good image, while the image obtained by the standard 

imager presents a majority of saturated pixels (Figure 9b). 

The integration time is too long and a shorter value is chosen 

to obtain a better image (Figure 9c). When the high power 

light is switched off, again, the light adaptive system adapts 

instantaneously the integration time, allowing a good image, 

while the standard imager provides a darker response due to 

the shorter integration time (Figure 9d). A longer value is 

needed to obtain a good image (Figure 9e). Whatever is the 

luminosity, the light adaptive system allows to adapt 

instantaneously the integration time and to obtain good 

images, while the same imager without this system presents 

darker or saturated images. 

In both films, images obtained with a high light power 
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(Figure 9c) show two parts in the image with two different 

integration times. This problem is due to our VHDL code 

which controls the decoders and the integration phase: This 

first version doesn’t take into account the duration of the row 

blanking. First rows have a longer integration time due to the 

addition of the integration time with the blanking row time 

duration. 
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Figure 9.  Video sequences with our sensors  

V. CONCLUSIONS AND PERSPECTIVES 

A light adaptive system has been implemented in a 

standard CMOS image sensor in order to control its 

integration time value. The average value of the global 

incident light power is measured and allows choosing the 

optimal integration time in a continuous way. 

This light adaptive system is implemented through a 

feedback loop: a network of logarithmic pixels provides 

information on the sensor average illumination and this data 

allows computing the optimal integration time. The 

logarithmic pixels, all connected to a common node, are 

regularly distributed in the standard pixel array. One 

logarithmic pixel is inserted in the middle of four standard 

pixels. The output voltage of this network is logarithmically 

dependent of the average photocurrent value. The table 1 

resumes the main characteristics of our CMOS imager. 

At the pixel level, there is an area overhead (about 50%) 

due to the logarithmic network. But it could be drastically 

reduced with a more aggressive layout (about 10 to 20%). 

Moreover, due to the output dynamic voltage obtained and 

the very low resolution of the ADC used (3bits), the 

photodiode area of the logarithmic network can be reduced 

and we are investigating on the reduction of this sub matrix 

resolution. 

This light adaptive system allows obtaining a very good 

and simple control of the integration time value. With this 

system, no anti-blooming system and no mechanical aperture 

control are needed, contributing to the entire camera cost 

reduction. 

TABLE I.  MAIN CHARACTERISTICS OF THE  PROPOSED SENSOR 

Technology 0,35µm CMOS

Standard array resolution 128 x 128 pixels

Log. network resolution 64 x 64 pixels

Transistors per pixel 3,5 NMOS

Pixel pitch 12µm 

Photodetectors N+ P-well photodiode

Fill factor 25%

Acquisition mode Rolling shutter

Power supply 3,3V

ADC resolution 8 bits

Integration time According average illumination

Dynamic range as a standard 3T imager

FPN as a standard 3T imager

Temporal noise as a standard 3T imager

Prototype Chip summary
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Abstract—This paper describes a self-timed implementation of
an ultra wideband impulse radio (UWB-IR) synchronisation ac-
quisition algorithm for a non-coherent receiver. The performance
of the proposed algorithm has been evaluated by numerical
simulations using various statistical channel propagation models.
A qualitative comparison of the electrical activity between the
proposed asynchronous solution and the standard synchronous
one demonstrates the energy efficiency and the relevance of our
asynchronous implementation choice.

I. I NTRODUCTION

In recent years, academic and industrial communities have
been studying the advantages and the opportunities provided
by the Ultra Wide Band radio (UWB), compared to short range
narrow band solutions, for extremely low-power applications.
Among the different ways to generate UWB signals that have
been studied [1] [2], impulse radio (UWB-IR) is definitely
the most original approach as it compels to reverse the usual
time-frequency paradigm of radio communications. Indeed,
this technique is based on the emission of very short baseband
impulses, whose bandwidth extends up to several GHz of the
spectrum. The baseband electromagnetic radiation prevents
from employing any sinusoidal carrier modulation. Fig.1
shows an example of a possible impulse shape both in time
and frequency domains.
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Fig. 1. Example of an elementary impulse in time and frequency domains

Thanks to its pulsed nature, amenable to low complexity
implementation, UWB-IR presents several interesting
properties. One of them is very low power consumption.
Compared to usual narrow band radio systems, for which an
RF carrier is always radiated independently of the information
to transmit, an UWB-IR system only radiates a number of
impulses, depending on this information; thus its energy
consumption is limited to the minimum required. A similar
minimum property also characterises self-timed circuits.
Indeed, in asynchronous systems, the dynamic consumption

is only due to the logical blocks actually implicated in a
processing at a particular time. This property comes from the
substitution of global synchronisation signal (i.e. the clock)
by a local synchronisation implemented by a bidirectional
signalling between the different logical blocks.

This paper describes a self-timed implementation of an
impulse radio detection and synchronisation acquisition
algorithm. SectionII exposes the principles of UWB-IR
communication, and more particularly the synchronisation
phase. This phase represents the key step to establish an
impulse radio communication. The proposed synchronisation
acquisition algorithm and the associated self-timed
architecture are described in sectionIII . Finally, section
IV presents the performance measurements obtained by
means of numerical simulation performed withMatlab.
These results validate the proposed method on different
statistical channel propagation models provided by the
IEEE 802.15.4a Standardisation Group [3]. Furthermore,
a qualitative evaluation of the receiver electrical activity
induced by the algorithm demonstrates the interest of the
asynchronous approach for the low power consumption issue.

II. UWB-IR COMMUNICATION DESCRIPTION

A. System model

The regulation imposes the use of impulses with a
power spectral density limited to−41.3 dBm/MHz. As this
corresponds to only several tens ofµW for a 1 GHz band, it
is necessary to insert redundancy at the impulse emission to
improve the signal-to-noise ratio (SNR) at the decision stage.
A data symbol is then coded byNchip impulses, modulated
in On-Off Keying (OOK) as shown in TableI. The last line,
entitledSynchrocorresponds to the specific mapping used for
synchronisation, as explained later on.

TABLE I
ON-OFF KEYING (OOK) OF A DATA SYMBOL (Nchip = 4)

Symbol Modulation
0 0,1,0,1
1 1,0,1,0

Synchro 1,1,1,1
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In order to avoid forbidden spectral lines due to a periodic
impulse emission, aTime Hopping(TH) scheme is employed
to break thepulse repetition periodand whiten the resulting
spectrum. Each of the chips composing the duration of a
symbol is sub-divided intoNslot slots as shown on Fig.2.
The pseudo-random code,CTH , that governs the TH process
defines in which slot of each chip an impulse should be
emitted.

Symbol

Chip Chip Chip Chip

Slot Slot Slot Slot

Fig. 2. Temporal subdivision of a symbol

Fig. 3 shows an example of an emitted symbol combining
On-Off Keying and Time Hopping. The TH sequence is
periodic with period equal to the symbol duration, i.e. the
TH sequence is repeated at each symbol. In addition, we
note that this spread spectrum technique allows for multiple
access to the channel by assigning a different pseudo-random
code,CTH , to each emitter/receiver pair [4]. Indeed, if these
different codes respect some criteria [5], asynchronous concur-
rent communications between several emitter/receiver pairs are
possible. The impact of multi-user interferences is out of the
scope of this study.

Synchro

"1"

"0"

Fig. 3. Data and synchronisation symbols (Nchip = Nslot = 4 ; CTH =

{1, 4, 2, 1})

B. UWB-IR reception overview

Once synchronisation is achieved, the receiver is able to
locate the transmitted impulses and to demodulate the data by
processing the received signal during observation windows,
positioned according to the TH sequence. The nature of the
required signal processing is discussed in SectionIII .

In order to retrieve the emitter synchronisation and properly
open the observation windows, the receiver has to identify
the TH sequence in the incoming signal. To do so, it exploits
a synchronisation preamble, emitted before every data packet.
As shown on TableI and Fig.3, this synchronisation preamble
composed of32 unmodulated symbols, only contains the TH

sequence information and corresponds to a kind of temporal
signature. During the reception of the synchronisation
preamble the receiver seeks for a succession of detected
impulses that match the TH sequence.

C. Reception architecture

Two main classes of UWB-IR receivers can be found
in the literature: the coherent and non-coherent receivers.
Coherent receivers are inspired from the work presented in
[1]. These receivers are based on performing a correlation
of the incoming signal and a locally generated correlation
template. The template shape is tailored in such a way that
the correlation ratio obtained in an observation window
is good enough to decide upon the received symbol. This
technique exploits the signal phase to trigger the correlation
at the instant that produces the best correlation ratio and
therefore the best signal to noise ratio. This point exhibits a
key constraint of the coherent receiver: the required timing
resolution for the correlation triggering is of the order of
several tens of picoseconds. This explains why this kind
of receivers is not well suited for low power consumption
devices. Such devices are mainly based on non-coherent
architectures. This reception technique is based on the
incoming signal energy and is therefore subject to less
stringent timing resolution constraints. As a matter of fact, a
non-coherent receiver resolution is of the order of the impulse
duration (∼1 ns). Furthermore, non-coherent receivers have
more simple architecture and consume less energy per bit
than coherent receivers [6].

D. Energy detection

The functional architecture of a non-coherent receiver is
depicted on Fig.4. One can recognise the classic envelope
detector, based on a square-law device followed by a low-pass
filter. The latter is equivalent to a signal integration during
Tint, which corresponds to the inverse of the filter cutoff
frequency.

LNA ( )2

Threshold

Fig. 4. RF Front-End schematic

In the literature, UWB-IR non-coherent circuits employ
a 30-50 ns integrator ([6], [7]). This duration is tailored
to gather a significant part of the radiated energy after its
propagation through a time dispersive channel. Such a choice
allows to get, at the integrator output, the aggregated energy
of the main multipath components, thus dispensing us from
implementing a multipath receiver. As an illustration, Fig. 5
shows a realisation of the NLOS (Non Light Of Sight) office
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environment channel model, defined by the IEEE 802.15.4a
task group[8]). On this figure, the main propagation path
delays are spread over more than 50 ns.
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Fig. 5. Channel impulse response of the IEEE 802.15.4a NLOS office
environment channel model

However, the signal temporal resolution is severely
decreased when using such integration durations. This
resolution degradation can be harmful when looking for high
accuracy ranging applications. Another major drawback is that
a long integration duration provokes a sensitivity to noiseand
multi-user interference. [9] shows that a non-coherent receiver
is particularly affected by concurrent UWB communications
and suffers severe performance degradation.

This explains the choice in this paper for non-coherent
reception based on a very short (2 ns) integration duration.
The performance analysis of this receiver is out of the scope
of this study but one can intuitively see that a very time
selective receiver might be more robust to noise and co-
channel interference. The counterpart of this choice is that
we need to resort to multipath processing to get a sufficient
SNR at the decision stage. The general architecture of the
considered receiver is presented on Fig.6 and described in
[10].

Pulse 

Detector

Time 

Stamping

Asynchronous 

Digital Processing

Threshold

Data Out

Fig. 6. General reception architecture

As it is depicted in Fig.6, the incoming signal envelope
passes through a threshold device (thePulse Detectorblock)
and each threshold crossing is interpreted as an impulse
detection. The threshold setting is a key point of the receiver
performance and it is governed by a trade-off between
minimum detectable signal level and asymptotic bit error
rate. In this paper, we assume that the threshold value is set
according to a radar oriented method called CFAR (Constant
False Alarm Rate) [11] described in SectionIV. During a
calibration process, the threshold is adjusted so as to observe
a fixed number of noise peaks. The threshold crossing events
trigger a time base which is used totime-stampthem. These
events then activate the asynchronous baseband logic and

initially the synchronisation acquisition algorithm block.

III. SYNCHRONISATION ALGORITHM AND ARCHITECTURE

The synchronisation acquisition algorithm presented in
this paper is an asynchronous finite state machine (A-FSM)
implementation of the algorithm described in [10]. Once
again, the synchronisation is acquired by identifying the
temporal pattern of the TH sequence in the detected impulses.
In this approach, the retrieval of the time-hopping sequence
is based on comparing the measured time gaps between
the different detected impulses, to the expected distances
composing the TH sequence.

A point to retain, since it will be used later on, is that the
TH sequence is built on the basis of the slot repetition rate.
It means that no matter what the UWB signal alterations are
(e.g. multipath propagation or noise peaks or even co-channel
interference), the TH sequence distances can be effectively
detected at the receiver side by means of only temporal
distances which are multiples of the time slot. That is why
we propose to sub-divide the slot inNunit independent time
units. Furthermore, we set the time unit equal to the temporal
resolution of the system, here 2 nanoseconds.

The measurement of the temporal distances between the
detected impulses and the synchronisation search are made
concurrently and independently on each time unit. Fig.7
shows this parallel architecture of the time stamping and
synchronisation blocks, tailored to a slot duration of 20 ns,
leading toNunit = 10.
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A-FSM 1
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A-FSM 10

dist 1

dist 2

dist 10

SYNCHRO

SYNCHRO

SYNCHRO

Pulse Detector

Time Stamping Synchronizer

Fig. 7. Time stamping and synchronisation architecture - 10time unitsper
slot

A. Time Stamping Block

This block is in charge of two functions. Firstly, it performs
a kind of parallelisation of the signal at the time unit rate:
if an impulse is detected in time uniti, then the signal is
connected to the corresponding counteri and the detection
windows will be re-evaluated at the same time unit of the
next time slot. Secondly, the time stamping block carries out
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the temporal distance measurement between the impulses
detected in the same time unit. It is implemented by a
counter clocked at the slot rate. By this way, the temporal
distances delivered concurrently by the time stamping block
are measured in time slot.

B. A-FSM Description

Each of theNunit asynchronous FSMs is activated by
every reception of a new temporal distance. This distance is
then compared to the TH code distances, to determine what
was the last detected impulse. By repeating this operation
several times, it is possible to identify the complete TH
sequence, and then synchronise with the emitter.

However, due to the signal alterations, some of the emitted
impulses will not be detected. Thus the synchronisation
algorithm has to be robust enough to cope with potentially
missed impulses. We propose to address this point by
enriching the temporal distance alphabet with the addition
of temporal distances of the 2nd and 3rd order as defined here.

∀i ∈ [1, Nchip] :











Di,i+1 = CTH(i + 1) − CTH(i) + Nslot

Di,i+2 = CTH(i + 2) − CTH(i) + 2 × Nslot

Di,i+3 = CTH(i + 3) − CTH(i) + 3 × Nslot

Along the same lines, the synchronisation algorithm must
manage spurious detections (false alarms) either due to
either noise peaks or due to co-channel interference. The
synchronisation algorithm must be able to identify valid
temporal distances equal to the sum of several received
distances triggered by spurious detections. As an example,if
a spurious impulses has been detected between two valid
ones i and i + 1, the algorithm can detect the temporal
distanceDi,i+1 on the sum of the distancesDi,s andDs,i+1.

In this algorithm, the synchronisation is declared as
acquired if all the impulses composing a symbol have
been detected at least one time. Fig.8 outlines the structure
of one synchronisation A-FSM and its states are detailed next.

Init: Reset of the different variables of the A-FSM.

State 0: A received distanceD is compared to the full
distance alphabet. If the comparison succeeds, the next state
is State i with i corresponding to the last detected impulse
(D = Di−1,i, D = Di−2,i or D = Di−3,i); else, the next
state isNoise 0.

State i:The impulse detection flagi is activated:flagi = 1.
The spurious detection counter is reset to 0:noise = 0 and
the variable that represents the last detected impulse is

D 61D 71
D 81

D 82
D 72

D 12

D 12

D 14

D 13

D 81

D 12

D 72D 82

D 81
D 71

D 61

D 12

D 14

D 13

State 8State 2State 1

State 0

Init

Noise 0

Noise 1

Fig. 8. Outline of the synchronisation A-FSM -Nchip = 8

updated: last = i. When a new received distanceD is
provided by the time stamping block,D is compared to the
TH sequence alphabet based on chipi (Di,i+1, Di,i+2 or
Di,i+3). If the comparison succeeds, the next state isState
i+1 , State i+2 or State i+3 with respect to the identified
distance; otherwise, the next state isNoise i.

Noise 0: The spurious detection counter is incremented:
noise = noise + 1. A new received distanceD is compared
to the full distance alphabet, and if this comparison fails,the
sum of the new distanceD and of the previous oneD−1 is
compared to the full alphabet. This operation is repeated until
either a valid distance is identified or the maximum number
of tolerated spurious impulses is exceeded. In the former
case, the A-FSM reaches statei, i being the last detected
impulse. In the latter case, the A-FSM is reset in its stateInit.

Noise i: The spurious detection counter is incremented:
noise = noise + 1. The sum of the new received distance
D and the previous ones is compared to the distances of
the alphabet which exist from the impulsei: Di,i+1, Di,i+2

or Di,i+3. This operation is repeated until a valid distance
is identified or the maximum number of spurious detections
limit is exceeded. Both cases in this state are similar to those
of stateNoise 0.

Synchronisation is achieved when all the impulse detection
flags are set to 1 (flag1 = flag2 . . . f lagNchip

= 1) and the
position in the symbol time is provided with thelast variable.
Then, applying the time hopping code, it is possible to predict
the arrival of the next impulse.
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IV. D IGITAL SIMULATIONS

A. Simulation environment

Both architecture and algorithm presented in this paper
have been implemented inMatlab. In order to validate the
synchronisation algorithm and evaluate its performances
with realistic stimuli, a signal generator which integrates
statistical propagation channel models for different kind
of usual propagation environments has been designed (the
channel models are provided by the standardisation committee
IEEE 802.15.4.a [8]). Fig. 9 represents the simulator synopsis.
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Fig. 9. Matlab simulator synopsis

B. Simulation parameters

For these simulations, the UWB-IR physical layer is defined
as follows:

• Synchronisation preamble duration : 32 symbols,
• Symbol duration,Ts = 1280 ns,
• Number of impulses per symbol (i.e. number of chips per

symbol),Nchip = 8,
• Number of slots per chip,Nchip = 8,
• Number of time units per slot,Nunit = 10, leading to

Tunit = 2 ns
• Time hopping code:CTH = {6, 4, 0, 5, 6, 1, 1, 0}.

As mentioned previously, the detection threshold is
calibrated on the noise level. The CFAR method consists in
determining the maximum number of spurious detections due
to the noise to maintain a suitable bit error rate level (BER).
By computing the false alarm probability that corresponds to
this BER level, it is possible to determine the average number
of spurious detections during a chip duration. In our case, the
BER performance floor is set to10−4 what corresponds to set
the CFAR consign to an average of9.51 spurious detections
during a chip duration.

As well, we propose to evaluate the performances and the
robustness of the algorithm for a SNR range from0 dB to
−17 dB. In this study, the SNR is defined as the signal to
noise ratio measured after the first pass band filter of the RF
front end (Fig.4).

Finally, the algorithm is validated on these 4 different
statistically defined propagation channel models:

• CM1 and CM2 which correspond to a residential prop-
agation environment respectively in light of sight (LOS)
and non light of sight (NLOS) conditions.

• CM3 and CM4 which correspond respectively to LOS
and NLOS office propagation environments.

For each channel model and SNR value, the simulation
is run 100 times so as to obtain a statistical performance
evaluation. A lot of indicators could be used to measure the
performances of a UWB-IR synchronisation algorithm, in this
paper, we propose to focus on :

• the synchronisation success rate,
• the number of detected paths,
• the synchronisation duration.

C. Simulation Results

In this performance study, the synchronisation is considered
as acquired if, on the one hand, the TH sequence has been
detected on one time unit at least before the end of the
synchronisation preamble, and on the other hand, if this
detected time unit is robust enough to bear the demodulation
process (i.e. if the chip error rate from the instant of
synchronisation to the end of the preamble is less than 50
%).

1) Synchronisation success rate:This indicator represents
the ability of the algorithm to acquire the synchronisation
in a given propagation condition. Actually, it allows to
define the minimum SNR level for which the synchronisation
process succeeds with a suitable rate, assumed to be 90%.
Fig. 10 represents the synchronisation success rate for the 4
propagation channels. Obviously, the minimum SNR level
depends on the propagation channel characteristics. In case
of LOS channels (CM1 and CM3), for which it exists some
high energy propagation paths, this level is about−14.5 dB.
In case of NLOS channels, for which the impulse energy is
spread on more propagation paths, this minimum SNR level
rises to−13.5 dB for CM3 and to−12 dB for CM4.
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Fig. 10. Synchronisation success rate
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2) Number of detected paths:This indicator corresponds to
the sensitivity of the synchronisation algorithm. It represents
the number of time units where the TH sequence has been
detected. As previously mentioned, due to the specific RF
front end, a multi-path processing is needed to gather a
significant part of the emitted energy. A multi-path processing
is intrinsically available in the proposed synchronisation
architecture, without any complexity addition, thanks to
the parallelisation of the UWB signal reception at the time
unit rate. However, the number of detectable multi-path
components is limited to the number of parallel time units.
Moreover, it is important to remark that two propagation
paths separated with a multiple of the time slot duration
can not be discriminated. Indeed, in this particular case, the
impulse detections of the second path are stamped in the
same time unit of the first one and then, are interpreted as
spurious detections in the synchronisation process of the first
one. Fig.11 shows the number of detected paths for the 4
tested channel models. Naturally, the number of detected
paths decreases with respect to the SNR. However, we can
remark that the number of detected paths is larger for NLOS
channels than for LOS ones for relatively high SNR (from
0 dB to −10 dB), and inversely for relatively low SNR
(from −10 dB to −17 dB). This behaviour can be easily
explained by the characteristics of the different propagation
channels: the emitted energy is spread over a lot of multi-path
components in NLOS channels as it is spread on fewer
high energy paths in LOS ones. Therefore, it is easier to
detected several paths at high SNR in NLOS channels and
respectively easier to detect the few high energy paths of the
LOS channels in case of lower SNR.
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Fig. 11. Number of detected paths

3) Synchronisation acquisition duration:This indicator
represents the required duration to establish the
synchronisation. It corresponds to the required number
of symbols to identify the TH sequence on the first time
unit. Fig. 12 represents this indicator for the 4 evaluated
propagation channels. At high SNR, the synchronisation
algorithm needs only one or two symbols to get the
synchronisation: in this case, almost all emitted impulsesof
TH sequence can be detected, and then the synchronisation
process succeeds quickly. At lower SNR, the synchronisation
process needs more symbols to identify the whole TH

sequence. This comes from the fact that some emitted
impulses are not detectables (due to the noise). In this case,
the synchronisation algorithm uses the temporal distancesof
the 2nd and 3rd order. That causes a longer synchronisation
time.
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Fig. 12. Synchronisation acquisition duration

D. Qualitative evaluation of the electrical activity

It is well known that the consumption comparison between
a self-timed implementation and a synchronous one of the
same system is tricky. First of all, these two different methods
of design lead to very different architectures usually hard
to compare. And afterwards, the energy consumption of an
asynchronous system depends on the circuit class (QDI,
Micropipeline,...), on the data coding scheme and even on
the chosen communication protocol. In this paper, we deal
with the feasibility and the interests of the asynchronous
approach for UWB-IR signal processing without taking care
of the circuit implementation issues. Therefore, we propose
to evaluate the energy consumption of the synchronisation
algorithm by the number of computations executed by the
FSMs during the whole synchronisation preamble.

In the case of a synchronous implementation, the FSMs
should activated at slot rate. During theNsymb symbols of the
synchronisation preamble, the number of computations that
represents the electrical activity of theNunit FSMs can be
expressed as:

N = Nunit × Nsymb × Nchip × Nslot = 20480

In the case of a self-timed implementation as described
in this paper, the number of computations executed by the
A-FSMs corresponds to the number of detected impulses.
This number directly depends on the UWB-IR signal, the
propagation channel (i.e. the number of detectable paths),
the noise level and especially the threshold value. Figure
13 represents the number of events (i.e. the number of
detected impulses) processed by the A-FSMs during the
whole synchronisation preamble with respect to the SNR.
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Fig. 13. Number of processed events

Firstly, we remark that whatever the SNR level or
the propagation channel, the number of events of the
asynchronous approach is widely inferior to the number of
computations of the synchronous one (continuous black line).
Moreover, the number of events depends on the propagation
channels and decreases with respect to the SNR to tend
toward the limit fixed by the CFAR consign. Contrary to
a synchronous implementation for which the number of
computations remains constant, the self-timed implementation
directly takes advantage of these event number variations.

However, the actual number of events processed by the
FSMs in both implementations also depends on the synchro-
nisation time duration and on the number of detected paths.
Indeed, since a FSM detects the synchronisation, it does not
consume any more during the tail of the synchronisation
preamble. Fig.14 represents this actual number of events
processed by theNunit A-FSMs for the different propagation
channel models. At high SNR, it is the high number of impulse
detections that mainly contributes to the electrical activity.
Despite of the global reduction of the number of impulse
detections at low SNR, the length of the synchronisation
process and the restricted number of detected paths causes an
increase of the actual number of processed events. Finally,
it exists an optimal SNR range for which the algorithm
performances remain quasi-optimal (synchronisation success
rate, synchronisation duration and number of detected paths)
and the electrical activity really limited.
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Fig. 14. Actual number of processed events

E. Influence of the detection threshold

In addition, as previously mentioned, the detection
threshold value is a key point of the receiver performances.
As example, if the number of spurious detections of the
CFAR consign is tailed off, the sensitivity of the receiver is
damaged but the BER performance floor is enhanced. We
propose to study the influence of the CFAR consign on the
performances of the synchronisation algorithm and also on
its electrical activity. A new set of numerical simulationsis
performed on the CM4 channel model with 3 different BER
performance floors:10−3, 10−4 and 10−5. They correspond
respectively to an average number of spurious detections of:
16.92, 9.51 and5.35 per chip.

Fig. 15 represents the synchronisation success rate for the 3
CFAR consigns. Naturally, when the sensitivity is increased,
the algorithm is able to acquire the synchronisation in harder
propagation conditions.
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Fig. 15. Synchronisation success rate

Fig. 16 represents the number of detected paths. As well
as previously, at low SNR, if the sensitivity is increased then
the number of detected paths is increased. However, for high
SNR, we observe that the number of detected paths is bigger
when the sensitivity is decreased. In fact, the CFAR method is
not suited to high SNR values: the number of detections due
to the multi-path components are too important and it is not
easy to identify the TH sequence in all these detections.
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Fig. 16. Number of detected paths
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Fig. 17 represents the synchronisation duration. Naturally,
a better sensitivity allows a faster synchronisation process.
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Fig. 17. Synchronisation duration

Fig.18 represents the actual number of events for the dif-
ferent CFAR consigns. It clearly appears that the electrical
activity of the synchronisation algorithm can be tuned by the
detection threshold setting.
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Fig. 18. Actual number of processed events

This set of simulations demonstrates that the performances
of the algorithm and its electrical activity can be mitigated
by tuning the detection threshold setting. Thanks to the
event nature of the asynchronous logic, the synchronisation
algorithm proposed in this paper directly benefits from the
variation of the threshold to reduce its electrical activity.

V. CONCLUSION

This paper presents a self-timed implementation of an
UWB-IR synchronisation acquisition algorithm for a non-
coherent receiver. The performances of the algorithm are
evaluated by numerical simulations performed with realistic
stimuli. Furthermore, a qualitative evaluation of the energy
consumption demonstrates the interest of the asynchronous
approach compared to an usual synchronous implementation.

In addition, the numerical simulation results underline the
impact of the detection threshold on the electrical activity of

the receiver. Our future works will focus on aad hocmethod
to adjust the detection threshold in order to take benefit of the
great flexibility offered by the asynchronous design style.
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Abstract— Embedded real-time applications in communication 
systems require high processing power. Manual scheduling devel-
oped for single-processor applications is not suited to multi-core 
architectures. The Algorithm Architecture Matching (AAM) 
methodology optimizes static application implementation on 
multi-core architectures. 
The Random Access Channel Preamble Detection (RACH-PD) is 
an algorithm for non-synchronized access of Long Term Evolu-
tion (LTE) wireless networks. LTE aims to improve the spectral 
efficiency of the next generation cellular system. This paper de-
scribes a complete methodology for implementing the RACH-PD. 
AAM prototyping is applied to the RACH-PD which is modelled 
as a Synchronous DataFlow graph  (SDF). An efficient implemen-
tation of the algorithm onto a multi-core DSP, the TI C6487, is 
then explained. Benchmarks for the solution are given. 
 

I. INTRODUCTION 
The recent evolution of digital communication systems 

(voice, data and video) has been dramatic. Over the last two 
decades, low data-rate systems have been replaced or aug-
mented by systems capable of data rates of several Mbit/s, 
supporting multimedia applications (such as DSL, cable mo-
dems, 802.11b/a/g/n wireless local area networks, 3G and 
WiMAX). The 3GPP Long Term Evolution (LTE) represents a 
recent part of this evolution, enabling data rates beyond hun-
dreds of Mbit/s in potentially very wide cells. 

 
As communication systems have evolved, the resulting in-

crease in data rates has necessitated higher system algorithmic 
complexity. A more complex system requires greater flexibil-
ity in order to function with different protocols in diverse envi-
ronments. Additionally, there is an increased need for the sys-
tem to support multiple interfaces and multi-component de-
vices. Consequently, this requires the optimization of device 
parameters over varying constraints, such as performance, area 
and power. Achieving this device optimization requires a good 
understanding of the application complexity and the choice of 
an appropriate architecture to support this application.  

 
System on a Chip (SoC) with several cores such as multi-

core DSPs is becoming the standard basic element used to 
build complex telecommunication systems. The task of dis-
tributing pieces of an algorithm over a multi-component archi-
tecture is not straightforward. When performed manually, the 

result is inevitably a sub-optimal solution. There is a need for 
new methodologies that allow the exploration of several solu-
tions thus producing a more optimal result. For the current 
work, the methodology of Algorithm-Architecture Matching 
(AAM, previously called AAA [6]) is employed using the Par-
allel Real-time Embedded Executives Scheduling Method 
(PREESM) tool. The PREESM tool is an open framework 
which provides a flexible method for exploring architectures 
suited for deterministic applications. More than just a simula-
tion tool, PREESM can generate code. Associated with well-
optimized code, communication and synchronization, the 
automatic generation leads to an efficient algorithm implemen-
tation. 

 
This article presents an overview of the LTE Random Ac-

cess Channel (RACH) preamble detection algorithm and the 
PREESM tool. Subsequently, the preamble detection applica-
tion is described using a Synchronous DataFlow graph (SDF). 
The virtual prototyping of this application over multi-
processor architectures using PREESM tool features is then 
detailed. The target architecture is a multi-core DSP from 
Texas Instruments, the C6487. An implementation onto this 
DSP is performed with optimized inter-core communication 
and synchronizations using Direct Memory Access (DMA). 
Finally future work is discussed and conclusions are given. 

 

II. PREAMBLE DETECTION PROCESS 
The RACH is a contention-based uplink channel used 

mainly for initial transmission requests from the User Equip-
ment (UE) to the evolved base station (eNodeB) for connec-
tion to the network. The UE seeking connection with a base 
station sends its signature in a RACH preamble dedicated time 
and frequency window in accordance with a predefined pre-
amble format. Signatures have special auto-correlation and 
inter-correlation properties that maximize the ability of the 
eNodeB to distinguish one UE from another. The RACH pre-
amble procedure is implemented in the LTE eNodeB to detect 
and identify each user’s signature and is dependent on the cell 
size and the system bandwidth. We assume that the eNodeB 
has the capacity to handle the processing of this RACH pre-
amble detection every millisecond in a worst case scenario. 
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Fig. 1  Random Access Channel Preamble Detection (RACH-PD) Algorithm 

 

 

Fig. 2  A Random Access Slot Structure 

The preamble is sent over a specified time-frequency re-
source, denoted as a slot, available with a certain cycle period 
and a fixed bandwidth. Within each slot, a guard period (GP) 
is reserved at each end to maintain time orthogonality between 
adjacent slots [1]. This preamble-based random access slot 
structure is shown in Figure 2.  

 
The case study in this article assumes a RACH-PD for a cell 

size of 115 km. This is the largest cell size supported by LTE 
and also the case requiring the most processing power. Ac-
cording to [2], preamble format#3 is used with 21,012 com-
plex samples as a cyclic prefix for GP1, followed by a pream-
ble of 24,576 samples followed by the same 24,576 samples 
repeated. In this case the slot duration is 3 ms which gives a 
GP2 of 21,996 samples. 

As per Figure 1, the algorithm for the RACH preamble de-
tection can be summarized in the following steps [1]:  

• After the cyclic prefix removal, the preprocessing 
(Preproc) function isolates the RACH bandwidth, by 
filtering with downsampling and then transforms the 
data into the frequency domain.  

• Next, the circular correlation (CirCorr) function cor-
relates data with several pre-stored preamble root se-
quences (or signatures) in order to discriminate be-
tween simultaneous messages from several users. It 
also applies an IFFT to return to the temporal domain 
and calculates the energy of each root sequence corre-
lation.  

• Then, the noisefloor threshold (NoiseFloorThr) func-
tion collects these energies and estimates the noise 
level for each root sequence.  

• Finally, the peak search (PeakSearch) function detects 
all signatures sent by the users in the current time 
window. It additionally evaluates the transmission 
timing advance corresponding to the approximate 
user distance. 

 
In general, depending on the cell size, three parameters of 

RACH may be varied: the number of receive antennas, the 
number of root sequences and the number of times the same 
preamble is repeated. The 115 km cell case displayed in Figure 
1 implies 4 antennas, 64 root sequences, and 2 repetitions. 
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III. THE ALGORITHM ARCHITECTURE MATCHING (AAM) 
Currently, development tools for processors are primarily 

based on the C-language and an associated compilation tool. 
The major issue with a monolithic syntax is the inability to 
express parallelism. One solution is to use a Real-Time Oper-
ating System (RTOS)  and to describe threads and their com-
munication links (Mailboxes and pipes). Unfortunately, the 
application model used in an RTOS is too complex to handle 
multi-processor architectures when the number of threads in-
creases [3]. For this reason, there is a need to explore method-
ologies better adapted at expressing the inherent parallelism 
within the application. Algorithm Architecture Matching 
(AAM [4]) is an example of one of these methodologies. 

Algorithm Graph Architecture Graph ConstraintsAlgorithm Graph Architecture Graph Constraints

Generated Code
Implementation

graphGenerated Code

Graph transformations
AAM algorithms

Graph transformations
AAM algorithms

User :
Virtual prototyping
Profiling analysis

User :
Virtual prototyping
Profiling analysis

 
Fig. 3  PREESM Description 

Algorithm Architecture Matching (AAM) maps an algo-
rithm to a physical architecture given a set of constraints.  The 
algorithm is described within PREESM using the algorithm 
graph (Figure 3).  It relies on a description model which 
matches the application behavior. In the case of deterministic 
systems (including signal, image and communication applica-
tions), dataflow graphs have proven to be an efficient repre-
sentation [5][6] for transformation-oriented systems and het-
erogeneous multi-component  architectures. The algorithm 
graph (Figure 3) in PREESM is a Synchronous DataFlow 
graph (SDF) suitable for multi-processor architecture imple-
mentations [7]. Each vertex of the SDF represents an operation 
at coarse grain (equivalent of C function) and each edge repre-
sents a data dependency between the two operations at the end 
vertex. The vertices can be hierarchical, so allowing the de-
scription of the application at different resolutions. Thus, the 
SDF specifies the potential parallelism used in the matching 
step. The finest resolution vertex is called atomic operation; 
this type of operation may be described in a programming lan-
guage such as C, VHDL, C++.  
 

Within the PREESM tool, the architecture is described as 
the architecture graph (Figure 3) in which vertices represent 
operators and edges represent communication over a certain 
medium. An operator in this methodology is usually a proces-
sor connected to a local memory and has several communica-
tion resources. In this paper, operators are DSP cores and the 
media is an Enhanced Direct Memory Access (EDMA). The 
architecture graph specifies the available parallelism.  

 

The matching consists of manually or automatically (AAM 
algorithms, Figure 3) exploring the implementation solutions 
with optimization heuristics. These heuristics aim to minimize 
the total execution time of the algorithm running on the multi-
component architecture, by taking into account the execution 
time of operations and of data transfers between operations. 
The result of the matching allows automatic code generation 
[8] for multi-processor architectures handling synchronizations 
and data transfers between processors. Thus PREESM pro-
vides off-line static scheduling for multi-processor architec-
tures. An implementation of AAM using the PREESM tool 
consists of: 

• Performing a distribution (allocating parts of the algo-
rithm to architecture components)  

• Scheduling (determining the order for the operations 
distributed over a component) the algorithm on the 
architecture.  

• Providing an implementation graph including simula-
tion results of the distributed application functions. 

• Generating C-code to verify the partitioning on target 
hardware and to provide a flexible implementation. 

 
These functions enable PREESM to be used as an efficient 

virtual prototyping tool for our architecture exploration. 
 

IV. ARCHITECTURE EXPLORATION 

A. Algorithm Model 
The goal of this exploration is to determine through simula-

tion the architecture best suited to the 115km cell RACH-PD 
algorithm. The RACH-PD algorithm behavior is described as a 
SDF [3][9] in PREESM. An SDF description brings two major 
benefits to our implementation. The first is the proven possi-
bility to schedule the algorithm statically. A static implementa-
tion enables static memory allocation, so removing the need 
for runtime memory administration.  The second advantage is 
the high flexibility of communication parameter tuning, as 
achieved by modifying the SDF.  

 
The RACH-PD algorithm model is shown in Figure 4. Ini-

tialization operations on the left-hand side are executed once 
as the system starts. Next, the three operations PreambleProc-
ess, NoiseFloorThreshold and PeakSearch are executed se-
quentially in a loop while AntennaGen delivers samples to 
decode. The PreambleProcess operation is executed four times 
in each loop iteration; once per antenna. At the beginning of 
PreambleProcess, the atomic operation Preprocessing executes 
sequentially the bandpass filter, DFT and subcarrier demap-
ping. It is repeated once for each of the two preamble repeti-
tions. Then the circular correlation with 64 preamble root se-
quences is performed. Each circular correlation contains the 
correlation of the two preamble repetitions (SingleZCProc) 
with power accumulation similar to antenna power accumula-
tion. 
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Fig. 4  Preamble Detection SDF Description 

Using the same approach as in [10], valid scheduling de-
rived from the representation in Figure 4 can be described by 
the compact expression: 

PeakSearchThreshold)NoiseFloor64(
)))))))(Pr((2((64(4)(Pr8( PowAccPowAccocSingleZCInitPowereproc  

 
We can separate the preamble detection algorithm in 4 

steps: 
• Preprocessing step:    eprocPr8
• Circular correlation step:  

)))))))(Pr((2((64(4( PowAccPowAccocSingleZCInitPower  
• Noise floor threshold step:  Threshold)NoiseFloor64(
• Peak search step:    PeakSearch
 
Each of these steps is mapped on the available cores and 

will appear in the exploration results detailed in Section IV-D.  
The given description generates 1,357 operations; this does not 
include the communication operations necessary in the case of 
multi-core architectures. Placing these operations by hand on 
the different cores would be greatly time-consuming.  The 
architecture exploration PREESM tool offers an automatic 
scheduling, avoiding the problem of manual placement. 

B. Architecture Exploration 
The four architectures explored are shown in Figure 5. The 

cores are all Texas Instrument TMS320C64x+ DSPs running 
at 1 GHz [11]. The connections are made via Direct Memory 
Access (DMA) links. The first architecture is a single-core 
DSP such as the TMS320TCI6482. The second architecture is 
dual-core, with each core similar to that of the 
TMS320TCI6482. The third is a tri-core and is equivalent to 

the new TMS320TCI6487 [12]. Finally, the fourth architecture 
is a theoretical architecture for exploration only, as it is a 
quad-core. The exploration goal is to determine the number of 
cores required to run the random RACH-PD algorithm in a 
115 km cell and how to best distribute the operations on the 
given cores. 

C64x+ EDMAC64x+ C64x+

EDMA

C64x+ C64x+

C64x+

C64x+ C64x+

EDMA

C64x+

1 2

3
4

C64x+

 
Fig. 5  Four architectures explored 

C. Architecture Model 
To solve the implementation problem, each operation is as-

signed an experimental timing (in terms of CPU cycles). These 
timings are measured with implementations of the atomic 
functions on a single C64x+. The EDMA is modelled as a non-
blocking medium transferring data at a constant rate. Assum-
ing the EDMA has the same performance from the L2 internal 
memory to the L2 internal memory as the EDMA3 of the 
TMS320TCI6482, then the transfer of N bytes via EDMA 
should take approximately (see [13]): 

cyclesNNtransfer
375.3

135)( +=  

The average size of the transmitted buffers in the 115 km 
preamble detection procedure is 4,800 bytes. Consequently, 
the average transfer speed used for simulation is 3.08 
GBytes/s. 

D. Architecture Choice 
The PREESM automatic scheduling process (i.e. the appli-

cation of the AAM methodology to the RACH-PD algorithm) 
is applied for each architecture. The simulation results ob-
tained are shown in Figure 6. Due to the 115 km cell con-
straints, preamble detection must be processed in less than 4 
ms. Two kinds of experimental timings feed the simulation. 
The first set of timings is measured in loops, each calling a 
single function with L1 cache activated and appears as striped 
bars in Figure 6. It represents the application behaviour when 
data access is ideal. The second set of benchmarks is measured 
with L1 cache deactivated and leads to the higher cycles dis-
played in light grey. It represents the worst case of internal 
data accesses. For more details about C64x+ cache, see [11]. 
The RACH application is well suited for a parallel architec-
ture, as the addition of one core reduces the latency dramati-
cally. With L1 cache activated, two cores can process the algo-
rithm within a time frame close to the real-time deadline. 
Simulation on the dual core with deactivated cache produces 
significantly higher cycles and misses the real-time deadline, 
so disqualifying the 2-core solution.  
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Fig. 6  Timings of the RACH-PD algorithm schedule on target architectures 

The 3-core solution is clearly the best one: its CPU loads 
(68% with realistic cache misses and 88% without cache) are 
satisfactory and do not justify the use of a fourth core, as can 
be seen in Figure 6. 

 

V. IMPLEMENTATION ON THE CHOSEN ARCHITECTURE 
With the architecture chosen, we can now start the static 

implementation process. Our goal is to automatically generate 
a highly optimized and flexible code with the necessary trans-
fers and synchronization. 

A. Description of the chosen Architecture 

 
Fig. 7  Architecture of theTMS320TCI6487 

The TMS320TCI6487 [12] is a three-core DSP specifically 
created for communication signal processing. Two modes are 

has 1MByte of L2 memory while in asymmetric mode, core 0 
has 1.5Mbyte, core 1 has 1MByte and core 0.5MByte. Each 
CPU can access the L2 memory of the two other cores via the 
EDMA. Each CPU has also access to an external DDR2 mem-
ory. The EDMA can transfer a value from one core on-chip L2 
memory to another core L2 memory in parallel with CPU cal-
culation. This capability brings a higher flexibility than an 
architecture with cores interconnected via communication me-
dia. 

 

available for memory sharing: in symmetric mode, each CPU 

hared accesses between cores can be synchronized with 
ha

 to develop 
a c

 
Fig. 8  EDMA channels used for communication between cores 
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S
rdware semaphores and inter-core interruptions. 32 sema-

phores may interrupt any core when a resource is accessed or 
released. Inter-core interruptions may launched from any core 
by writing in specific registers. Interruptions can carry a 7-bit 
value to distinguish one from another. Local to each CPU, the 
RTOS, DSP/BIOS, provides threads and local synchronization 
between threads with software semaphores. These features will 
be exploited to implement the RACH-PD algorithm and auto-
matically generate function calls and synchronization. The use 
of software semaphores is consistent with a high performance 
implementation as passive wait is generated. Waiting for a 
DSP/BIOS semaphore puts the CPU in idle state. 

B. Using the EDMA as a message passing system 
In order to prepare for code generation, we need
ommunication library which provides synchronization. The 

communicator interface should be simple and may be called by 
generated code. The target architecture offers two communica-
tion possibilities: queues which are a message passing system 
built in DSP/BIOS operating system or the EDMA. As the 
queues are expected to be slower, the choice was made to use 
the EDMA.  

T
to N small frames and a remainder. The frames and the re-

mainder are sent on two different chained channels. In order to 
avoid conflicts, 12 channels are used as shown in Figure 8. 
Since the channel number contains the sender and receiver 
identifiers, the receiver always knows, even in interruption 

Remainder ChannelNr = SenderId*8 + ReceiverId*2 + 1 
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Fig. 9  Threads and synchronization within the cores 
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m
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cei requests the data by sending its address. This solution 
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Fig. 10  Two solutions for the inter-core communication 

 
The m

th intermediate memory solution imposes the static allocation 
of

 previously, two different modules may be used to 
generate inter-core synchronization: hardware semaphores or 
in

ng the same method as in [6], the PR
ates two threads per core: one for processing

e for sending communication orders and waiting for transfer 
completion. As shown in Figure 9, when two successive func-
tions are distributed on different CPUs, two semaphores Sem1 
and Sem2 are generated on each core to synchronize the proc-
essing and communication threads. While communication 
threads are waiting for the completion of a transfer, processing 
threads can process data that does not impact this transfer. 
These local semaphores are implemented with DSP/BIOS op-
erating system. 

t design problem to solve is the communicat
e
e sender alone knows the source buffer address and the re-

ceiver alone knows the destination buffer address. There are 
two solutions (Figure 10) to complete a transfer in this situa-
tion: use an intermediate address or transfer the destination 
address.  

 
When a

ust occur twice: from local memory to intermediate and from 
intermediate to destination. The dimension of the intermediate 
buffer is also a problem. In Figure 10, only the communication 
threads of the CPUs are represented.  

 
The second solution is called mem
ver 
poses a bidirectional communication but is lighter than the 

preceding solution, as the address transfer of 4 bytes may be 
achieved through scratch buffers and synchronization through 
hardware semaphores or inter-core interruptions. During these 
transfers, we use only 12 of the 256 parameter set registers of 

the EDMA. The unused registers can be utilized as scratch 
buffers to transmit the transfer destination addresses. 

 

emory pull solution is chosen for two reasons. Firstly, 
e 
 an additional buffer of size at least as large as the largest 

one in the algorithm. In the RACH-PD case, this buffer should 
be of a minimum size of 100 kBytes with strong memory op-
timization. Secondly, the double transfer results in a division 
by 2 of the communication speed. Even with rates of several 
GBytes/s, this data rate reduction is not negligible. Simulation 
shows a communication cost of almost 5% for the RACH-PD 
algorithm.  

 
As stated

ter-core interruptions. In order to simplify the synchroniza-
tion, a small library is created, with an interface close to the 
one of the local semaphores:  

• HardSEMPend(int id): Waits for a semaphore with 
the given semaphore identifier 

• HardSEMPost(int id): Launches a semaphore with the 
given semaphore identifier. 
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The semaphore identifier is chosen to be the Sender CPU 
nu

hen the sender receives an interruption indicating the 
av

When the cores are started, each core waits for the two other 
co

 complete, our attention 
tu

hen the multi-core program is run with data in external 

tion programming is complete, we 
ge

mber. Hardware semaphores are designed to protect critical 
sections from multiple accesses. They are typically used in 
resource access requests; access is granted when a semaphore 
is acquired. Programming the synchronization library with 
such a system leads to a clumsy implementation where the 
acquired resource is purely virtual. It is for this reason that the 
choice was made to base the library on inter-core interruptions. 
The principle of a inter-core synchronization library based on 
interruptions is quite simple. Any core can send an inter-core 
interruption to another core by providing the right identifier. 
An interruption is launched by the sender HardSEMPost func-
tion and is caught in an interrupt service routine of the re-
ceiver. The receiver then releases a local semaphore that was 
pending in the HardSEMPend function. 

 
W
ailability of the address, it launches the EDMA copy and 

waits. At the end of the transfer, the EDMA launches an inter-
ruption giving a transfer completion code equal to the EDMA 
channel number. The sender and receiver identifiers are de-
duced and communication threads of both CPUs are released. 
 

res to run before sending any interruption. This system en-
sures that no inter-core interruption is ignored. 

D. RACH-PD memory consideration 
Once the communication model is

rns to memory. The data buffers are statically allocated, 
some in the fast L2 memory of their CPU and others in the 
huge DDR2 external memory. We thus need to decide which 
buffers should be allocated in L2 and which configuration 
(symmetric or asymmetric) should be chosen. For the buffers 
in DDR2, sections of L2 memory must be used as cache for 
DDR2 so that performance does not decrease dramatically (see 
[14] for more details). Thus, we activate L2 cache with its 
maximal size of 256kBytes to improve DDR2 access time.  
 
W
memory, the EDMA reads and writes DDR2 data cached in 
L2. Cache coherency must then be taken into account. Indeed, 
the EDMA module runs the risk to read “dirty” data or to write 
in a cached value. Before sending data, a cache “write-back” is 
called to retrieve the data from cache. Before receiving data, a 
cache “invalidate” is called to mark the cache value as obso-
lete. With these precautions, cache coherency is maintained. 

E. Implementation tests 
When the communica
nerate a 3-core code for C64x+ with the PREESM tool. We 

initially test a simple PREESM project by copying a buffer 
from one core L2 to another. The benchmarks of these copies 
are shown in Figure 11. The fixed overhead of an inter-core 
copy is approximately 2,700 cycles. This overhead is due to 
the synchronization process, the interruption routines and the 
EDMA configuration. When transferring big buffers, the 

EDMA data rate reaches 1.6 GBytes/s, half the speed of the 
TMS320TCI6482 EDMA employed in the simulations  and 
benchmarked in [13]. 
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Fig. 11  Benchmarks of TCI6487 synchronized EDMA3 buffer copy 

 
he RACH-PD algorithm is then tested and optimized on 

th

)  Single-core test: A first version is tested on one core 
wi

n: L2 cache is then activated with the 
ma

: The application is distrib-
ute

T
e TMS320TCI6487 platform in several steps:  
 

1
th code in L2 and data in DDR2. This implementation al-

lows us to debug, dimension the stack and ensure that the code 
is working. The time of one preamble detection with this con-
figuration is 240 ms. 

2)  Cache activatio
ximal size of 256 kBytes. The preamble detection time is 

then reduced to 69 ms. 

3)  Three-core implementation
d over three cores. When we let the PREESM tool choose a 

strongly parallel implementation without constraints, it gener-
ates a very complex solution with 10,000 semaphores. We thus 
tune this solution, reducing inter-core communication and still 
allowing good pipelining (see Figure 12). The number of 
semaphores is then reduced to approximately 100. The com-
plex solution which results from the non-constrained operation 
shows a limitation in the present PREESM mapping: a fixed 
cost for transfers needs be added to the tool to avoid the explo-
sion of communication. The non-constrained PREESM auto-
matic code generation allocates buffers of approximately 1.65 
Mbytes for one core, 1.25 Mbytes for a second core and 200 
kBytes for a third core, to which the heap and the code size 
must be added. This asymmetry justifies the use of asymmetric 
memory. With this configuration, one preamble detection takes 
50 ms. 
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Fig. 12  Simple pipelining of the RACH-PD decoding 

4)  Smart allocation and code: If buffers are allocated in L2, 
pre-processing memory and code optimization brings the pre-
amble detection processing time to approximately 10 ms. In-
ternal allocation of some power buffers leads to a detection 
within 6.5 ms. Finally, after circular correlation buffer optimi-
zation, the detection time becomes 3.6 ms, under the constraint 
limit for response time. 

 
The final implementation has one core loaded at 90%, one 

core at 75% and one at 70%. The simulation and code genera-
tion have led to a real implementation very close to that pre-
dicted with L1 cache worst case where the simulation loads 
were respectively: 88%, 83% and 83%. The added constraint 
of deactivating the cache in simulation inputs compensates for 
the external memory accesses that were not simulated and the 
EDMA rate slower than intended. These results show that pro-
totyping the application enables a precise simulation of the 
multi-core solution before solving complex implantation prob-
lems. 

VI. FUTURE WORK 
In the near future, a new communication model for the 

TMS320TCI6487 will be built based on message queues from 
DSP/BIOS operating system. This model will then be com-
pared with that based on the EDMA. Its advantage will be the 
portability on devices using RapidIO (see [4]), as the operating 
system DSP/BIOS can use this communication system to pass 
messages. 
 

Furthermore, other algorithms of LTE will be studied and 
implemented. It is expected that this will help to improve the 
architecture models of the PREESM tool. Specifically, inter-
nal/external allocation and advanced timings taking into ac-
count data caching may be automated, thus eliminating the 
manual step of memory allocation. Additionally, a more accu-
rate communication model in the PREESM tool will remove 
the need for the manual reduction of semaphores. 

 

VII. CONCLUSIONS 
The intent of this paper was to demonstrate a methodology 

using rapid prototyping and automatic code generation to de-
velop an optimized multi-core implementation of a communi-
cation algorithm. After exploring 4 solutions, the best target 
architecture for the 115km cell RACH-PD algorithm was cho-
sen, and an implementation is described and benchmarked. 
Memory allocation, function calls and EDMA calls are gener-
ated in C-code by the PREESM tool. Inter-core communica-
tion and memory partitioning are considered in the prototyping 
methodology. The result is an efficient and highly reconfigur-
able implementation, proving that the generation of static im-
plementations from SDF descriptions is a viable solution for 
deterministic signal processing applications.  

In the near future, an increasing number of CPUs will be 
available in complex System on Chips. Developing method-
ologies to efficiently partition code on these architectures is 
thus an increasingly important objective.  
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Abstract— This paper presents an architecture for ray casting
through recursive grids, a generalization of the concept of octree.
The main feature of our architecture is to reduce the needs in
bandwidth to external memory by exploiting the spacial and
temporal locality of coherent sets of rays. To this end, we
use a recursive grid structure aware adaptive and predictive
cache, associated with a specifically crafted “phase locked” ray
propagation algorithm. Our findings are that the use of recursive
grids, which allow significant reductions in terms of required
storage space and ray traversal steps in locally sparse scenes, are
fully compatible with on-the-fly memory prefetching mechanisms
as implemented by our cache.

I. INTRODUCTION

Ray shooting is a well known problem consisting in com-
puting ray paths through diversely structured scenes ranging
from sets of primitives such as triangles to density fields [1].
Algorithms involving ray shooting are called ray tracing or
ray casting algorithms, and have applications such as realistic
rendering or tomographic reconstruction. Despite their great
results, most of those algorithms are considered as very costly
computationally.

For the past two decades, ray shooting acceleration heuris-
tics have been a hot research topic. The ray traversal of so-
called acceleration structures (AS) accounts for a lot of the
research done in this field. It consists in finding a way to
represent the scene – the AS –, as well as an associated
traversal algorithm, which allow the best average ray shooting
performances. This problem can be solved in a variety of ways,
depending on the kind of scene one is willing to represent, and
on the kind of computational resources one is trying to spare.

Acceleration structures tend to work by subdividing in some
way or another the space the scene is located in. There are at
least two ways to build and use an acceleration structure. The
first is to consider the AS as a simple space indexing mean
for the scene primitives. Examples of this approach include
SAH-based kd-trees, bounding box hierarchies, and so on [2].
Alternatively, some AS can be thought of as space partitions.
When that is the case, it is possible to consider the cells of the
AS as an approximation of the scene geometry. Generally, such
approaches advocate the use of cubic cells, called “voxels”
(volume pixels). Uniform 3d grids, as well as octrees [3], can
be used in this way.

To our mind, from a hardware designer point of view,
acceleration structures ought to be assessed through a too-
seldom-thought-of criterion, which is the quantity of im-

plicit information it holds regarding the scene geometry. For
instance, a uniform 3d grid holds a lot of such implicit
information, since the memory address of a cell of the grid
can be computed directly knowing the cell position, whereas
structures such as kd-trees hold little such information, since
finding a cell requires a tree search. Of course, even highly
irregular structures tend to preserve spatial locality. While
this allows those structures to be used with generic caches
at the cost of (more or less acceptable) performance penalties,
it makes the design of an efficient application-specific pre-
fetching based cache virtually impossible for them.

Quite clearly, the use of uniform grids seems to be an
obvious choice if one’s trying to design such a cache, but
sadly, those have little practical interest. Indeed, they grow
very large with the need for small cells, which makes them
not only impractical to store in memory, but also costly to
traverse. Real world scenes, however, often exhibit both large
homogeneous areas and small very detailed parts. The use of
hierarchical space subdivision structures allows the efficient
representation and traversal of such scenes.

In this article, we introduce 2n× 2n× 2n recursive grids, a
generalisation of octrees very similar to [4], yet a bit more con-
strained. Recursive grids allow hierarchical non-homogeneous
space partitioning and traversal by beams of rays. We propose
a recursive grid cache allowing pre-fetching of scene data
as needed by our traversal pipeline. Our cache offers good
performance while being suited to large scene representations,
an aspect often neglected in the current research effort.

In the section II, we briefly describe some of the hardware
designed so far for memory management for ray shooting. In
the section III, we present our architecture, which includes
the above mentioned cache and traversal pipeline. Finally, we
discuss its performances in the section IV and conclude in the
section V.

II. STATE OF THE ART

A. Generalities on parametric grid traversal

Among the methods used for acceleration structure traver-
sal, the parametric ones are very popular. They are concep-
tually easy and their implementation is often efficient. Most
of them are variants of the DDA algorithm adapted to ray
tracing [5], which parametrizes the ray and performs all the
computations in the parameter space thereafter. The Fig. 1
illustrates the variables used by the DDA on a 2D example.
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Fig. 1: Geometrical meaning of the variables used by the
DDA algorithm

The algorithm iterates on the cells of an uniform grid, storing
the parameters of the intersection between the ray and the yet-
uncrossed cell faces’ planes along each axis (called tx and ty
on the Fig. 1). It comes the next cell is the neighbour of the
current one, sharing the face corresponding to the smallest of
the tx and ty parameters (that is, ty in our example). This
smallest parameter tl (where l ∈ {x, y}) is updated by being
added t∆l, the parameter difference between the intersection
points with the ray of the two faces of a cell orthogonal to a
given axis l. In our example, it comes the next cell is the one
just above the dark gray one, and the new face intersection
parameters are (t′x, t′y) ← (tx, ty + t∆y). The t∆x and t∆y

parameters are computed once for all for a given ray at the
initialisation on the DDA algorithm. The resulting traversed
nodes are shown in light gray on the Fig. 1.

When performing ray casting (that is, a particular case of
ray tracing where one ray matches exactly one pixel), the
contribution1 of each traversed cell is taken into account for the
resulting pixel value computation. This is called compositing.

B. Memory management

Most of the ray shooting dedicated hardware design with an
emphasis on efficient memory management was done in the
field of volume rendering. This can be explained by the fact
that volume rendering naturally involves very large data sets2.

The Cube series is an example of regular-grid-sampling-
based volume rendering hardware designed to spare this very
bandwidth. While Cube-3 [6] is a regular ray parallel ray
tracing architecture, Cube-4 [7] is based on object-order ray-
tracing. The Cube-4 hardware is designed so as each voxel
is fetched exactly once per frame from the central memory.
Therefore, it is optimally efficient in terms of memory band-
width usage, if we admit that every voxel accounts for each
frame. However, Cube-4 has a number of severe limitations,

1which may be emitted or re-emitted light (rendering), density (PET
reconstruction), attenuation (X-ray based reconstruction), ...

2for instance, up to 10243 grids with recent medical appliances

one of them being a scene size limited to 2563 equally sized
voxels. Moreover, the very principle of object-order raytracing
upon which Cube-4 was built makes perspective rendering
implementation impractical; that is why VolumePro, a com-
mercial implementation of Cube-4, only supports isometric
rendering. Several other problems were underlined by [8].

VoxelCache [9] is a cache specifically crafted for sam-
pling based ray casting, as well. It is small enough to be
implemented on reconfigurable hardware. It uses only a single
external memory bus, but has an internal 8 memory bank
organisation. This makes possible to fetch a tri-linearly inter-
polated sample every cycle. VoxelCache also has a prefetching
mechanism, requiring that beams of 4 × 4 coherent rays are
being shot. Despite the fact it was designed for uniform
grids, VoxelCache was successfully used for full-octree-based
volume rendering as well [10]. This however required the use
of off-chip SRAM to keep the performances high, and the
caching strategy was shown inefficient for large scenes due to
cache trashing. On the contrary, we tried in our approach to use
as much as possible inexpensive components found on most
prototyping boards, while focusing on arbitrary large sparse
octree-like AS, much more flexible than full octrees.

C. Coherent ray shooting

Coherent ray shooting has been an intensive research topic
as well, and is most often presented as a generic mean to
increase memory access temporal locality without changing
the underlying memory organisation. Most often, it involves
“beams” of coherent rays which are traced through the scene
all at once. Several approaches have been proposed, focussing
on exploitation of SIMD parallelism in processors [11], con-
structing a simplified version of the AS by discarding parts
not intersecting with the beam [12], or merely suggesting the
brute force shooting of all the rays of a beam in a parallel
fashion. Most of those studies suggest strong performance
improvements due to the increased spatial locality of memory
accesses [13].

III. ARCHITECTURE

The architecture we propose is composed of two main
parts: an adaptive and predictive cache for recursive grids
and a traversal unit, capable of determining the sequence of
recursive grid cells traversed by each ray of a coherent beam.
The generated sequences are meant to be communicated to a
compositing unit. Once a ray of the beam ends, its accumulated
value may be written to a frame buffer. The Fig. 2 presents
an overview of a whole rendering architecture as could be
implemented on a prototyping board. The traversal unit and the
cache were designed and synthesized with the Xilinx Virtex 4
technology as a target.

The compositing unit can be implemented in a variety of
ways; for our tests, we used voxel-based volume rendering,
considering each voxel as having uniform density, and in-
tegrating this density along the ray as a compositing rule.
We could have used virtually any front-to-back compositing
method instead. Also, the compositing unit can be turned into a
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Fig. 2: An overview of a complete rendering system

Fig. 3: An example 4× 4× 4 recursive grid

primitive intersection test unit when our acceleration structure
is used as a space indexing mean.

A. Recursive Grids

The Acceleration Structure we chose to use for our ray
casting hardware is a simple generalisation of octrees [3] we
call recursive grids (for the lack of an established name).
A 2n × 2n × 2n recursive grid is a tree with the following
characteristics:
• each node is a cube
• each internal node has 23n equally-sized children

As a consequence, every node of the recursive grid has the
same size as any other node on the same depth. We call the
leaf nodes voxels. The Fig. 3 shows a 4×4×4 recursive grid,
with two non-voxel children at the root node. It is clear that,
under our formulation, octrees are 2× 2× 2 recursive grids.

2n × 2n × 2n recursive grids, especially for “moderately
large” values of n such as 2 or 3, hold several interesting
properties few other hierarchical acceleration structures do.
While still having the benefits of sparse hierarchical structures,
they also offer more regularity than most of them, allowing
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(23)

(24)
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Fig. 4: Expected voxel access order for a phase-locked tracing
of a beam of 3 rays in a 4× 4 recursive grid (2D example)

more efficient caching. It can be noticed that recursive grids
are a subset of adaptive grids [14], and hence inherit of most
of their advantages when it comes to their traversal.

For our tests, we chose to encode a 4 × 4 × 4 recursive
grid by an array of at most 32768 nodes, the node 0 being the
root. The exact coding of a node is itself that of an array
of 64 words of 16 bits, each coding for a child. Each of
these 16 bit words is divided into a 15 bit datum and a 1 bit
flag. The flag determines if the child is divided or not. When
set, the remaining 15 bits are the index of the child node.
Otherwise, they code for the child density. This 15 bit range
is adapted to the representation of, for instance, reconstructed
MRI volumes. With this encoding, an internal node size is
exactly 128 bytes. While it could be argued that the node count
limit is very restrictive, it is also clear that such a limitation
can be easily removed without significantly increasing the size
of each node by adopting a more complex encoding, with
“implicit pointers”, relative addressing, alignment constraints
on child nodes located far enough from their parent, variable
node size, and so on. All of those techniques make the building
of the tree a bit more complex, but are generally simple
enough to result in a very little combinatorial overhead on
the hardware.

B. Hierarchical phase-locked propagation principle

We use a phase-locked propagation principle similar to the
one exposed in [13], in order to keep the accesses coherent
and the cached zone minimal.

More specifically, for each beam of rays, we pick a phase
axis, a major axis along which the rays propagate quickly3.
Once that axis chosen, we propagate in a way that ensures the
cell accesses during traversal are ordered by their coordinate
on the phase axis. An example of such an access sequence is
given on Fig. 4. The section III-D.2 gives more detail as how
this can be implemented.

Since it is known that the phase (ie., access coordinate along
the phase axis) moves in only one direction and that a lot of
consecutive accesses will request cells sharing the same phase,
we can afford to cache only a very narrow slice of the scene
along the phase axis. Along the two other axes, the cached

3for example, by picking the axis with the greatest average of absolute
values of dot products between unitary direction vectors of the rays of the
beam and an unitary direction vector of that axis
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zone needs to be just broad enough to contain all the rays of
the beam.

C. Recursive Grid Cache

The RG Cache, described in Fig. 5, aims at caching a part
of the recursive grid by exploiting the spatial coherency of
references. Furthermore, it provides a virtual interface to the
processing unit. This means that the processing unit issues a
3D coordinate (x, y, z) together with a resolution level and
the cache provides the corresponding datum, preventing the
processing unit to manage the tree structure. The RG cache
uses the nD-AP Cache [13] as a basic block.

The proposed strategy is to cache each level of resolution
with a nD-AP Cache and to perform prefetching in the tree.
Indeed, when a reference occurs, it is likely that the next
reference is at a close coordinate, either at the same, upper or
lower resolution. Each nD-AP cache is in charge of tracking
references at a resolution and the neighboring ones (see [13]
for details about the nD-AP Cache behaviour).

The tree manager (TM) unit returns parts of the scene
requested by the nD-AP caches and maintain a coherent state
of the caches at different resolutions. Each time a cache
requests a part of the scene, the TM reads the corresponding
data at the upper level to determine if the requested block is
a leaf or a child node. In the later case, the TM fetches the
data at the obtained address to fill the nD-AP Cache. As a
consequence, the nD-AP Cache is slightly modified to allow
the TM to read a nD-AP Cache concurrently with reads at the
processing unit interface. Also, the cached zone at level n has
to be inside the cached zone a level n− 1 to maintain cache
coherency. Without this constraint, when the cache n would
request a part out of the zone in the n− 1 cache, it would be
too slow to get the data by traversing the tree from the root
node.

Each of the cache is optimized to manage data at its level
of resolution. The size of embedded cache memories fits the
level of resolution to save space. For example, because the
level 1 cache contains only 4 × 4 × 4 = 64 data, it doesn’t
need trackers and has a simplified control management.

D. Traversal Unit

We implemented a hardwired traversal unit for efficient ray
shooting through recursive grids. It works on beams of up to
256 rays, this limitation being easy to overcome if need is.
The Fig. 6 shows its structure. Its three main parts are:
• the phase-locked beam propagation unit, which deter-

mines the order in which grid nodes are fetched so as
to minimize the probability of cache misses

• the cache interface, which performs cache requests while
pipelining ray parameters linked to the request

• the neighbour finding unit, which determines the next
node a ray should access and its updated parameters,
based on the response from the cache and the former
ray parameters

The cache interface is trivial to implement. It contains two
ray state holding FIFOs, which minimize the impact of small

Traversal Unit

Phase-locked
Propagation

Unit

Cache interface

Neighbour
finding unit

Cache
requests

New
rays

Ray state

Ray state
+ current cell
information

Updated
ray state

Compositing
information

Fig. 6: Architecture of the traversal unit

r a y s t a t e . ~r ← u n i t a r y d i r e c t i o n v e c t o r o f our r a y
r a y s t a t e . t ← c u r r e n t c e l l e n t r y p o i n t p a r a m e t e r
r a y s t a t e . (tx, ty , tz) ← b o r d e r i n t e r s e c t i o n p a r a m e t e r s
r a y s t a t e . (t∆x, t∆y, t∆z) ← p a r a m e t e r i n c r e m e n t s
r a y s t a t e . (px, py, pz) ← c u r r e n t c e l l a b s o l u t e p o s i t i o n
r a y s t a t e . d e p t h ← d e p t h o f t h e c u r r e n t c e l l
max depth ← maximum d e p t h o f t h e t r e e

Listing 1: Variables caracterizing a ray state

pipeline bubbles. Beyond 3 or 4 elements, the size of those
FIFOs has little consequence on performance. Therefore, in the
rest of this section, we will focus on the two other components.

1) Neighbour finding unit: We use a slightly modified
version of the DDA algorithm for neighbour finding, in a
fashion very similar to that presented in [5]. As we need to
be able to vertically traverse the tree as well, we adapted the
principles exposed for octrees in [15] to 2n×2n×2n recursive
grids, by simply considering each of our nodes as a n-level
perfect octree. On a side note, this approach works for adapting
pretty much any algorithm working on octrees to recursive
grids, and without increasing its asymptotic cost.

To sum everything up, let us consider that a ray propagation
state is fully characterized by the variables of the Listing 1.
The “parameters increments” are the differences between the
parameters of the intersection points between the ray and two
opposite faces of our cell, for each of the three possible such
pairs of faces. The absolute position of the current cell is given
in units corresponding to the size of cells located at a given
maximum depth (the constant max depth). If this depths is 6,
for instance, the maximum detail level of a 4×4×4 recursive
grid will be the same as that of a 40963 uniform grid.

Let’s suppose without loss of generality that our ray propa-
gates in the positive direction along each axis4. Our neighbour

4Indeed, if it is not the case along one or more axes, we can bring ourselves
back to the case where it is by taking as absolute cell position the one’s
complement of the actual cell position along those axes. Of course, the
“correct” position must still be used for the memory accesses. This strategy
is suggested in [15], where the reader may find extensive detail of such an
approach.
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Fig. 5: Recursive Grid (RG) Cache

i f ( c u r r e n t c e l l i s a v o x e l ) t h e n
/ / We need t o f i n d t h e n e x t c e l l ( on t h e same
/ / d e p t h or above ) ; d e t e r m i n i n g which d i r e c t i o n
/ / t h e n e x t c e l l i s :
k | tk = min (tx, ty , tz)

send c u r r e n t segment t o t h e c o m p o s i t i n g u n i t

/ / Then , u n d i v i n g as f a r as n e c e s s a r y :
whi le pk[ ( h−1 ) . . ( h−n ) ] = ’ 1 . . 1 ’ with h=n∗( max depth−d e p t h )

i f d e p t h > 0
d e p t h ← d e p t h − 1

e l s e
t r a v e r s a l i s ove r f o r c u r r e n t r a y

f o r m in 0 to ( n − 1)
h ← n ∗ ( max depth − d e p t h ) − (m + 1)
foreach l ∈ {x , y , z}

i f pl[ h ] = ’1 ’ t h e n
(tl)max← (tl)max − t∆l

t∆l← 2 ∗ t∆l

/ / F i n a l l y , advanc ing t o t h e n e x t c e l l :
pk←pk + 2 ∗∗ ( n ∗ ( max depth − d e p t h − 1 ) )
(tk)max←(tk)max + t∆k

e l s e
/ / We need t o d i v e f u r t h e r
f o r m in 0 to ( n − 1)

h ← 2 ∗ ( max depth − d e p t h ) − (m + 1)
foreach l ∈ {x , y , z}

t∆l←t∆l / 2
(tl)max← (tl)max − t∆l

i f t > (tl)max t h e n
(tl)max← (tl)max + t∆l

pl[ h ] ← ’1 ’ / / hth b i t o f pl t o 1
e l s e

pl[ h ] ← ’0 ’ / / hth b i t o f pl t o 0
d e p t h ← d e p t h + 1 ;

Listing 2: Neighbour finding algorithm

finding algorithm for 2n × 2n × 2n recursive grids is then
summarized by the pseudo code of the Listing 2. This code
corresponds to the processing needed for each memory access.
The top level “if” conditional shows our neighbour finding
unit has two different modes: advancing and diving. We have
designed our hardware in such a way as the advancing part
(then clause) has a throughput of one ray per cycle, while the
diving part (else clause) generates one result every n cycles.

Neighbour Finding Unit

Arbiter Dispatcher

Diving
(n cycles per result)

Advancing
(stage 2)

Advancing
(stage 1)

Ray state
+ current cell
information

Updated
ray

state

Compositing
information

Fig. 7: Neighbour finding unit

This implementation choice is justified by the fact that the
probability of depth change during a neighbour finding step
is about only 1

n for 2n × 2n × 2n recursive grids, making the
else clause evaluation less frequent. The Fig. 7 presents the
organization of our unit. As the diving and advancing modes
are mutually exclusive, there is hardware reuse between them
which does not appear on this figure for the sake of clarity.

One should pay attention that the input and output data
of the neighbour finding unit may grow moderately large
depending on its exact coding. What call ray propagation state
a structure composed of the variables seen on Listing 1, at the
exception of the direction vector of the ray (which does not
matter for the traversal assuming all the other variables are
known). As max depth is a constant, it requires no storage
space either. Hence, storage of a propagation state for one ray
requires:
• seven times the quantity of data needed per parameter (for

t, tx, ty , tz , t∆x, t∆y , t∆z). Depending of the desired
representation and precision, this quantity of data may
vary. Since we use projective geometry [13], we have
2 × 16 bits per parameter. One could also use integer
arithmetic or a floating point representation.

• three times the quantity of data needed par absolute voxel
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Fig. 8: Architecture of the phase-locked propagation unit

coordinate at maximum depth (ie. 3×n×max depth bits)
• dlog2(max depth)e bits for depth
• 3 bits to store the direction of propagation along the three

major axes
Assuming max depth = 5, n = 2, and 32 bits per parameter,
we need 260 bits per ray state. For each ray, those parameters
need to be initially computed from the ray geometry before
they are fed to the propagation unit. It involves obtaining the
intersection points parameters between the ray and each of the
faces of the root node cube. This can be done by an on board
microprocessor while the ray shooting unit is busy.

2) Phase-locked ray beam propagation: The phase-locked
propagation unit, as shown on Fig. 8, holds the states of all
the rays of the current beam in such a way it is able to ensure
they all propagate with the same speed along a given major
axis, which we call the phase axis. This phase axis is the one
which is the closest to the direction of the ray, and is pre-
computed at the same time the initial states of the rays of the
beams are generated (typically, by a hard or soft processor).

The phase-locked propagation unit (PPU) manages the
indexes of rays to enter the propagation pipeline. The indexes
of active rays are stored in the “Index RAM” in a way to
manage efficiently the synchronisation of propagation along
the beam phase. Hereinafter a ”ray” stands for its index in
the “State RAM”. The “Index RAM” is divided in several
ranges to manage the phase synchronisation over the different
resolutions. The diving of rays being one of the most tricky
behavior to deal with.

The beam phase is memorized in the PPU. It is updated
when all the ray phases5 are further than the beam phase. To
that end the memory is divided into in-phase rays and out-
phase rays.

A in-phase ray is sent to the “Insertion Unit” to update its
next state. On its way back, the ray is either still in-phase, if the
propagation occurred on an other axis, or out-phase in other
cases. When all the rays are out-phase, the PPU increments the

5A ray phase is the ray coordinate along the phase axis

p
h
as

e
ax

is

Fig. 9: In some circumstances, diving may out-phase some
of the rays of a beam, while keeping others in-phase (gray
voxels are on the beam phase)

Fig. 10: Render of the scene used in our tests (128 × 128
version)

beam phase and swaps the out-phase rays into the in-phase.
This is actually done when all the rays sent to the propagation
pipeline are back. That for, the number of processed rays is
counted : #rays is incremented at each new ray inserted in the
pipeline or decremented at their return. Rays exiting the scene
are counted back but not inserted in the “Index Memory”.

Also, the phase synchronisation have to be performed on all
the levels of resolution. So, the “Index RAM” in-phase and
out-phase parts are again divided in sub-parts for each level of
resolution. Higher depth rays are first sent to the propagation
pipeline and the lowest one are then sent, until there are no
more in-phase rays at any resolution.

At last, rays diving into a higher resolution have to be sorted
according to the beam phase. Indeed, the diving may cause a
ray phase to be higher than the current one because the entry
point in the higher resolution node may be anywhere on the
child border (see Fig. 9). To speed-up the phase sorting, rays
are stored in the “Index RAM” according to their relative phase
in a node. This relative phase is simply the n bits starting at
the n(max depth−d) bit of the ray phase, where d stands for
the current depth of the ray.

Hereof, we conclude that the “Index RAM” is a memory of
(max depth + 1).2n.max rays words of log2(max rays) bits.
A more tolerant phase synchronisation allowing a 2dn phase
deviation would need a 2.max rays “Index RAM” but it would
increase the cache’s memory.
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Fig. 13: Pipeline efficiency depending on SDRAM access latency (general purpose caches, for each of the blocks)
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Fig. 14: Pipeline efficiency for the different beams (RG cache, the 128 × 128 image is swept from the top to bottom, each
line being swept from the left to the right (ie. if N is a beam number, the corresponding “macroblock” coordinates are
(N mod 8, N div 8)); data are given for three latencies)
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Fig. 11: Pipeline efficiency depending on SDRAM access
latency (RG cache)
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Fig. 12: Pipeline efficiency depending on SDRAM access
latency (generic caches, whole image)

IV. RESULTS

This section presents estimations of the RG Cache perfor-
mance, measured as the pipeline utilisation rate depending on
the main memory access latency. The measures are performed
on a CABA6 VHDL model of the whole system. The initiali-

6Cycle Accurate Bit Accurate

sation step is performed with a C co-simulation engine. These
accurate measures are performed after a first validation step
on traces from a C model of the recursive grid traversal unit.
The simulations take into account the deviations introduced
by the RG Cache and the traversal pipeline. As this paper
focuses on memory management, and due to the lack of room,
complexity/area results are not given. The point is that the
complexity of individual units have already been studied [13]
and the new ones were designed carefully.

We have tested our unit with reconstructed MRI data from
the PET-SORTEO database7. Since the data is provided as an
uniform grid, we have build a 4× 4× 4 recursive grid from it
by merging adjacent voxels which are about the same density
(ie., within 37% of the dynamic range). Since each node has
64 children, this criterion does not lead to severe losses in
quality.

The Fig. 10 shows a render of the test recursive grid
performed by our unit. We used that very same 128 × 128
render to perform our measures of performance on a whole
image. Also, we chose 3 relevant 16×16 pixel areas (hereafter,
blocks) corresponding to 3 beams of rays from a 1024×1024
render of the same scene, from the same viewpoint, and
benchmarked them. Indeed, the simulation time required for
a whole 1024 × 1024 render with Modelsim is prohibitively
long.

The Fig. 12 shows the efficiency of the RG Cache for the
reference 128× 128 render, and figure Fig. 11 as well as for
the 3 blocks of the 1024 × 1024 render. These performances
are compared with those of general purpose caches:
• Full Associative, 16K, 256 lines

7http://sorteo.cermep.fr/
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• TM32 cache, 16K, 8 way set-associative, 256 lines
• PPC 405 cache (Virtex 4), 16K, 2 way set-associative,

512 lines

The performance is measured for different latencies to estimate
the robustness of the system to slow external memories.

Details on the RG Cache performance for the rendering of
beams of the reference image are given Fig. 14 for some of
the latencies.

These measures show that the RG cache works a lot better
on the individual beams than on the reference image. The main
reason of such a variation seems to be due to the difference
of sampling factors: a beam issued from a 16× 16 tile of the
1024× 1024 render is thinner than a beam of the 128× 128
render. Hence, the size of the cached area is smaller in the case
of the 1024 × 1024 render, which allow a faster load of the
cached zone comparatively to the time to process the beam.
Indeed, the cached area is 4 time smaller. Also, the setting of
cache parameters adapted to the whole scene is more difficult
due to the long running time to simulate a rendering. However,
these results prove the effectiveness of the RG caching strategy
and the cache tuning has still to be improved. For example, the
cache efficiency drops down at high latencies because all the
measures are performed with the same cache parameters. This
could be solved by fine tuning the cache trackers (or designing
better trackers).

Also, there is little difference between the performances of
the 3 beams we consider, with high hit rates for each of them.
This is interesting, since those 3 beams are very different (one
does not hit the head, one is somewhat tangent, and one crosses
the central region of the brain). The cache seems to be able
to prefetch data efficiently both at high and low depths in the
recursive grid.

Eventually, performance is not the only gain our cache
offers: its interface is done in such a way that it only needs
cell coordinates as a request. When using a generic cache,
obtaining the cell involves knowing its address, either by
performing a research in the recursive grid at each step,
or more realistically, for each ray state, storing the whole
node hierarchy leading to current cell (which may be a high
overhead depending on the exact implementation).

To our knowledge, the presented memory management
strategy and recursive grid traversal unit has no equivalent.
Hardware architectures presented in the literature address
regular grid traversal [7] and full octrees [10]. The later are
different from sparse octrees in the way that nodes are always
data and never pointers to a higher resolution. They are much
like multi-resolution volumes and their traversal is done at a
given resolution.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have seen a ray casting algorithm and an
associated cache for the efficient traversal of recursive grids,
which are acceleration structures similar to octrees. The phase
locked traversal algorithm preserves memory access locality,
permitting efficient caching.

Measures of the RG Cache performance on a CABA VHDL
model have shown the effectiveness of the implemented prin-
ciple. The cache interface is designed in such a way it com-
pletely abstracts the underlying memory structure, allowing
similar performances to those well-established generic caches.
The RG cache fully exploits the spatial and temporal locality
induced by the proposed dynamic re-ordering of computations
thanks to the phase-locked propagation.

Some improvements of the system can be made, still.
The RG Cache trackers have to be better parameterized and
some new tracking mechanisms could be designed. A wider
exploration of the system efficiency would be done on a
hardware prototype to reduce the simulation time.

Eventually, more generally speaking, this study tends to
show the effectiveness of the design of structured-data aware
caches. The principles that guided this work could be extended
to other applications. For example, hierarchical structures may
be used in H.264 Movement Estimation, for multi-resolution
textures in 3D triangle rasterization, etc. . .

REFERENCES

[1] A. Knoll, “A short survey of octree volume rendering techniques,” in
Proceedings of 1st IRTG Workshop, Dagstuhl, Germany, Jun. 2006.

[2] V. Havran, “Heuristic ray shooting algorithms,” Ph.D. Thesis,
Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, November 2000.
[Online]. Available: http://www.cgg.cvut.cz/ havran/phdthesis.html

[3] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE Computer
Graphics & Applications, vol. 4, no. 10, pp. 15–22, Oct. 1984.

[4] D. Jevans and B. Wyvil, “Adaptive voxel subdivision for ray tracing,”
in Proceedings of Graphics Interface ’89, Jun. 1989.

[5] J. Amanatides and A. Woo, “A fast voxel traversal algorithm
for ray tracing,” in Eurographics ’87. Amsterdam, North-Holland:
Elsevier Science Publishers, 1987, pp. 3–10. [Online]. Available:
citeseer.ist.psu.edu/amanatides87fast.html

[6] H. Pfister, A. Kaufman, and T. Chiueh, “Cube-3: A real-time architecture
for high-resolution volume visualization,” in 1994 Symposium on Volume
Visualization, A. Kaufman and W. Krueger, Eds., 1994, pp. 75–82.
[Online]. Available: citeseer.ist.psu.edu/pfister94cube.html

[7] H. Pfister and A. E. Kaufman, “Cube-4 - a scalable architecture
for real-time volume rendering,” in VVS, 1996, pp. 47–. [Online].
Available: citeseer.ist.psu.edu/pfister96cube.html

[8] R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson, W. Hiatt,
and T. Ohkami, “EM-Cube: An architecture for low-cost real-time
volume rendering,” in 1997 SIGGRAPH / Eurographics Workshop
on Graphics Hardware. ACM Press, 1997. [Online]. Available:
citeseer.ist.psu.edu/osborne97emcube.html

[9] U. Kanus, G. Wetekam, and J. Hirche, “Voxelcache: a cache-based mem-
ory architecture for volume graphics,” in HWWS ’03: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2003.

[10] G. Wetekam, D. Staneker, U. Kanus, and M. Wand, “A hardware
architecture for multi-resolution volume rendering,” in HWWS ’05:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware. New York, NY, USA: ACM Press, 2005.

[11] A. Reshetov, “Omnidirectional ray tracing traversal algorithm for kd-
trees,” Interactive Ray Tracing 2006, IEEE Symposium on, Sep. 2006.

[12] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing
algorithm,” ACM Trans. Graph., vol. 24, no. 3, 2005.

[13] S. Mancini and M. Desvignes, “Efficient memory management for ray
casting,” in Workshop on Design and Architectures for Signal and Image
Processing, Grenoble, France, Nov. 2007.

[14] K. S. Klimaszewski and T. W. Sederberg, “Faster ray tracing using
adaptive grids,” IEEE Comput. Graph. Appl., vol. 17, no. 1, pp. 42–
51, Jan.-Feb. 1997.

[15] J. Revelles, C. Ureña, and M. Lastra, “An efficient parametric
algorithm for octree traversal,” 2000. [Online]. Available:
citeseer.ist.psu.edu/476719.html

DASIP 2008 November 2008

- 84 - 



OLLAF : a Fine Grained Dynamically
Reconfigurable Architecture for OS Support

Samuel GARCIA and Bertrand GRANADO
ENSEA - ETIS

95014 CERGY, France
email: samuel.garcia@ensea.fr,

bertrand.granado@ensea.fr

Abstract— In the context of large versatile platform for em-
bedded real time system on chip, a fine grained dynamically
reconfigurable architecture could be used as one possible com-
putational resource. In order to manage efficiently this resource
we need a specific OS kernel able to manage such a hardware
adaptable architecture. Both the history of micro-processor based
system and our previous work based on currently available FPGA
devices led us to think that not only an OS kernel must be defined
to handle an FGDRA but a FGDRA must also be designed to
handle this OS kernel. This article relate our original work in
this direction. OLLAF1, an original FGDRA core that we have
designed will be presented. A comparison with other methods
used today using commercially available FPGA is also presented
concerning the particular preemption service.

I. INTRODUCTION

This work takes place in the SMILE project. This project
aims at provide a distributed middle layer to efficiently handle
the complexity of a tomorrow’s RSoC2. This system may
contains several computing units of different types. It will
embed at least one or more General Purpose Processor (GPP),
but also dynamically reconfigurable architectures (DRA) at
different granularities and especialy FGDRA3. Tomorrow’s
computing systems has to comply with lots of constraints.
Those constraints may be time related, to meet real time
requirements, but also power consumption constraints, as it
is, and will be more and more, one of the primary concern of
electronical devices.

By fine grained, we here means an architecture which is
reconfigurable at the bit level. A dynamically reconfigurable
architecture, using single bit LUT and flipflop, and providing
a bit level reconfigurable interconnection matrix, as the one
presented here, or basic logic fabric of most commercial
FPGA, are examples of FGDRA. Those kind of architecture
can be adapted to any application more optimally than a
coarser grain DRA. This feature make them today the platform
of choice when it comes to handle computational tasks in a
highly constrained context.

In more general terms FGDRA can achieves much better
efficiency than GPP does, while offering the same versatility
and, potentially, a very close flexibility. The counterpart is that

1Operating system enabled Low LAtency Fgdra
2Reconfigurable System on Chip
3Fine Grained Dynamically Reconfigurable Architecture

Fig. 1. Basic view of a RSoC in SMILE

it introduces a much greater complexity for application design-
ers. This complexity could be lowered to an acceptable level
in two ways. First by providing powerful CAD tool. Lots of
research are thus led in the field of high level synthesis [1]. The
second way is to abstract the system complexity by providing a
middle layer, e.g an operating system, that abstracts the lower
level of the system [2]. Moreover, an OS could manage new
tasks at run time. This property is a feature of importance for
DRA. For all those reasons, a specialized operating system is
required for FGDRA.

In our work we make a difference between a FGDRA, which
is a general term, and a FPGA which, for us, relate to an actual
silicon device sold under this designation and which can be
used as a FGDRA but is actually not designed especialy thor
that purpose.

The SMILE project follows a distributed approach of the
system. Each computing unit of a RSoC (GPP, DSP, DRA,
...) has its own real time kernel. This topology allows to use a
specific custom made real time kernel for each computing unit.
It then allows to take into account every specificities of each
computing unit. A message passing communication scheme,
based on MPI4, ensure a consistent operation of the whole
system. In this frame of mind, we developed a dedicated real
time kernel for a FGDRA.

This kernel is an adaptation to FGDRA of an abstract OS

4Message Passing Interface
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model which could be described as follow :
• it manages the execution of a set of task on a given

versatile computational ressource. More concreatly it will
run periodically a special algorithm to evaluate where and
when to run each tasks. This period is called Tick and
is a tradeoff between efficiency and flexibility, a typical
value in classical OS is tens of milliseconds.

• it offers an abstracted view of the platform to the task
designer. In other terms, each task can be designed
without worrying about other tasks and sometimes even
about the platform. It then offers a standardized set
of services such as communications or synchronizations
between tasks.

This model slightly differs from most OS implementation
proposed for FPGA management even if the overall idea
remain the same.

Both the history of micro-processor based system and our
previous work based on currently available FPGA devices led
us to think that not only an OS kernel must be conceived
to handle a FGDRA, but a FGDRA must also be designed
to support efficiently this OS kernel. This article relate our
original works in this direction. The FGDRA core that we
have designed will be presented as well as a more general
view of our approach of a FGDRA and its related OS kernel.

This paper is organized as follows. Section 2 discuss of
related works in the field of OS for FGDRA. Section 3 explains
our original FGDRA platform proposition named OLLAF.
Section 4 discuss more precisely of the context management
scheme and its extention to configuration management. Sec-
tion 5 explains how our architecture can affect different OS
services. Section 6 exposes an analytic comparison between
OLLAF and other methods used todays in terms of preemption
overhead and efficiency. Finally, conclusions are drawn in
section 7.

II. RELATED WORK

A. OS for FGDRA

Several research have been led in the field of OS for
FGDRA[3], [4], [5], [6]. All those studies present an OS more
or less customized to enable specific FGDRA related services.
Example of such services are : partial reconfiguration manage-
ment, hardware task preemption or hardware task migration.
They are all designed on top of a platform composed of a
commercial FPGA and a micro-processor. This microprocessor
may be a softcore processor, an embedded hardwired core or
even an external processor.

In the 90’s, some works have also been published about the
design of a specific architecture for dynamical reconfiguration.
In [7] authors discuss about the first multi-context reconfig-
urable device. This concept as been implemented by NEC on
the Dynamically Reconfigurable Logic Engine (DRLE) [8].
At the same period, the concept of DPGA was introduced, it
was also proposed in [9] to implement a DPGA in the same
die as a classic microprocessor to form one of the first SoC
including dynamically reconfigurable logic. In 1995, Xilinx

even applied a patent on multi-context programmable device
proposed as an XC4000E FPGA with multiple configuration
planes [10].

More recently, in [11], authors propose to add special
material to a DRA to support OS services, they worked on
top of a classic FPGA.

The work presented in this paper try to take advantage
of those previous work both about hardware reconfigurable
platform and OS for FGDRA.

B. previous work

Our first work on OS for FGDRA was related to preemption
of hardware task on FPGA[12]. For that purpose we explored
the use of a scanpath at the task level. In order to accelerate the
context transfer we explore the possibility of using multiple
parallels scanpaths. We also provided the Context Management
Unit or CMU, which is a small IP capable to manage the whole
process of saving and restoring tasks contexts.

In that study both the CMU and the scanpath were build to
be implemented on top of any available commercial FPGA.
This approach showed number of limitations. They could be
summarized in this way: implementing this kind of OS related
material on top of the existing DRA introduce unacceptable
overhead on both the task and the OS service. Differently said,
most of OS related material should be as much as possible
hardwired into the platform’s architecture.

III. OLLAF : GENERAL OVERVIEW

A. Specifications of a FGDRA with OS support

We have designed a FGDRA with OS support following
those specifications.

It should first address the problem of the configuration speed
of a task. This is one of the primary concerns because if the
system spend more time configuring itself than actually run-
ning tasks, then its efficiency will be poor. The configuration
speed will thus have a big impact on the scheduling strategy.

In order to enable more choice on scheduling scheme, and
to match some real time requirement, our FGDRA platform
must also include preemption facilities. For the same reasons
than configuration, the speed of context saving and restoring
process will be one of our primary concerns. On this particular
point, previous work we have discussed in section 2 will be
adapted and reused.

Scheduling on a single GPP system is just a matter of time.
The problem is to distribute the computation time between
different tasks. In the case of a DRA the system must distribute
both computation time and computation resources. Scheduling
in such a system is then no more a one dimensional problem,
but a three dimensional one. One dimension is the time and
the two others are the surface of reconfigurable resources.
Performing such a scheduling at run time with real time
constraints is at this stage not conceivable. But the FGDRA
should help getting close to that goal. The primary concern
on this subject is to ensure an easy task relocation. For that,
the reconfigurable logic core should be splited into several
equivalent blocks. This will allow to move a task from a block
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Fig. 2. Global view of the FGDRA

to any another block or from a group of blocks to another
group of blocks of the same size and the same form factor
without any change on the configuration data. The size of those
blocks would be a tradeof between flexibility and scheduling
efficiency.

Another aspect of an operating system is to provide inter
task communication services. In our case we will distinguish
two cases. First the case of a task running on top of our
FGDRA and communicating with another task running on a
different computing unit, for example a GPP. This case will
not be covered here as this problem concern the whole hetero-
geneous platform, not only the particular FGDRA computing
unit. The second case is when two, or more, tasks run on top of
the same FGDRA communicate together. This communication
channel should remain the same wherever the task is placed
on the FGDRA reconfigurable core and whatever state those
tasks are (running, pending, waiting, ...). That mean that the
FGDRA platform must provide a rationalized communication
medium including some sort of exchange memories.

The same arguments could also be applied to inputs/outputs.
Here again two cases exist. First the case of I/O being a global
resource of the whole platform. Secondly the case of special
I/O directly bound to the FGDRA.

B. Proposed solutions

Figure 2 show a global view of OLLAF, our original
FGDRA designed to support OS sevices as they have just
been specified.

In the center stand the reconfigurable logic core of the
FGDRA. This core is organized in columns, each column can
be reconfigured separately and offer the same set of services.
That means that a task uses an integer number of columns.
This topology as been chosen for two reasons. First using a
partial reconfiguration by column transforms the scheduling
problem into a two dimensional problem (time + 1D space)
which will be easier to handle in real time situations. Secondly
as every columns is the same and offers the same set of
services, tasks can be moved from one column to another
without any change on the configuration data.

In the figure, at the bottom of each column you can notice

two hardware blocks called CMU and HCM. The CMU as
said earlier is an IP able to manage automatically task’s
context saving and restoring. The HCM standing for Hardware
Configuration Manager is pretty much the same but to handle
configuration data also called bitstream. On each column a
local configuration/context memory is added. This memory
can be seen as a first level of cache memory to store contexts
and configurations close to the column where it might most
probably be required. The internal architecture of the core
provides adequate materials to work with CMU and HCM.
More about this will be discussed in the next section.

On the right of the figure stands a big block called ”HW
Sup + HW RTK + central memory”. This block contain a
classic microprocessor which serves as a hardware supervisor.
It runs a custom real time kernel specially adapted to handle
FGDRA related OS services and platform level communica-
tion services. Along with this hardware supervisor a central
memory is provided for OS use only. Basically this memory
will store configuration and eventual context of every task that
may run on the FGDRA. This supervisor communicates with
all columns using a dedicated control bus.

Finally, on top of the figure 2 you can see the applica-
tion communication medium. This communication medium
provides a communication port to each column. Those com-
munications ports will be directly bound to the reconfigurable
interconnection matrix of the core. If I/O had to be bound to
the FGDRA they would be connected with this communication
medium in the same way reconfigurable columns are.

C. Logic core overview

In order to make the description of the FGDRA core more
understandable, we will here split its functionalities between
two points of view. The first one is the functional point of
view, it consists on the information that a task designer may
have to know in order to design the architecture. The second
point of view is the configuration point of view, it consists on
information about reconfiguration plane. As one of the main
goals of the OS is to abstract configuration management, this
point of view could be seen as the OS point of view.

Internal architecture of a LE in the functional point of view
can be seen on figure 3. This architecture integrates elements
that compose a classic Logic Element of FGDRA. If we want
to improve functional architecture, it should not change our
conclusion on configuration point of view.

A multiplexor based interconnect as been choosen instead of
the passing MOS transistor used in most commercial FPGA. In
this way we can lower the number of configuration bit required
to allow the same connection flexibility. In this last intercon-
nection scheme, the number of configuration bit grow linearly
with interconnection possibility while using multiplexor makes
it grow as a log2 function.

At first, configuration memory points are modellized as
a D flip-flop. This allow us to rapidly apply our works on
context management to configuration management. However,
configuration and context management remains two separate
path, a context swap can be performed without any change
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Fig. 3. Functional, task designer point of view of LE

Fig. 4. Dual plane memory point

in configuration. This can be interesting for checkpointing or
when more than one instance of the same task runnning.

IV. CONTEXT MANAGEMENT SCHEME

In [12] we proposed a context management scheme based
on a scanpath, a local context memory and the CMU which is
a small IP capable of managing automatically context transfer
between the scanpath and the local memory. The context
management scheme in OLLAF is slightly different in two
ways. First, every context management related material is hard
wired into the platform. Secondly, we added two more stage
in order to even lower preemption overhead and to ensure the
consistency of the system.

As context management materials are added at platform
level and no more at task level, it needed to be splited
differently. As the Programable Logic Core is column based, it
was then natural to implement context management at columns
level. A CMU and a local memory have then been added to
each column, and one scanpath is provided for each column’s
set of flipflops.

In order to lower preemption overhead, our reconfigurable
logic core use a double memory plane. Flipflops used in
LE are thus replaced with two FF with switching material.
Architecture of this double plane FF can be seen on figure
4. Run and scan are then no more two working modes but
two parallel planes which can be swapped as will. With this
topology, the context of a task can be shifted in while the
previous task is still running and shifted out while the next
one is already running. The effective task switching overhead
is then taken down to one clock cycle as illustrated in figure
6.

Contexts are transfered by the CMU into Local Context
Memories using this hidden scanpath. Because the context
of every column can be transfered in parallel, Local Context
Memories are placed at column level. It is particularly usefull
when task use more than one column. Those memories can
contain at this stage 10 contexts. They can be seen as local
cache memories to optimize access to a bigger memory called
the Central Context Repository.

Fig. 5. Context memories hierarchy

The Central Context Repository is a large memory space
storing the context of each task instance run by the system.
Local Context Memories should then store contexts of tasks
who are most likely to be the next to be ran on the corre-
sponding column.

After a preemption of the corresponding task, a context can
be stored in more than one LCM in addition to the copy stored
in the Central Context Repository. In such situation, care must
be taken to ensure the consistency of the task execution. For
that purpose, contexts are tagged by the CMU each time
a context saving is performed with a version number. The
operating system keep tracks of this version number and also
increment it each time a context saving is performed. In this
way the system can then check for the validity of a context
before a context restoration. The system must also try to update
the context copy in the CCR as short as possible after a context
saving is performed.

Dual Plan Scanpath, Local Context Memory and Central
Context Repository form a complex memory hierarchy spe-
cially designed to optimize preemption overhead. The same
memory scheme is also used for configuration management
except configuration do not change during execution so it does
not need to be saved and then no versioning control is required
here. The programmable logic core use a dual configuration
plane equivalent to the Dual Plane Scanpath used for context.
Each column has a Hardware Configuration Manager which is
a simplified version of the CMU (without saving mechanism).
A Local Configuration Memory is provided besside Local
Context Memory, the name LCM is used as in figure 3 to
relate to both those memories. In the same way, the CCR can
refer to Central Context/Configuration Repository.

In best case, preemption overhead can then be bound to one
clock cycle.

A scenario of a typical preemption is presented here. In this
scenario we consider the case where context and configuration
of both task are already stored into the right LCM. Let’s
consider that a task T1 is preempted to run another task T2,
scenario of task preemption is then as follow :

• T1 is running and the scheduler decide to preempt it to
run T2 instead

• T2’s configuration and eventually context is shifted on
the second configuration plane
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Fig. 6. Typical preemption scenario

• once the transfer is completed the two configurations
planes are switched

• now T2 is running and T1’s context can be shifted out to
be saved

• T1’s context is updated as soon as possible in the CCR
This scenario is illustrated in figure 6.

This is the case when both context and configuration of
T2 are already stored into LCM. That means that, in order to
have this favorable case, we need an anticipated scheduling to
manage our Context/Configuration Memories Hierarchy as a
smart cache.

V. CONFIGURATION, PREEMPTION AND OS INTERACTION

In previous sections an architectural view of our FGDRA
has been exposed. In this section, we discuss about the impact
of this architecture on OS services. We will here consider the
three services most specifically related to the FGDRA.

First, the configuration management service. On the hard-
ware side, each column provides a hardware configuration
manager and an associated local memory. As stated earlier that
mean that configurations have to be placed in advance in the
local configuration memory. The associated service running on
the hardware supervisor micro-processor will thus need to take
that into account. That imply that this service must manage an
intelligent cache to prefetch task configuration on the columns
where it might most probably be placed. In order to do so, an
anticipated scheduling must be performed.

Secondly, the preemption service. The same principle must
be applicable here as those applied for configuration manage-
ment. Except that contexts also have to be saved. The context
management service must ensure that it never exist more than
one valid context for each task in the entire FGDRA. Context
must thus be transferred as soon as possible from local context
memory to the centralized global memory of the hardware
supervisor. This service will also have a big impact on the
scheduling service as the ability to perform preemption with a
very low overhead allow the use of more flexible scheduling
algorithms.

And last the scheduling service and in particular the space
management part of the scheduling. It takes advantage of
the column topology and of the centralized communication
scheme. As stated, fewer computing power will be required to
manage a one dimensional space at run time. The problem is
here similar to memory management in classical GPP based
system. The reconfigurable resource could then be managed as

a virtual infinite space containing an undetermined number of
columns. The job is then to dynamically map the required set
of columns (task) into the real space (the actual reconfigurable
logic core of the FGDRA).

VI. PREEMPTION COST COMPARISON

This section present an analytic comparison of preemption
efficiency in OLLAF and other solution from past works or
literature. We will here consider six methods :

• XIL
a solution based on the xilinx XAPP290 [13] using ICAP
to transfer both context and configuration and using the
readback bitstream for context extraction.

• Scan
a solution using a simple scanpath for context transfer as
described in both [14] and [12], and using ICAP interface
for configuration.

• PCS8
is similar to Scan solution but using 8 parallel scanpath
as described in [12].

• DPScan
use a dual plane scanpath similar to the one used in
OLLAF for context and ICAP for configuration. This
method is also studied in [14], referred as a shadow Scan
Chain.

• MM
use once again ICAP for configuration and the memory
mapped solution proposed in [14].

• OLLAF
this last solution being the use of separate, column
distributed, dual plane scanpath for configuration and
context as proposed in this article.

In this study we consider two parameter. The preemption
overhead H is the cost of a preemption for the system in
terms of time. The efficiency of preemption process λ is then
λ = 1−H

P with P is the minimum period at which preemption
occurs so in our case P is the clock tick of the operating
system. In this study we use a typical clock tick of 10ms. In
order to focus on the architectural view only all times will be
expressed and estimated in number of clock cycle. Assuming
a typical clock frequency of 100MHz the OS tick is 106tclk.
Task sizes will be expressed as n, the number of flipflop used.
The time cost of a preemption take into account two context
transfers and one configuration transfer.

Analytic expression of H for each case are estimated as
follow :

• XIL
In [14] authors estimate that bitstream contain 20 times
more data than context related data so the bitstream of
a task of size n is approximately 21n. Assuming that
it use a 32bits width access bus, the ICAP interface
can transfers 32bits per clock cycle. In the same article,
authors estimate that it takes 20clock cycles to extract
each context bit from the readback bitstream.

H =
21n
32

+
21n
32

+ 20n ' 21.3n (1)
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XIL Scan PCS8 DPScan MM OLLAF
H (tclk) 15188 1897 642 472 492 1

λ 98.4% 99.8% 99.94% 99.95% 99.95% 1− 10−6 ' 100%

TABLE I
COMPARISON OF TASK PREEMPTION OVERHEAD AND EFFICIENCY FOR 713FF TASK

XIL Scan PCS8 DPScan MM OLLAF
H (tclk) 21.3×106 2.66×106 900×103 660×103 690×103 1

λ -2030% -166% 10% 34% 31% ' 100%

TABLE II
COMPARISON OF TASK PREEMPTION OVERHEAD AND EFFICIENCY FOR A WHOLE 1MFF FGDRA

• Scan
Using a simple scanpath for context transfer requires 1
clock cycle per flipflop for each transfer.

H =
21n
32

+ 2n ' 2.66n (2)

• PCS8
Using 8 parallel scanpath it requires 1 clock cycle for 8
flipflops.

H =
21n
32

+
2n
8
' 0.9n (3)

• DPScan
Using a double plane scanpath, the context transfers can
be hidden, the cost of those transfer is then always 1
clock cycle.

H =
21n
32

+ 1 ' 0.66n+ 1 (4)

• MM
Using 32 bits memory access, this case is similar to the
PCS8 but using 32 parallel paths instead of 8.

H =
21n
32

+
2n
32
' 0.69n (5)

• OLLAF
In OLLAF, both context and configuration transfer are
hidden so the total cost of the preemption is always 1
clock cycle whatever the size of the task.

H = 1 (6)

In order to make a concrete case comparison, we will
consider two task T1 and T2. We consider a DES56 cryp-
tographic IP that requires 862 flipflops, and a 16tap FIR filter
that requires 563 flipflop. Both of those IPs can be found in
www.opencores.org. To ease the computation we will consider
two task using the average number of flipflop of the two
considered IP. So for T1 and T2 we got n = 862+563

2 ' 713.
Table I show the overhead H and the efficiency λ for each
method presented.

Those results show that in this case, using our method leads
to a preemption overhead around 500 times smaller than the
bests others cases.

If we now consider that not only one task is preempted but
the whole FGDRA, assuming a 1 Million LE’s logic core,
estimation of overhead and efficiency for each method are
shown in table II. Those results show clearly the benefit of
OLLAF platform over actual FPGA concerning preemption.
Using actual methods, preemption overhead is linearly depen-
dant on the size of the task. In OLLAF, this overhead do not
depends on the size of the task and is always of only one clock
cycle.

In OLLAF, both context and configuration transfers are
hidden due to the use of a dual configuration plane. The
latency L between the moment a preemption is asked and the
moment the new task effectively begin to run can also being
studied. This latency only depends on the size of the columns.
That means that for a given platform, it will be a constant. In
the worst case this latency will be far shorter than the OS tick
period. OS tick period being in any case the shortest time in
which the system can respond to an event, we can consider
that this latency will not affect the system at all.

VII. CONCLUSION AND PERSPECTIVES

A global view of OLLAF, a FGDRA that enhance OS
service support has been presented, and in more details its
reconfigurable logic core. We claim that OS and platform
must be closely linked to each others in order to perform as
optimally as possible.

In this paper we presented in more details our context
management scheme and its extention to configuration man-
agement. It has been shown that this scheme permit a far better
preemption efficiency than other methods in use today.

Today, the reconfigurable logic core have been designed and
is being tested by several simulations. The rest of the FGDRA
is also in progress. The dedicated custom OS services are
written as an extension of µC/OS-II, a well proven real time
OS. We are also working on the distributed management of
the whole heterogeneous system including, at least, one of our
FGDRA and its dedicated real time kernel, and one GPP.
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Abstract—Through the introduction of reconfigurable unit,
the recent System-on-Chips are now able to support dynamic
applications and to ensure the execution of several tasks within
the same resource. Nevertheless, an efficiency management of the
reconfigurable unit needs some specific services. One of the most
important is the scheduling service which ensures the correct
execution of all the application tasks. In classical systems, the
number of tasks which can be scheduled at each cycle depends
on the number of execution targets. For the reconfigurable unit,
the number of tasks in execution depends on the available area
within this unit and a variable number of tasks can be executed
simultaneously while the area is not full. In this context, the
scheduling problem is then different and more complex than in
classical systems. To solve this problem, we propose a model of
Reconfigurable Artificial Neural Networks used for on-line task
scheduling on a reconfigurable system-on-chip architecture. Our
proposal is based on the Hopfield model adaptation with a regular
reconfiguration of the neural network. The major advantage of
our proposal concerns the small number of neurons to model
the problem which ensures a rapid convergence of the neural
network. Our proposal is then able to manage, i.e. to schedule,
the large number of tasks of the future reconfigurable SoC.

I. INTRODUCTION

Embedded applications are usually implemented on com-
plex System-on-Chip (SoC) which are built around heteroge-
neous processing units. New approach consists in implement-
ing processor cores, hardware block (i.e. Intellectual Property
IP blocks) and dynamically reconfigurable accelerators (Figure
1) in the same circuit designing a Reconfigurable SoC (RSoC).
Classically, the system is organized around a general-purpose
processor which runs an Operating System (OS). The main
objective of this OS consists in controlling all the available
resources.

Processor 

Memory 

Dynamically  
Reconfigurable  

Architecture 

IP IP 
IP 

NoC 

Fig. 1. Example of Reconfigurable SoC architecture

More precisely, task instantiation on execution resources is
realized by using the scheduling OS service. As each task can

be defined for several targets (in figure 2, D arrows indicate
task definitions for software and/or hardware targets), this
service must decide at run time, on which resource the task
should be instantiated. We define two levels of abstraction: The
applicative tasks represents the computation of the algorithm
independent of its final implementation. The executive tasks
are the instantiation of each applicative tasks on a particular
execution target. Figure 2 shows an example of tasks and the
different possibilities to map it on a minimal RSoC. In this
example, we can show that applicative task 2 is defined by
3 different executive tasks, which are tasks HW task 2, HW
task 2’ and SW task 2. On the other hand, tasks 1 and 3
are defined with just one executive task. To be execute, some
tasks need to be configured and then launched (for example HW
task 2 is configured C onto the reconfigurable resource and
then launched/executed L). In other hand, for hardware tasks
executed in IP blocs, only launching step L is necessary. This
figure also illustrates the configuration of a processor core
in the DRA (Dynamically Reconfigurable Area) which can
ensure the execution of software tasks if necessary. In this
case, a configuration step C is necessary before launching the
execution E.

In this context, we can define the list of characteristics that
needs to be controlled by the OS. First, as we can see on the
figure, the system is composed of multiple resources which are
heterogeneous in their characteristics, and particulary in their
execution times, the system corresponds to a heterogeneous
multiprocessor. Second, to ensure an efficient execution of
the application, the OS must manage the task dynamicity to
adapt the execution to the dynamic support provide by the
DRA. This property ensures the adaptation of the execution
contexts by partial reconfiguration without disturbing running
tasks. Nevertheless, the overhead cost of reconfiguration (in
time and in energy consumption) must be limited as much as
possible. For this reason, the task model for the DRA resource
needs to be limited to an unpreemptive model. Third, unlike
the classical processor core, the DRA resource is limited by
its area usage, not by a number of tasks. The task scheduling
must be able to manage the execution of several simultane-
ous tasks. Finally, because the number of execution targets
increases rapidly, we assume that an efficient management
of tasks cannot be done globally. So we assume that a part
of OS services needs to be implemented in the different
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execution targets and in particular in the reconfigurable unit.
Two solutions can be used to implement this service in the
reconfigurable unit. The first solution consists in embed a
processor core within this unit and to develop a specific
software scheduling service. The second solution consists in
defining a specific hardware structure for this service. We have
chosen to explore the second solution in order to limit as much
as possible the area impact of this service implementation
within the reconfigurable unit. Indeed, the area cost of a core
processor is not negligible, and we hope that a hardware
solution can limit the occupied area. Furthermore, due to time
aspects, we think that specific hardware implementation will
be more efficient than a software solution, in particular because
instruction fetch/decode/execute does not exists in hardware
solution. For these reasons, our work focus on defining a on-
line scheduling services able to manage an unfixed number
of tasks and that can be implemented with the low overhead,
within the reconfigurable unit.

Processor 

Memory 

DRA 

IP IP 
IP 

NoC 

Task 
1-HW 

Task 
2-HW’ 

Task 
3-SW 

Task 
2-SW 

Task 
2-HW’’  

Processor core 

IP 

Le
ve

l 2
 

Le
ve

l 1
 

Le
ve

l 0
 

L 

Applicative 
task 

1 

Applicative 
task 

2 

Applicative 
task 

3 Le
ve

l 3
 

L C
+L

 

C
+L

 

E 

E 

E 

D D 

D D 

Task 
2-HW 

D 

Fig. 2. Mapping example of an application on RSoC

In this paper, we propose an on-line scheduling based on a
Articial Neural Network (ANN) for RSoC architectures. The
main objectives of our proposition is to support a variable
number of tasks to schedule according to their area usage rate
in the reconfigurable hardware. For this purpose we define a
Reconfigurable Artificial Neural Network (RANN) which is
updated at specific scheduling cycles. Our model takes into
account the task dependencies and supports a non preemptive
model of tasks. This last point ensure a minimal number of
reconfigurations and then limits the energy consumption of
this unit.

The remainder of this paper is as follows. Section II,
presents the state-of-art on the scheduling solutions for mul-
tiprocessor systems. Scheduling through ANN models are
presented in this section. In section III, we present our RANN.
Section IV presents simulation of the proposed RANN. Fi-
nally, we conclude and discuss our future work.

II. RELATED WORKS

The task scheduling is one of the most important problem
in the context of system-on-chip. Managing software and
hardware targets to ensure an efficient execution of tasks is
difficult in this context due to the heterogeneous execution
targets. Furthermore, nowadays the most SoC embed recon-
figurable unit to ensure application flexibility and adaptability.
The reconfigurable unit can support the execution of high
number of tasks, but in general only few tasks are executed
at the same time. The dynamic reconfiguration of this unit
allows to sequentially map tasks onto the same area, and a
static scheduling is often insufficient. We can also note that
the complexity increasing leads designers to propose some
hardware OS service implementations to ensure an efficient
execution of tasks. The scheduling OS service, known as
spatiotemporal scheduling, has been studied, and two majors
techniques are usually proposed: the one dimensional or two
dimensional schemes to map tasks onto the reconfigurable unit
[3], [4], [16]. Static and dynamic schedulers are proposed but
on-line solutions are often preferred due to the flexibility.

In the context of SoC architecture, specific task scheduling
services has been proposed to take into account heterogeneity
characteristics of execution resources [11], [15]. These ser-
vice implementations are often complex, and are not always
appropriate to real-time systems [9]. They are generally time
consuming and do not consider the dynamic behavior of
applications. The PFair algorithm [2], focus on an optimal
solution for periodic tasks on homogeneous multiprocessors.
In [14], the authors propose an approximate solution to reduce
global complexity and to design hardware implementations
of the PFAIR approach. Nevertheless, this type of solution
is not adapted to the management of dynamicity of the
reconfigurable execution unit.

Due to the increasing number of constraints to solve the
scheduling problem, approximate methods was developed.
Among them, we can cite genetic algorithms [13], simulated
annealing [6] and Artificial Neural Networks [1]. Neural
networks have demonstrated their efficiency for optimization
problems that take into account several constraints. They
converge in a reasonable time (i.e. in a few cycles) if the
number of neurons and connections between neurons can be
limited as much as possible. Until now, ANNs have been used
for scheduling tasks on classical SoC architectures, i.e. SoC
without reconfigurable hardware. Most of the proposals ad-
dress essentially mono-processor architecture or homogeneous
multi-processors.

In [5], the authors have proposed the ANNs for on-line real-
time scheduling. Their solution extends the results obtained in
[17] and the theoretical basis for ANN design for optimization
problems is defined in [8], [10]. By using a Hopfield model
[12], they ensure the existence of a Lyapunov function, called
energy function. This model ensures that the network evolution
converges towards a stable state for which the optimization
constraints are respected. This function is defined as:
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E = − 1
2

N∑
i=1

N∑
j=1

Tij · xi · xj −
N∑

i=1

Ii · xi (1)

where N is the number of neurons, Tij is the connection
weight between neurons i and j, xi is the state of neuron
i and Ii is the external input of neuron i.

Based on this model, a design rule that facilitates the
neural network construction can be defined using equality or
inequality constraints. The k-out-of-N rule [17] allows the con-
struction of a network of N neurons for which the evolution
leads to a stable state with ”exactly k active neurons among
N”. This rule was a major result in ANN for optimization.
The corresponding energy function is defined as:

E = (k −
N∑

i=1

xi)
2 (2)

This function is minimal when the active neuron sum is equal
to k, and is positive in the other cases. Equation 2 can be
written in the form of equation 1 as follow:

E = − 1
2

N∑
i=1

N∑
j=1

Tij · xi · xj −
N∑

i=1

Ii · xi (3)

With
{
Tij = −2 δi,j ∀i, j
Ii = 2k − 1 ∀i

δi,j is the inverse Kronecker function and is equal to zero
if i = j, or one in the other cases.

Cardeira and Mammeri [5] demonstrate the additive char-
acter of the Hopfield model and apply it to a mono-processor
architecture. In this case, the scheduling problem is modelled
through ANN by the following representation:
• Neurons Ni,j are arranged in a T × C matrix form,

where line i corresponds to the task i and the column
j corresponds to the schedule time unit j. The number
of time units C depends on the hyperperiod of tasks (i.e.
the least common multiple of all the task periods) and T
is the number of tasks.

• An active neuron Ni,j indicates that during the cor-
responding schedule time unit j, the task i is being
executed.

• One line of neurons is added to model the possible
inactivity of the processor during schedule times. These
neurons are called slack neurons since they are not used
to represent the solution. The total number of neurons is
in this case N = (T + 1)× C.

In the case of an homogeneous multiprocessor architecture,
several matrices are organized in layers to model the different
execution resources. New slack neurons are then necessary to
manage the exclusive execution of each task on resources.
Figure 3 presents an example of network with p resource
layers. In this case, the total number of neurons increases by
a factor p.

By addition of new specific rules on lines or columns of
neurons, this model can manage task dependencies. Likewise,

Resource layer 1 Resource layer 2 Resource layer p

T1

T2

T3

T4

T’

T
as

ks

Scheduling cyclesScheduling cycles Scheduling cycles

Fig. 3. Classical structure used to model the scheduling problem with ANN.
Grey circles represent slack neurons

the preemption can be supported or not by adding new
rules on lines. Finally, this model has been extended to take
the heterogeneity of SoC architecture into account [7]. In
this work, the main drawback concerns the high number of
neurons to model the scheduling problem which depends on
tasks and on scheduling cycles numbers.

In conclusion, we can note that even if some works are able
to manage reconfigurable unit, none of the previous proposals
are able to efficiently manage variable multi-tasks scheduling.
The main problem concerns the number of tasks that can be
supported simultaneously on this resource. This number is not
fixed and can evolved according to the area usage rate of each
task. In the section III, we show how our proposal efficiently
manages this problem.

III. SCHEDULING FOR RECONFIGURABLE HARDWARE
USING NEURAL NETWORK

The above mentionned problems lead us to the definition of
RANN which focuses on the problem of scheduling an unfixed
number of tasks. Our proposal allows to manage instantiation
of tasks within the reconfigurable unit. The task model con-
sidered here is non-preemptive, this choice is motivated by
the low power constraint which imposes the limitation of the
number of reconfigurable phases of the reconfigurable unit.
Indeed, an important contribution of energy consumption is
due to the reconfiguration of this specific unit, thus we propose
to disable the preemption of tasks during their executions. Note
that the reconfiguration time of each task is included in its
global execution time, this assumption simplifies the works
but eliminates potential optimizations on scheduling (such as
reconfiguration prefetch).

In the following sections, we present firstly how managing
an unfixed number of tasks and secondly, how task dependen-
cies are taken into account in our model.

A. Management of a variable number of tasks within the
reconfigurable unit

First, let us consider only the scheduling of several tasks
according to the area available on the reconfigurable unit. The
problem can be formulated as follow:

For a dynamically reconfigurable unit with a total area equal
to TA au (with au the area unit) and a set of tasks {Ti} define
as:

Ti = {Ai, Ei} ∀ i = 1, . . . , T (4)
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with Ai the area usage rate of the task i, Ei the execution
time of the task i and T the number of tasks. Note that the
reconfiguration time of each task, which is proportional to the
task’s area, is included in the execution time Ei.

The problem is to find all the possible instantiated task
combinations which ensure the maximum configuration.

We define the Maximum Configuration (MC) as a configu-
ration which cannot accept a supplementary task, due to the
area usage of the reconfigurable unit. In other words, for all
non-maximum configurations, the available area is sufficient
to accept another task instantiation. So, the MC can be defined
as a set of tasks {Ti} as follow:

MC =

{
Ti

i ∈ {1...T}
|

∑
i ∈ {1...T}

Ai ≤ TA (5)

∧ 6 ∃ Tj |
∑

i ∈ {1...T}

Ai +Aj ≤ TA


Let us consider a simple example with a reconfigurable unit
having a total area equals to 100 au and an application
composed of three tasks. Usage rate Ai and execution time Ei

of each task on the reconfigurable resource are listed below:
• task T1: A1 = 20 au; E1 = 40 tu (with tu the time

unit);
• task T2: A2 = 40 au; E2 = 30 tu;
• task T3: A3 = 80 au; E3 = 20 tu;
Table I shows all the possible configurations according

to the available reconfigurable area. This table shows that

Configurations Confi

0 1 2 3 4 5 6 7
Task 1 X X X X
Task 2 X X X X
Task 3 X X X X
Area 0 20 40 60 80 100 120 140

Conf type iC iC iC MC MC MC IC IC
Nb of tasks 0 1 1 2 1 2 2 3

TABLE I
LIST OF ALL POSSIBLE COMBINATIONS OF THREE TASKS. MC IS A

MAXIMUM CONFIGURATION, IC IS AN IMPOSSIBLE CONFIGURATION DUE
TO THE AREA USAGE RATE GREATER THAN THE TOTAL AVAILABLE AREA

WITHIN THE RECONFIGURABLE UNIT, AND FINALLY IC IS AN INCOMPLETE
CONFIGURATION DUE TO THE EQUATION 5.

configurations 3, 4 and 5 are maximum and defined as:

MC = {{T1, T2} ; {T1, T3} ; {T3}} (6)

All other are either incomplete (Conf0, Conf1, Conf2) or
impossible (Conf6, Conf7). For example, in configuration 1,
it is possible to instantiate task T2 or T3 in the remaining
area. For the three maximum configurations, we can notice
that the numbers of tasks are equal to 1 or 2. For a mono-
thread scheduling problem, a fixed number of tasks must be
scheduled at each cycle and classical neural networks can be
used. For reconfigurable unit, or multi-threaded processor, the
classical solutions cannot be used due to this variable number
of tasks.

To schedule an unknown number of tasks, we propose a
specific neural network structure. This structure is presented in
figure 4. In this figure, each neuron models a task to schedule.
An active neuron at cycle t indicates that the corresponding
task is running at this cycle. The main idea of the neural

N1 

N2 

Nn 

T1, A1 

T2, A2 

Tn, An 

-A1 

-A2 

-An 

I1 = TA– A1 + 1 

I2 = TA– A2 + 1 

In = TA– An + 1 

Cycle t 

Fig. 4. Neural network structure to schedule a variable number of tasks
at each cycle. This figure shows the input and weight values of the neural
network to manage the available reconfigurable unit area.

network structure presented in the figure 4 is to allow a
neuron activation if the available area is sufficient. Thus the
neuron input of task Ti is defined as Ii = TA − Ai + 1
which corresponds to the remaining area when the task Ti is
instantiated on the reconfigurable unit. It also corresponds to
the maximum area that can be used by other tasks to ensure the
Ti instantiation. Furthermore, each neuron receives the areas
occupy by all other scheduled tasks, this is ensured by the
connection weight with a value −Ai. The complete connection
matrix is define as follow:

T =


0 −A1 −A1 ... ... −A1

−A2 0 −A2 ... ... −A2

−A3 −A3 0 ... ... −A3

... ... ... ... ... ...

... ... ... ... ... ...
−An −An −An ... ... 0


T1 T2 T3 ... ... Tn

T1

T2

T3

...

...
Tn

(7)

For example, the underline value−A3 is the weight connection
value T3,2 from task T3 to task T2 which indicates that task
T3 needs A3 au within the reconfigurable unit.

B. Management of task dependencies

The proposition above is insufficient to model a real task
graph, because no dependency are considered. To support
the task dependencies, we propose to complete the previous
structure by adding a controller and logical function at each
neural input. The goal of the controller is to manage the neuron
inputs to ensure that neuron can become active or not.

The task dependencies are modeled as follow:
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• Let D the task dependencies matrix (T × T matrix size),
with di,j a binary variable equals to 1 if task Ti precede task
Tj , and equals 0 elsewhere. Note that di,i is equal to 0.
• Let Ft a binary vector (T vector size) which depends on

the schedule cycles t and composed of ft,i binary elements
equal to 1 if task Ti has finished its executions before schedule
time t, or equal 0 elsewhere. For example, if task T1 (with
E1 = 40) starts its execution at schedule time 0, then the
binary values ft,1 of this task are ft,1 = 0 ∀ t < 40 and
ft,1 = 1 ∀ t ≥ 40.
• Let Xt the task execution vector (T vector size), with xt,i

an integer variable which represents the number of schedule
cycles obtained by the task Ti until the schedule cycle t.

The goal of the controller is to manage the ft,i variable
at each cycle. So after each cycle t, the values xt,i are
incremented for all active neurons of this cycle t:

xt,i = xt−1,i + 1 ∀ i | Ni is an active neuron at cycle t (8)

Then at cycle t, the binary variables ft,i is evaluated as:

ft,i =
(
xt,i

?=Ei

)
(9)

with (a ?= b) a comparison operation which returns logic value
1 if the test is true, 0 elsewhere.

The control input vector Ct is then computed at each cycle,
and defined as follow:

Ct = Ft �D (10)

with � the logical minterme operator for the matrix and with
ct,i defined as:

ct,i =
T⊙

j=1

ft,j ∨ di,j (11)

with
⊙

the symbol the and-sum of binary values and ∨ the
logical-or function.

The control, defined by the ct,i variables, is done through
an and-logic function placed on the neuron input, as shown in
figure 5. Finally, due to the expression of the ct,i it is possible
to extend the number of inputs of the logical-and function of
figure 5 and to define the set of neural inputs Rt,i as:

Rt,i = {ft,j | di,j = 1 ∀ j = 1, . . . , T} (12)

The figure 6 shows the final structure of our proposal.

C. Example of RANN

To illustrate our proposal, we present our RANN structure
for the three tasks defined above. If we consider two task de-
pendencies from tasks T1 and T3 to task T2, the dependencies
matrix is defined as follow:

D =

 0 1 0
0 0 0
0 1 0


T1 T2 T3

T1

T2

T3

(13)

T1, A1 

T2, A2 

Tn, An 

-A1 

-A2 

-An 

TA– A1 + 1 

TA– A2 + 1 

TA– An + 1 

Cycle t 

& 

& 

& 

ct1 

ct2 

ctn 

I1 

I2 

In 

N1 

N2 

Nn 

Fig. 5. Adding and-logic function in the neural network structure to ensure
the management of the task dependencies.

T1, A1 

T2, A2 

Tn, An 

-A1 

-A2 

-An 

TA– A1 + 1 

TA– A2 + 1 

TA– An + 1 

Cycle t 
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& 

& 

Rt1 

Rt2 

Rtn 

I1 

I2 

In 

N1 

N2 

Nn 

Fig. 6. Final structure of our Reconfigurable Artificial Neural Network
proposal. Our proposal is named Reconfigurable ANN (RANN) because its
behavior needs neural inputs adaptation at each cycle.

In this case, the control input variables are:

CT =

 ct,1
ct,2
ct,3

 =

 (ft,1 ∨ 1) ∧ (ft,2 ∨ 1) ∧ (ft,3 ∨ 1)
(ft,1 ∨ 0) ∧ (ft,2 ∨ 1) ∧ (ft,3 ∨ 0)
(ft,1 ∨ 1) ∧ (ft,2 ∨ 1) ∧ (ft,3 ∨ 1)


=

 1
ft,1 ∧ ft,3

1

 (14)

Note that for ct,i expression equals to 1, the input function for
task Ti is no necessary and the neuron input is simply equal to
TA−Ai + 1. Furthermore, a simple optimization can reduce
the expression of some ct,i. In our example, the input control
ct,2 can be simplified and reduced to expression ct,2 = ft,3.
Indeed, according to the dependencies, the minimum start
time of task 2 is equal to the maximum finish time of the
previous tasks T1 and T3. In this case, the start time of task
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2 is computed as Max (EndTime(T1), EndT ime(T3)) =
EndTime(T3), so only one dependency is sufficient to ensure
a correct scheduling. This optimization can be done if the
end times of tasks are known before the execution. In the
opposite case. i.e. end times of tasks unknown, this optimiza-
tion cannot be done and complete expressions of ct,i must be
implemented.

T1, A1=20 

T2, A2=40 

-20 

-40 

100-20+1=81 

100-40+1=61 

Cycle t 

& ft,1 

I1 

I2 

N1 

N2 

T3, A3=80 -80 

100-80+1=21 
I3 

N3 

ft,3 

Fig. 7. Example of RANN structure in the case of dependencies between
tasks (dependencies from T1 to T2 and from T3 to T2).

IV. SIMULATION RESULTS

To illustrate the convergence of our proposal, let us consider
a simple example with a dynamically reconfigurable unit
having a total area equals 50 au and an application composed
of four tasks defined as follow:
• task T1: A1 = 10 au; E1 = 40 tu;
• task T2: A2 = 20 au; E2 = 20 tu;
• task T3: A3 = 10 au; E3 = 30 tu;
• task T4: A4 = 40 au; E4 = 20 tu;

Due to the different execution charges of tasks onto the
reconfigurable unit, we propose to define a reconfiguration step
equals to the greatest common divisor of each Ei values. In
our case, the greatest common divisor, called Reconfigurable
Schedule Time (RST), is equal to 10 tu. In this case, the sched-
ule is compute each 10 cycles, and the RANN is reconfigured
each 10 cycles.

For this example, we suppose that there is a dependency
between Task 4 and Task 3 (T4 → T3) as defined in the
previous section. In this case, the RANN is defined with four
neurons and the connection and input values are defined as
presented in matrix definition in eq 7. One possible network
(neurons are fired randomly in the hopfield model) evolution
is illustrated in Figure 8.

RST 1: Due to the dependency, input of neuron n3 is
forced to value 0. The n3 neuron can not be switched to an
active state. Then we suppose that neuron n1, corresponding

to tasks 1 is evaluated. For this neuron, energy is sufficient
to switch it to an active state (Energy1 = I1 = 41).
Then the neuron n4 is fired, its energy is equal to
Energy4 = I4 − A1 = 11 − 10 = 1, so the neuron is
switched to an active state. As this configuration is maximum
no other neuron can be activated.

RST 2: The evaluation of the new schedule cycle is done
between RST 1 and RST 2. The previous neuron states is
conserved before starting this new convergence step. So, since
tasks 1 and 4 are not finished no input and nor connection
weight modifications are applied on the network and the
previous neurons states are conserved. The network stays
in its previous state, even if the neurons 2 and 3 are evaluated.

RST 3: At this tick, Task 4 resume its execution. To
prevent to re-schedule this task, the input value of its neuron
n4 is forced to ’0’ and neuron n4 switches to an inactive
state. At the same time, the register bit r4 is set to value 1
indicating that Task 4 is completed. The input of neuron 3
is modified and not forced to value 0 anymore. In this case,
the convergence of the network switches neurons n2 and n3
to an active state as the two tasks can be supported by the
reconfigurable architecture.

RST 4: For the same reason than RST 2, the network stays
stable at this tick: the previous neuron states is conserved
because tasks 1 and 2 are not finished. So neurons 1 and 2
stay in an active state.

RST 5: Finally, Tasks 1 and 2 complete their execution, so
the inputs of the corresponding neurons are forced to value
0. The network convergence leave the Task 3 in an active state.

Table II shows the number of neuron evaluations for each
RST to obtain the convergence. For each RST, the list of

RST: Reconfiguration Schedule Tick
Evaluated neurons 1 2 3 4 5

1st neuron 4 − 2 − 3
Neuron evolution 0→ 1 0→ 1 1→ 1

2th neuron 3 − 1 − 1
Neuron evolution 0→ 0 1→ 1 1→ 0

3th neuron 1 − 4 − 2
Neuron evolution 0→ 1 1→ 0 1→ 0

4th neuron − − 3 − −
Neuron evolution 0→ 1

Nb of neuron evaluations 3 0 4 0 3

TABLE II
EXAMPLE OF NEURONS EVALUATIONS

evaluated neurons and the state evolution of these neurons
are given. The ”−” character indicates that the network has
converged and stays stable for the next simulation steps. For
example, at RST 1, the first evaluated neuron is the neuron
number 4. This neuron is switched to an active state. Next,
neuron 3 is evaluated and maintained in an inactive state due
to its dependence on task 4. Next, neuron 1 is evaluated and
switched to an active state. Finally, no other neurons can
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T1 (A1= 10, C1 = 4)

T2 (A2= 20, C2 = 2)

T3 (A3= 10, C3 = 3)

T4 (A4= 40, C4 = 2)

41

31

0=41&0

11
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-20
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RST 1

41

31
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31

0

41

0

-10

-20
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-40

RST 5

41

0

0

Fig. 8. Example of several RST for a four task scheduling on reconfigurable hardware

change and the network is stable. The last line of the table
shows the number of evaluated neurons at each RST for one
specific scheduling. These numbers of evaluation is always
less than the number of tasks. So, no more than 4 evaluations
for this simulation is necessary. For this example, the number
of neuron evaluations for the complete scheduling is equal to
11. An equivalent scheduling problem, with the same number
of tasks, the same number of RST and modelled by classical
neural networks needs more than 100 neuron evaluations.
In [5] a very similar example is presented: the scheduling
problem with four tasks and height cycles converges after
approximatively 200 fired neurons. These results show that
our proposal needs approximatively 10 times less evaluations
to converge. Furthermore, the number of neurons to model
the problem with RANN is equal to 4 while this number is
superior to NT×NC = 20 for a classical model, this represents
a reduction by a factor 5.

Figure 9 shows the evolution of neurons which need to be
evaluated to ensure convergence, according to the number of
tasks to schedule in the reconfigurable resource. If the tasks
are completely independent and if there is no area constraint
for the scheduling, the number of neurons to evaluate is
done by the line called minimum constraint. Generally,
some dependencies exist between tasks, and the reconfigurable
resource is never dimensioned to ensure the execution of all
the tasks simultaneously. So in this case, several constraints
can be exploited to limit the number of neurons which need to
be evaluated, for example, in an extreme case, the the number
of neurons to evaluated is done by the line called maximum
constraint. This line corresponds to the maximum of
constraints (incompatible areas and/or tasks dependencies). in
the figure 9, the line called Intermediate number of
constraints corresponds to a more realistic cases with
some dependencies between tasks and some incompatible area
placements for tasks. In theses cases, the number os neurons to
evaluated is approximatively divided by 2. We can evaluated
the dependency constraint by the following metric:

DependencyConstraint =
NbTotalTaskDependencies

NbTasks
(15)

The area constraint can be evaluated by the minimal number
of tasks which can instantiated due to the total available area,

this can be formulated by :

AreaConstraint =
min (Card(MCi))

NbTasks
∀MCi ∈ MC

(16)
In the example presented in this section, the system is more
constrained by area resource than by task dependencies.
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Fig. 9. Evolution of number of evaluated neurons according to the number
of tasks to schedule.

In the table III, we compare results obtained with classical
neural solutions and our proposal.

Different number of tasks have been evaluated. For each
configuration, the area and dependencies constraints are fixed
to value 0, 5. We estimated that these constraints are repre-
sentative than classical applications. From this table, we can
show that our proposal ensure the neural network convergence
in few cycles, while classical solutions need a great num-
ber of cycles which mainly due to the number of neurons
to model the problem. These results are important in the
context of implementation of the scheduling service within
the reconfigurable unit. Indeed, the drastically reduction of
neurons for the modelization ensures that the implementation
of the neural network can be limited. Furthermore, the rapid
convergence ensures that it can be possible to manage tasks
with in very short time, which ensures the reactivity of the
system. This is also an important point, notably because the
reconfigurable unit can be the support for new tasks that
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Classical modelization Our proposal
Number Reconf

P
Ai Area Dep Number Number of cycles Number Number of cycles

of tasks area size constraint constraint of neurons for convergence of neurons for convergence
NT * NbCycles

10 100 200 10*100 > 1000 10 ' 10
20 200 400 20*100 > 2000 20 ' 20
40 400 800 0,5 0,5 40*100 > 4000 40 ' 40
80 800 1600 80*100 > 8000 80 ' 80

100 1000 2000 100*100 > 10000 100 ' 100

TABLE III
RESULTS OF LARGE TASK GRAPHS IMPLEMENTATION AND CONVERGENCE

need to be schedule in short time. The adaptability of our
proposal (by a simple reconfiguration of neural network) is an
interesting characteristic for this type of tasks.

V. CONCLUSION

In this paper, a scheduling service for reconfigurable hard-
ware by neural network is presented. This work take into
account a variable number of tasks that could be scheduled in
this type of resource. This specificity comes from the different
area usage rate of tasks, and needs a scheduling services
which can be adapt to the execution context. The classical
approaches based on ANNs allow to manage the scheduling
with only one active task at each time. This proposition is
not satisfying for reconfigurable hardware which is limited by
area usage rate of each task and not by the number of tasks.
To solve this problem, we propose a Reconfigurable Artificial
Neural Network structure that ensures management of tasks
according to their area constraints. The main advantage of our
RANN is its capacity to converge very quickly, this is due to
the very limited number of neurons to model the scheduling
problem and the decomposition of the complete and complexe
scheduling into a sequence of small and simple scheduling
steps. This decomposition is done through the definition of
the Reconfigurable Schedule Time (RST) which define the
tick interval between two reconfiguration steps. To manage
precisely the reconfigurable resource, we propose a RST-by-
RST adaptation of the network. We show that it is possible to
manage tasks at each tick by simple modifications of neuron
input values. We also show that our proposition supports
task dependencies and limits the number of tasks switching,
through the non preemptive model of tasks and a specific
control of the neural network.

These contributions are important advances for our cur-
rent works which consist in defining an efficient hardware
implementation of the scheduling service in the context of
Reconfigurable SoC. By limitation of the task reconfiguration
number, our proposition limits the time overhead and the en-
ergy consumption, these two parameters need to be controlled
in the context of RSoC.

We are currently working on the FPGA implementation
of our proposal. According to the actual density and the
new capability of dynamic reconfiguration, FPGA circuits
are now good candidate for efficient implementation of the
RANN structure. Our first implementation results show that

our proposal is very interesting for the future SoC including
reconfigurable unit.
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Abstract— The multiprocessor partitioned scheduling of spo-
radic task systems is considered. The problem of obtaining
feasible partitionings under both Earliest Deadline First (EDF)
and Fixed Priority (FP) scheduling is represented as integer linear
programs comprised of binary (zero / one) integer variables only.

I. INTRODUCTION

Real-time systems are often modeled as collections of
recurrent tasks, each of which generates a potentially infi-
nite sequence of jobs according to well-defined rules. One
commonly-used formal model for representing such recurrent
real-time tasks is the sporadic task model. Each sporadic task
τi in this model is characterized by three parameters — a
worst-case execution time Ci, a relative deadline Di, and a
period Ti. Such a task generates a potentially infinite sequence
of jobs, with successive jobs of τi arriving at least Ti time units
apart, each job having an execution requirement ≤ Ci and a
deadline Di time units after its arrival time.

In this paper, we consider real-time systems that can be
modeled as collections of sporadic tasks and are implemented
upon a platform comprised of several identical processors.
We assume that the processors are fully preemptive — an
executing job may be interrupted at any instant in time and
have its execution resumed later with no cost or penalty.
Partitioned and global scheduling. In partitioned scheduling
of collections of recurrent tasks, each task is assigned to a
processor and all the jobs generated by the task are required to
execute upon that processor. In global scheduling, on the other
hand, different jobs of the same task may execute on different
processors and a preempted job may resume execution on a
processor different from the one it had been executing on prior
to preemption.

Global scheduling is more general than partitioned schedul-
ing (in the sense that every partitioned schedule is also a
global schedule while the converse is not true); however, the
current state of the art seems to favor partitioned scheduling.
There are two major reasons for this. First, the run-time cost
of inter-processor migration is unacceptably high on many
platforms. Second, it has been shown [3], [4] that current
schedulability tests for partitioned scheduling are superior to
current schedulability tests for global scheduling. Although
research and technology promises to ameliorate both these
factors and render them less critical in the future, it is likely

that partitioned scheduling will have a role to play in system
design and implementation at present.
This research. We consider the partitioned scheduling of
sporadic task systems upon multiprocessor platforms. We
study two very widely-used scheduling algorithms — the
Earliest Deadline First scheduling algorithm (EDF), [20], [11]
and Fixed Priority scheduling (FP) [20], [2] when scheduling
systems of sporadic tasks upon such preemptive platforms.

It is already known (see, e.g., [21]) that EDF- and FP-
partitioning are intractable –NP-hard in the strong sense–
even for task models simpler than the sporadic task model,
since they are a generalization of the well-known bin-packing
problem [17], [16]; hence, we do not expect to be able
to obtain polynomial-time algorithms for partitioning spo-
radic task systems. Instead, we describe how the problem
of partitioning sporadic task systems upon multiprocessors
for EDF or FP scheduling may be formulated as an integer
linear programming (ILP) problem. Although this may at first
seem inconsequential — converting one intractable problem
to another (since ILP is also known to be NP-hard [18]) —
we believe that there is a real benefit to such conversion. This
is because the optimization community has devoted immense
effort to coming up with extremely efficient (although still
exponential-time) algorithms for solving ILP’s, and highly-
optimized libraries implementing these efficient algorithms are
widely available. (This is particularly true for ILP’s in which
each integer variable is further constrained to take in only the
values zero or one – these are called binary or zero / one
integer variables, and the corresponding ILP’s zero-one or
binary ILP’s (BILP’s); for instance, the optimization library
that comes with MATLAB1 has a very efficient solver for
BILP’s, called bintprog()). We will derive BILP represen-
tations of EDF and FP partitioning. Both BILP formulations use
polynomially many integer variables. The BILP formulation of
general EDF-partitioning requires exponentially many linear
constraints; we will describe how a sufficient (rather than
exact) EDF-partitioning algorithm can be formulated as a
BILP with only pseudo-polynomially or polynomially many
constraints. For FP-partitioning, the exact BILP formulation
requires pseudo-polynomially many constraints, while suffi-
cient FP-partitioning can be represented using polynomially
many constraints.

1http://www.mathworks.com/products/matlab/
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Organization. The remainder of this paper is organized as
follows. In Section II, we briefly describe the task and machine
model used in this work. In Section III, we discuss how
partitioning problems may in general be represented as integer
linear programs. In Section IV, we delve deeper into the
ILP representation of EDF-partitioning. We describe how to
represent EDF-partitioning exactly and approximately using
zero-one ILP’s, and discuss the tradeoffs that go into choosing
the parameters for the approximation algorithms. In Section V,
we describe how FP-partitioning can also be represented as an
ILP. We conclude in Section VI by placing this work within
the larger context of multiprocessor scheduling.

II. MODEL AND DEFINITIONS

As stated in Section I above, a sporadic task τi =
(Ci, Di, Ti) is characterized by a worst-case execution require-
ment Ci, a (relative) deadline Di, and a minimum inter-arrival
separation parameter Ti, also referred to as the period of
the task. Such a sporadic task generates a potentially infinite
sequence of jobs, with successive job-arrivals separated by
at least Ti time units. Each job has a worst-case execution
requirement equal to Ci and a deadline that occurs Di time
units after its arrival time. We assume a fully preemptive
execution model: any executing job may be interrupted at
any instant in time, and its execution resumed later with no
cost or penalty. A sporadic task system is comprised of a
finite number of such sporadic tasks. It is evident from the
definition of sporadic tasks, and of sporadic task systems,
that any given system may legally generate infinitely many
different collections of jobs.

In the remainder of this paper, we will let τ denote a
system of n sporadic tasks: τ = {τ1, τ2, . . . τn}, with τi =
(Ci, Di, Ti) for all i, 1 ≤ i ≤ n. Task system τ is said to be a
constrained sporadic task system if it is guaranteed that each
task τi ∈ τ has its relative deadline parameter no larger than
its period: Di ≤ Ti for all τi ∈ τ . We restrict our attention
here to constrained task systems2.
Demand bound function (DBF). For any interval length t, the
demand bound function DBF(τi, t) of a sporadic task τi bounds
the maximum cumulative execution requirement by jobs of τi

that both arrive in, and have deadlines within, any interval of
length t. It has been shown [9] that

DBF(τi, t) = max
(

0, (
⌊

t−Di

Ti

⌋
+ 1) Ci

)
(1)

Approximation schemes have been defined for computing
the value of DBF to any desired degree of accuracy (see,
e.g. [1], [12]). Equation 2 below gives such an approximation
scheme for DBF; for any fixed value of k, DBF(k)(τi, t) defines
an approximation of DBF(τi, t) that is exact for the first k steps

2This is primarily for pedantic reasons — although our techniques extend to
sporadic task systems that are not constrained in much the same manner that
uniprocessor EDF- and FP- scheduling results for constrained systems extend
to task systems that are not constrained, the presentation of these extensions
involves many grungy details and is likely to detract attention from the main
ideas.

of DBF(τi, t), and an upper bound for larger values of t:

DBF(k)(τi, t) =

�
DBF(τi, t) if t ≤ (k − 1)Ti + Di

Ci + (t−Di)Ui otherwise (2)

The following lemma provides a quantitative bound on the
degree by which DBF(k) may deviate from DBF:

Lemma 1:

∀ t ≥ 0

DBF(τi, t) ≤ DBF(k)(τi, t) <
(
1 +

1
k

)
DBF(τi, t) .

Proof Sketch: This lemma is easily validated informally by
sketching DBF(τi, t) and DBF(k)(τ, t) as functions of t for
given k (see Figure 1). DBF(τi, t) is a step function comprised
of steps of height Ci, with the first step at t = Di and
successive steps exactly Ti time units apart. The graph of
DBF(k)(τ, t) tracks the graph for DBF(τi, t) for the first k steps,
and is a straight line with slope Ci/Ti after that. It is evident
from the figure that DBF(k)(τi, t) is always ≥ DBF(τi, t), and
that the ratio DBF(k)(τi, t)/DBF(τi, t) is maximized at t just
a bit smaller than kTi + Di, where it is < (k + 1)Ci)/(kCi)
= (1 + 1

k ) as claimed.

III. PARTITIONING AND ILP’S

In a integer linear program (ILP), one is given a set of N
variables, some or all of which are restricted to take on integer
values only, and a collection of “constraints” that are expressed
as linear inequalities over these variables. The set of all points
in N -dimensional space over which all the constraints hold is
called the feasible region for the integer linear program3.

In the following sections we consider a constrained-deadline
task system τ comprised of n tasks that is to be partitioned
among m unit-speed processors. We will let τ(j) denote the
subset of τ that is assigned to the j’th processor by the par-
titioning algorithm, 1 ≤ j ≤ m. Thus, τ(1), τ(2), . . . , τ(m)
represents a partitioning of τ into m mutually disjoint subsets
and comprises the desired output of the partitioning algorithm.

To convert partitioning to a BILP we define (n × m)
binary integer variables Xij , with the following intended
interpretation4

Xij ←
{

1 if τi ∈ τ(j)
0 otherwise (3)

That is, Xij = 1 if and only if the i’th task is assigned the
j’th processor. This intended interpretation is enforced by n
constraints of the following form, one for each i ∈ {1, . . . , n},
encapsulating the requirement that each task must be assigned
to some processor:

m∑

j=1

Xij = 1 (4)

3One is also typically given an “objective function,” also expressed as
a linear inequality of the variables, and the goal is to find the extremal
(maximum/ minimum) value of the objective function over the feasible region.
However, for our purposes here it suffices to construct the constraints and
determine whether the feasible region is empty or not.

4Recall that by definition, binary integer variables may take on values zero
or one only.
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Fig. 1. Illustrating the proof of Lemma 1. The step plot represents DBF(τi, t). The plot for DBF(k)(τi, t), for k = 2, is identical to the step plot for
t ≤ di + Ti, and is denoted by the straight line for larger t.

The constraints expressed in Equation 4 must be true for
partitioning under any scheduling algorithm; in the follow-
ing two sections, we describe the additional constraints that
must be satisfied for the specific scheduling algorithms EDF
(Section IV) and FP (Section V).

IV. PARTITIONED-EDF SCHEDULABILITY

In EDF scheduling [20], jobs are assigned priorities accord-
ing to their absolute deadlines – the earlier the deadline of a
job, the greater its priority. Under partitioned-EDF scheduling,
all the tasks assigned to the j’th processor (i.e., all tasks
in τ(j)) must be uniprocessor EDF-schedulable, for each j,
1 ≤ j ≤ m. Exact schedulability tests for uniprocessor EDF-
scheduling are known [9]; these tests essentially require that
the following linear constraint be satisfied

∑

τi∈τ(j)

DBF(τi, to) ≤ to (5)

for each to ∈ T S(j), where T S(j) (sometimes called the
“testing set”) is a set of numbers defined as follows:

T S(j) =
⋃

τi∈τ(j)

{
t|t ≡ Di + (k − 1)Ti ∧ t ≤ P (j)

}
. (6)

Here, P (j) denotes the least common multiple of the period
parameters of all the tasks in τ(j): P

def= lcmτi∈τ(j){Ti}.
Observe that Equation 5 is indeed a linear constraint,

since for given to, DBF(τi, to) evaluates to a constant. Hence
Equation 5 is of the form

∑n
i=1 AiXij ≤ to where each Ai

is a constant, and the Xij’s binary integer variables as stated
above.

Note that τ(j) is not known when the ILP is being for-
mulated — indeed, the goal of the ILP is to determine the
τ(j)’s. Let P denote the least common multiple of the period
parameters of all the tasks in τ — P

def= lcmn
i=1{Ti} — and

observe that T S(j) ⊆ T S , where

T S def=
n⋃

i=1

{
t|t ≡ Di + (k − 1)Ti ∧ t ≤ P

}
. (7)

Equation 5 is rewritten in a form that makes no reference to
the unknown set τ(j) of tasks, as follows

n∑

i=1

DBF(τi, to)Xij ≤ to (8)

Observe that Equations 5 and 8 are identical under the intended
interpretation of the Xij variables, since Xij equals one for
all τi ∈ τ(j) and zero for all τi 6∈ τ(j).
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Since one such constraint must be written for each to ∈
T S for each processor j, there are (m × |T S|) such linear
constraints.

Reducing the number of constraints - I

In general, |T S| may be exponential in the representation
of the task system; however, it has been shown in [9] that
if the total utilization U(τ(j)) def=

∑
τi∈τ(j)(Ci/Ti) of all

the tasks assigned to the j’th processor is bounded from
above by a constant c strictly less than one, then a T S can
efficiently be identified with cardinality pseudo-polynomial
in the representation of the task system. By choosing an
appropriate value of c (the factors that influence this choice is
discussed below) and then adding m linear constraints —one
for each j, 1 ≤ j ≤ m— of the form

n∑

i=1

Xij
Ci

Ti
≤ c , (9)

we need verify Equation 8 at at most pseudo-polynomially
many points to for each j, and hence need write at most
pseudo-polynomially many constraints of the form given in
Equation 8.

What determines the choice of c? As has been shown in [9],
mandating such a restriction — that U(τ(j)) ≤ c — is
essentially equivalent to decreasing the computing capacity of
the processors from 1 to the chosen constant c. Hence while
any value of c < 1 will provide a pseudo-polynomial time
bound, the tradeoff involved in choosing a value for c is as
follows: the smaller the value of c, the smaller the value of
|T S|, but the larger the fraction of the computing capacity
of the processors that remains unused by the partitioning
algorithm and hence the more likely that our algorithm will
fail to partition a task system that is partitionable.

Reducing the number of constraints - II

Equation 8 being true for all j, 1 ≤ j ≤ m, and all to ∈ T S
corresponds to an exact partitioning algorithm. If we were to
use DBF(k) instead of DBF in Equation 8:

to ≥
∑
τi∈τ

DBF(k)(τi, to)Xij (10)

the partitioning algorithm is no longer exact: there may be
partitionable task systems corresponding to which these con-
straints are no longer satisfiable (this is because, as Lemma 1
states, DBF(k) over-estimates the computational demand of
each task). However, constructing a partitioning algorithm
based on Equation 10 instead of on Equation 8 offers the
advantage that the size of the testing set for which Equation 10
must be evaluated is known to be |τ(j)| × k = O(nk), which
means that, for a given choice of k there are O(nm) such
linear constraints. Furthermore, we may use Lemma 1 to
quantify the degree of inaccuracy of the partitioning algorithm.
In this manner, we can write an ILP representation of EDF-
partitioning with the number of linear constraints polynomial
in the representation of the task system.

To summarize the discussion above, we can transform EDF-
partitioning to an binary integer linear program on the n ×
m binary integer variables Xij with n linear constraints of
the form Equation 3 (denoting that each task gets assigned
to some processor), and some additional constraints generated
according to one of the following three options:

1) Exponentially many linear constraints of the form Equa-
tion 8. The resulting ILP corresponds to an exact parti-
tioning algorithm – the ILP has a feasible solution if and
only if the task system is partitionable on m processors.

2) Choose a real-valued constant c < 1, and generate
a) m constraints of the form Equation 9, and
b) psuedo-polynomially many linear constraints of the

form Equation 8. The resulting ILP corresponds to a
sufficient partitioning algorithm – if the task system is
partitionable on m processors by using no more than a
fraction c of the computing capacity of each processor,
then the ILP has a solution.

3) Choose an integer-valued constant of k > 1, and gen-
erate polynomially many linear constraints of the form
Equation 10. The resulting ILP corresponds to a sufficient
partitioning algorithm – if the task system is partitionable
on m processors by using no more than a fraction
k/(k + 1) of the computing capacity of each processor,
then the ILP has a solution.

We can thus represent the partitioning problem exactly, or
approximately to any desired degree of accuracy by generating
the appropriate set of linear constraints. In this manner, we get
a BILP that can be solved very efficiently (albeit still in worst-
case exponential time) using highly optimized solvers (such
as the bintprog() solver that is a part of the MATLAB
optimization toolbox).

V. PARTITIONED-FP SCHEDULABILITY

In FP scheduling, each task is assigned a distinct priority
and all the jobs generated by a task inherit the priority of
the task that generates it. During run-time, each processor is
allocated to the highest-priority job (if any) that needs to use
the processor. We will assume without loss of generality that
the tasks are indexed in decreasing priority order — task τ1 is
assigned the greatest priority, and τi has greater priority than
τi+1 for all i, 1 ≤ i < n.

Recall that we are restricting our attention in this paper
to constrained-deadline sporadic task systems only. For such
systems, it is known [19] that the response time of a job
τi ∈ τ(j) — i.e., assigned to the j’th processor — is
maximized when the job arrives concurrently with a job of
each greater-priority task in τ(j), and each such greater-
priority task generates subsequent jobs as soon as allowed (i.e.,
with successive job arrivals separated by exactly the period
parameter of the task). A sequence of job arrivals of a task
systems in which each task has a job arrive at the same instant
and subsequent jobs as soon as allowed is sometimes called
the synchronous arrival sequence (SAS) of the task system.
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Let us now focus on a particular task τi ∈ τ(j) Let AS(i, j)
denote all the time-instants in [0, Di) at which tasks that have
been assigned to processor j have jobs arrive during the SAS:
AS(i, j) contains Di, as well as all t < Di of the form t ≡
(` × Tk), for ` = 0, 1, 2, . . . and τk ∈ τ(j). It is known [19]
that τi meets its deadline if and only if there is a to ∈ AS(i, j)
such that

t0 ≤ Ci +
∑

τk | k<i
V

τk∈τ(j)

⌈ to
Tk

⌉
Ck . (11)

As in the EDF case (Section IV) we do not know τ(j) when
we are setting up the ILP; hence, we must write m equations
as follows, one for each j, 1 ≤ j ≤ m, to represent the
information conveyed by Equation 11:

t0 ≤ XijCi +
i−1∑

k=1

⌈ to
Tk

⌉
XkjCk (12)

Since to, Tk, and Ck are all known, Equation 12 is a linear
constraint in the Xij variables. Also, it is known that the cardi-
nality of AS(i, j) is pseudo-polynomial in the representation
of the task system5. We thus see that τi meets its deadlines
under FP-scheduling for a given priority assignment if and
only if at least one of pseudo-polynomially many inequalities
is satisfied. There is a standard technique in binary integer
programming (see Section in the appendix) for expressing the
requirement that at least one of a collection of inequalities be
satisfied; by using this technique, we can thus express the FP-
schedulability of τi as a binary integer program. By repeating
this procedure for all the n tasks, we express FP-schedulability
as a binary integer program on a polynomial number of
variables and pseudo-polynomially many constraints.

Reducing the number of constraints

Since AS(i, j) may contain pseudo-polynomially many
points, our BILP has pseudo-polynomially many constraints.
Techniques are known [13], [14] for trading off some accuracy
to reduce the number of points in AS(i, j) to a polynomial
number; by applying these techniques, we can obtain a BILP
representation of a sufficient FP-partitioning algorithm that has
only polynomially many constraints.

VI. CONTEXT AND CONCLUSIONS

As real-time embedded systems increasingly come to be
implemented upon multiprocessor platforms, it is important
that algorithms for efficiently scheduling such systems be
obtained. In this work, we have considered the partitioned
scheduling of sporadic task systems. Recent research [5], [6],
[4], [15], [7], [8] has addressed this topic; however, all this
research has been directed at obtaining approximate solutions
to the partitioning problem. This work is instead directed
at obtaining exact algorithms for partitioning, regardless of
computational complexity. Unlike in the case of simpler task
models (such as the implicit-deadline or “Liu and Layland”

5Bini and Buttazzo [10] have devised a technique to identify at most 2i−1

points in AS(i, j) at which Condition 11 must be validated.

task model), in which the design of such an exact algorithm
is a straightforward extension of bin-packing, obtaining exact
representations of partitioning for constrained-deadline spo-
radic task systems turned out to not be quite as straightforward.

We have obtained a zero-one ILP representations for both
EDF and FP partitioning. Such zero-one ILP’s can be solved
very efficiently in practice using widely-available libraries
(such as MATLAB’s bintprog() function). We have shown
how the size (the number of constraints) of the ILP can be
tuned depending on the degree of accuracy desired, i.e., the
fraction of the computing capacity of the processing platform
one is willing to “waste.”
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APPENDIX

EXPRESSING DISJUNCTS AS BINARY INTEGER PROGRAMS

In this section, we illustrate by an example the technique
for expressing the requirement that at least one of a given set
of inequalities be true, within the syntactic limitations of a
binary integer program.

Suppose that we require that at least one of the four
inequalities

A1X ≤ b1

A2X ≤ b2

A3X ≤ b3

A4X ≤ b4

be satisfied. Let Z denote a very large positive constant.
Introduce the two binary integer variables Y1 and Y2 (in
general, the number of such variables that must be introduced
is logarithmic in the number of inequalities). Replace the
above 4 inequalities by the following:

A1X ≤ b1 + ((1− Y1) + (1− Y2))Z
A2X ≤ b2 + (Y1 + (1− Y2))Z
A3X ≤ b3 + ((1− Y1) + Y2)Z
A4X ≤ b4 + (Y1 + Y2)Z

For any assignment of values to the newly-introduced binary
variables Y1 and Y2, it is evident that all but one of these
equalities is trivially satisfied (since the RHS is ≥ Z),
while the remaining inequality is exactly equivalent to the
corresponding inequality in the original problem (i.e., prior to
this transformation). Hence, all four of the latter inequalities
is satisfiable if and only if at last one of the original four
inequalities is satisfiable; we have thus converted the problem
of satisfying at least one of the given set of four inequalities
to a “conventional” problem of satisfying a set of all four
inequalities.
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A New Task Model and Utilization Bound for Uniform
Multiprocessors

Shelby Funk
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Abstract
This paper introduces a new model for describing jobs and
tasks for real-time systems. Using this model can im-
prove utilization bounds on uniform multiprocessors, in
which each processor has an associated speed. Tradition-
ally, a job executing on a processor of speed s for t units
of time will perform s × t units of work. However, this
uniform scaling only occurs if tasks are completely CPU
bound. In practice, tasks will have some portion of exe-
cution that does not scale with the increased CPU speed.
Dividing the execution into CPU execution and fixed exe-
cution allows the scheduler to place CPU bound tasks on
faster processors, as they can take full advantage of the
extra speed. This model is used in a new utilization test
for EDF scheduling with restricted migration, r-EDF, in
which tasks are allowed to migrate, but only at job bound-
aries. The test is proven to be better than the existing
r-EDF test for uniform multiprocessors.
Keywords: hard real-time systems, periodic tasks, ear-
liest deadline first, uniform heterogeneous multipro-
cessors, migration,memory bound tasks

1 Introduction
In real-time systems, all jobs have deadlines and missing
a deadline is considered a system failure. Before these
systems can be run, tests must be performed that ensure
that no jobs will miss their deadlines. These tests must
account for the worst-case behavior of the system, which
is a function of both the worst-case arrival configuration
of jobs, and their worst-case execution times (WCET). In
general, this WCET is estimated and any estimate must
provide an upper bound of the actual execution time. In
order to allow systems to utilize as much of the proces-
sor as possible, the estimate of the WCET should be as
accurate as possible.

This paper introduces a new task model for schedul-
ing analysis on uniform multiprocessors and uses this
model to improve a known schedulability test. This model
applies specifically to systems in which processor speeds

may vary. It has been explored in the context of dynamic
voltage scaling (DVS) processors [7]. To our knowledge,
this model has not been used in the context of uniform
multiprocessors.

In uniform multiprocessors, each processor has an as-
sociated speed s. In traditional analysis, we assume that if
a job executes on a processor of speed s for t time units,
then s × t units of work are performed. This assump-
tion is conditional on all jobs scaling perfectly to CPU
speed. In reality, jobs have portions of time that are CPU
bound and other portions, such as memory accesses, that
do not scale with the CPU speed. This paper explores the
power of dividing the WCET into two portions and per-
forming schedulability analysis assuming the CPU por-
tion executes more quickly on faster processors, but the
“fixed” portion does not. Because we must account for
worst case behavior, if we do not distinguish between the
CPU portion and fixed portion but assume perfect scaling
with the CPU speed, the given WCET must be increased
to account for the fact that only part of the execution ac-
tually scales with the CPU speed.

Example 1 Assume J’s CPU execution time is 4 and
fixed execution time is 2 and J can execute either on a
processor of speed 1 or on a processor of speed 2. On the
speed-1 processor, J takes 6 time units to complete. On
the speed-2 processor, J takes 4 time units to complete
because the CPU execution can be completed in half the
time. If we were assign J a single execution requirement,
we would have to say J’s WCET is 8. If we say J’s WCET
is 6, then we would calculate that J requires only 3 time
units when executing on a speed-2 processor, which could
result in a deadline miss.

This paper provides an r-EDF-schedulability test us-
ing CPU and fixed execution times. r-EDF uses a unipro-
cessor EDF scheduling algorithm on each processor. This
algorithm allows tasks to migrate, but only at job bound-
aries, when the overhead due to migration is smallest.
This model allows for better load balancing among the
processors [1], while still putting a bound on the level of
migration.

1
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This paper is organized as follows. Section 2 intro-
duces our model and definitions. Section 3 presents a
new test for r-EDF scheduling on uniform multiproces-
sors. Section 4 proves that finding the exact bound pre-
sented in Section 3 is NP-complete and provides an ILP
formulation to calculate the value as well as providing ap-
proximation methods that efficiently find an upper bound
by relaxing the problem assumption. Finally, Section 5
concludes and discusses future work.

2 Model and Definition

The analysis that follows assumes we are executing a
set of n periodic [5] or sporadic [2, 6] tasks τ =
{T1, T2, . . . , Tn} on an m-processor uniform multipro-
cessor π = [s1, s2, . . . , sm], where s1 ≥ s2 ≥ . . . ≥ sm.
In a mild abuse of notation, we allow si to denote both
the ith processor and the speed of the ith processor. S(π)
denotes the total speed of π – i.e.,

∑m
i=1 si.

Tasks are described by the 3-tuple Ti =
(pi, ecpu,i, efixedi), where pi, ecpu,i and efixedi are
T1’s period, CPU execution time, and fixed execution
time, respectively. We assume ecpu,i scales with pro-
cessor speed, but efixedi does not – if Ti executes on
processor sj , it will require ecpu,i/sj +efixed,i time units
to complete. Periodic and sporadic tasks generate jobs,
and we let Ti,j denote the jth job of task Ti. Each job
will have CPU and fixed execution requirements ecpu,i
and efixed,i, respectively. If Ti is a periodic task, then
it will release a new job at times ri,j = j · pi, where
j = 0, 1, 2, . . .. If Ti is a sporadic task, then consecutive
jobs will be released at least pi time units apart. For both
types of tasks, Ti,j’s deadline is ri,j + pi.

The utilization of Ti is also split into a CPU portion,
uC,i = ecpu,i/pi, and a fixed portion, uF,i = efixed,i/pi.
These values measure the proportion of processor time
the CPU execution and fixed executed will require, re-
spectively, when executing on a speed-1 processor. Be-
cause ecpu scales and efixed does not, the required pro-
portion of CPU execution decreases as speed increases,
but the proportion of fixed execution does not. Thus, by
the optimality of EDF on uniprocessors [5], a task set
τ = {T1, T2, ..., Tn} is EDF-schedulable on a speed-s
uniprocessor if

∑n
i=1(uC,i/s + uF,i) ≤ 1 – or, equiva-

lently, if
∑n
i=1(uC,i+s ·uF,i) ≤ s. Hence, we define Ti’s

total utilization on sj as follows ui,j = uC,i+sj ·uF,i. The
total CPU utilization of τ , denoted Ucpu(τ), is Ucpu(τ) =∑n
i=1 uC,i.

If sk is executing tasks Ti1 , Ti2 , . . . Tir , then the sk’s
slack, denoted slackk, is equal to sk −

∑q
j=1 uij ,k. This

is the maximum total utilization that can be added to sk
without incurring a deadline miss.

A task Ti is said to be present on processor sk at time

t if that task’s utilization contributes to the calculation of
slackk — i.e., if some job Ti,j was assigned to processor
sk and ri,j ≤ t < ri,j + pi. An assignment, a(.) is a
mapping of tasks to processors – if a(i) = k at time t then
Ti is active on processor sk at time t. At times, we need
to consider the set τ \ {Ti} – i.e., τ without some task Ti.
We denote this set τ−i.

We let Packπ,τ denote the set of all possible ways
of assigning the tasks of τ to the processors of π without
allowing slack to be negative on any processor. Finally,
we let MPπ,τ denote the maximum sum of sa(j) · uF,j
that can be achieved for any assignment a(.).

MPπ,τ = max
a∈Packπ,τ

∑
j∈τ

sa(j) · uF,j


Intuitively, MPπ,τ is the maximum processing capacity
that might be wasted due to letting tasks with a large pro-
portion of fixed execution execute on the fastest proces-
sors.

3 A New Test for r-EDF on Uniform
Multiprocessors

Using the model described above, we can improve the
schedulability test for r-EDF on uniform multiprocessors.
Theorem 1 below gives the new schedulability test. Corol-
lary 1 proves that theorem provides a tighter bound than
the previous schedulability test.

Theorem 1 Let π be any m-processor uniform multipro-
cessor and let τ = {T1, T2, . . . , Tn} be any periodic or
sporadic task set. Define Mπ,τ as follows.

Mπ,τ = max
1≤i≤n

{
(m− 1)uC,i + S(π) · uF,i +MPπ,τ−i

}
(1)

If the following inequality is satisfied

Ucpu(τ) ≤ S(π)−Mπ,τ . (2)

then τ is r-EDF-schedulable on π.

Proof: (By contradiction.) Assume a job Ti generates a
job at a time t when all of the processors of π do not have
enough slack to admit Ti safely. Let to be the earliest
time at which this occurs. By the optimality of EDF on
uniprocessors all jobs with deadlines at or before to met
their deadlines.

Let P (to) be the set of tasks that are present on some
processor at time to and let ao(.) denote the mapping of
tasks to processors at time to — if Tj ∈ P (to) then Tj is
executing on processor sao(j). Because Ti has a job that
has just arrived and all earlier jobs of Ti met their dead-
lines, Ti can not be in P (to). On the other hand, every

2
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task of τ other than Ti may be in P (to) and these tasks
may be assigned to processors in a way that causes the
maximum total utilization on π. Therefore, the following
is an upper bound for

∑
Tj∈P (to)

uj,ao(j).

max
a∈Packπ,τ−i

 ∑
Tj∈τ−i

(uC,j + sa(j) · uF,j)


=

∑
Tj∈τ−i

uC,j +MPπ,τ−i

≤
∑

Tj∈τ−i

uC,j +Mπ,τ − (m− 1)uC,i − S(π)uF,i .

The last step follows from the definition for Mπ,τ .
Because slackk < ui,k for all k, 1 ≤ k ≤ m,

m∑
k=1

slackk <
m∑
k=1

·ui,k

= m · uC,i + S(π) · uF,i
Note that the total slack is the difference between S(π)
and

∑
Tj∈P (to)

uj,ao(j). Hence, the following is a lower
bound for

∑
Tj∈P (to)

uj,ao(j).

S(π)−m · uC,i − S(π) · uF,i
Combining these two bounds gives∑

Tj∈τ−i

uC,j > S(π)− uC,i −Mπ,τ

⇒ Ucpu(τ) > S(π)−Mπ,τ ,

which contradicts the condition of the lemma.
The previous utilization bound for r-EDF-scheduling

on uniform multiprocessors [3, 4] is an immediate corol-
lary to Theorem 1 above.

Corollary 1 Any periodic task set τ satisfying

Usum(τ) ≤ S(π)− (m− 1)umax(τ) (3)

will meet all its deadlines when scheduled on uniform
multiprocessor π using r-EDF.

Proof: Assume the above condition holds. Because ex-
ecution is not divided into ecpu and efixed, we have to
set ui = ei/pi to its maximum value in order to ensure
all tasks will meet their deadlines. For all tasks Ti, the
maximum value of the total utilization on any processor
is ui,1 = uC,i + s1uF,i. Thus, Usum(τ) = Ucpu(τ) +
s1
∑n
j=1 uF,j and umax(τ) = max1≤j≤n{uC,j + s1 ·

uF,j}. Substituting these identities into Condition 3 gives
the following upper bound for Ucpu(τ).

S(π)− max
1≤i≤n

{(m− 1)uC,i + (m− 1)s1uF,i + s1

n∑
j=1

uF,j}

= S(π)− max
1≤i≤n

{(m− 1)uC,i +ms1uF,i + s1
∑

Tj∈τ−i

uF,j}

≤ S(π)− max
1≤i≤n

{(m− 1)uC,i + S(π)uF,i +MPπ,τ−i}.

The final inequality is the condition of Theorem 1.
In the last step, the bound increases by at least

(m · s1 − S(π))uF,j + s1
∑

Tj∈τ−i

uF,j −MPπ,τ−i ,

and perhaps more if the index i associated with the maxi-
mum values changes. If s1 is significantly faster than the
other processors of π, this could be a significant savings.
For example, if π = [2, 1, 1, 1], then the coefficient of uF,i
is reduced from 8 to 5. It is hard to determine how much
the entire bound changes because MPπ,τ−i is difficult to
compute. The next section explores methods of calculat-
ing this value.

4 Calculating the Utilization Bound

Unfortunately, in Theorem 2 below, we prove that finding
the exact bound presented in Theorem 1 is an NP-hard
problem. The NP-hardness stems from finding the pack-
ing that results in the largest value for

∑
Tj∈τ−i sa(j) ·uF,j

among all possible packings. Therefore, we need to em-
ploy approximation strategies to find an upper bound for
this expression.

First, we prove that finding MPπ,τ−i is NP-hard by
proving the following decision problem is NP-complete.

THE MIXED TASK PENALTY PROBLEM: Given a uni-
form multiprocessor π = [s1, s2, . . . , sm], a periodic or
sporadic task set τ = {T1, T2, . . . , Tn}, and a number K,
does there exist an assignment a : τ → π of tasks to pro-
cessors such that

∑n
i=1 sa(i) · uF,i ≥ K?

Theorem 2 THE MIXED TASK PENALTY PROBLEM is
NP-complete.

Proof: This problem is clearly in NP. We will show the
bin packing problem is reducible to the mixed task penalty
problem. The bin packing problem is stated as follows.

Given a positive integer M , a finite set I of ` items,
where each xi ∈ I has a size w(xi) such that 0 <
w(xi) ≤ 1, can all the items in I be placed into M unit-
sized bins so that to total sized of the items in each bin is
at most 1?

Given any bin packing instance we let π be comprised
of M speed-1 processors and let |τ | = ` and for each
xi ∈ I , the associated task Ti ∈ τ has fixed utilization
uF,i = w(xi) and CPU utilization uC,i = 0. Finally,
we let K =

∑`
i=1 w(xi). Then the maximum sum in

the mixed task penalty problem is K if and only if all the
items in I can fit into M bins.

Even though the mixed task penalty problem is NP-
complete, we can find Mπ,τ (which requires finding
MPπ,τ ) using an integer linear program (ILP).

3
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4.1 Finding Mπ,τ Using an ILP

The ILP has has 2×m×n integer variables, xi,j and yi,j ,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. The variable xi,j
indicates Ti is assigned to processor sj . The one excep-
tion is if yi,j also equals 1. In this case, Ti is the task that
maximizes Mπ,τ . Below, we present the constraints for
the ILP.

The first constraint ensures none of the processors are
over filled. For each processor sj , we have the following
constraint.

n∑
i=1

(xi,j − yi,j)ui,j ≤ sj

The remaining constraints ensure the values of xi,j
and yi,j are valid. The first constraint below ensures each
task is assigned to only one processor. The second con-
straint ensures only one task is not assigned to any proces-
sor. The third constraint ensures yi,j removes a task from
the processor it was assigned to. Note that even though
the first two constraints are not set equal to 1, their values
will both be 1, as making these values as large as possible
increases the objective function.

m∑
j=1

xi,j ≤ 1

i∑
i=1

m∑
j=1

yi,j ≤ 1

m∑
j=1

(xi,j − yi,j) ≥ 0

Finally, we maximize the objective function.

n∑
i=1

m∑
j=1

[sjuF,i(xi,j−yi,j)+((m−1)uC,i+S(π)uF,i)yi,j ]

If the ILP is able to find a solution, it will be the maxi-
mum possible value of (m−1)uC,i+S(π)uF,i+MPπ,τ−i
– i.e., the ILP objective function will equal Mπ,τ .

Unfortunately, ILPs can be unstable and a solution
might not be found even if one exists. If this occurs, the
ILP can be relaxed into an LP. The LP constraints and
objective function would be the same. However, the vari-
ables x and y might take on fractional values. If this hap-
pens, it can be viewed as allowing jobs generated by the
given task to migrate among processors. Below, we dis-
cuss another method for bounding Mπ,τ by allowing jobs
to migrate.

4.2 Bounding Mπ,τ in Polynomial Time

The mixed task penalty problem is similar to the 0-1 knap-
sack problem, in which items are given values and weights
and we want to select items to place into a knapsack that
so that a weight limit is not exceeded and the value is max-
imized. The difference is that we have multiple knapsacks
and the values and weights of the items vary depending on
which knapsack we use – if task Ti is assigned to proces-
sor sj , we give Ti a value of sj · uF,i and a weight of
ui,j .

Even so, we can use knowledge about the knapsack
problem to find an upper bound for MPπ,τ . Specifically,
we know that the fractional knapsack problem, which al-
lows fractions of items to be selected, can be solved in
polynomial time using a greedy algorithm. The greedy al-
gorithm sorts the items by the ratio of value to weight and
selects the item with the largest ratio to put in the knap-
sack repeatedly until that item won’t fit, at which point
the fraction of the item that makes the total weight equal
to the limit is selected.

The greedy solution to the fractional knapsack prob-
lem cannot be directly applied to the mixed task penalty
problem because, once again, the value and the weight
both vary depending on which processor the job is as-
signed to. However, we can use this idea to create the
algorithm fracMπ,τ , which is shown in Figure 1. Given
an assignment of tasks to processors, a(.), let value(a) be
the sum of sa(i)uF,j over all tasks. Let MaxSumπ,τ be
the maximum value of any assignment when tasks can be
assigned to multiple processors. The algorithm fracMπ,τ

findsMaxSumπ,τ by using the fractional knapsack tech-
nique on one processor at a time, always working with the
fastest processor that has remaining slack.

We first note that, even though the value and weight
of tasks varies between processors, we can sort tasks once
by uF,i/uC,i to get the proper ratio of value to weight.

Lemma 1 Let Ti and Tj be any two tasks. Then, for any
processor sk, we have
skuF,i
ui,k

≤ skuF,j
uj,k

if and only if uF,iuC,i
≤ uF,j

uC,j
.

Proof:
uF,i
uC,i

≤ uF,j
uC,j

⇔ uC,i
uF,i

≥ uC,j
uF,j

⇔ uC,i + skuF,i
uF,i

≥ uC,j + skuF,j
uF,j

⇔ uF,i
ui,k

≤ uF,j
uj,k

4
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fracMπ,τ (π, τ)

1. MaxSum← 0
2. for i← 1 to n do
3. r(i)← uF,i/uC,i
4. sort τ in decreasing order by r(i)
5. for j ← 1 tom
6. slack ← sj
7. while slack > 0 and τ 6= ∅
8. Ti ← task with maximum value of r(i)
9. Remove Ti from τ
10. If ui,j > slack
11. α← slack/ui,j
12. T ′i ← (u′C,i, u

′
F,i)← (1− α)(uC,i, uF,i)

13. Add T ′i to τ
14. else
15. alpha← 1
16. slack ← slack − αui,j
17. MaxSum←MaxSum+ αsjuF,i
18. return MaxSum

Figure 1: Algorithm fracMπ,τ

Algorithm fracMπ,τ sorts tasks by the ratio of fixed
utilization to CPU utilization (lines 2 through 4). It then
uses the fractional knapsack solution to assign tasks to
processors in decreasing order of processor speed (lines
5 through 17). If a task is selected that does not fit on
the current processor (i.e., ui,j > slackj), it divides the
task into two pieces and assigns one piece to the current
processor and the remaining piece is added to τ (lines 10
through 14). Let αTi denote a task with CPU and fixed
utilization equal to αuC,i and αuF,i, respectively. Specif-
ically, if ui,j > slackj we let α = slackj/ui,j and assign
αTi to sj and add (1 − α)Ti to τ to be assigned to the
next processor. This reduces slackj to 0 so fracMπ,τ

begins assigning tasks to sj+1. Note that splitting tasks
this way will have no effect on the value of r(i) used to
determine the order in which tasks are added to proces-
sors. Finally, the algorithm fracMπ,τ returns the sum
of sa(i)uF,i that results from this assignment. Below, we
prove that fracMπ,τ returns MaxSumπ,τ .

Theorem 3 Let τ = {T1, T2, . . . , Tn} be any periodic
task set and π = [s1, s2, . . . , sm] be a uniform multi-
processor. Assume a(.) is an assignment of tasks τ to
processors of π in which migration of tasks is permitted.
If sa(i) ≥ sa(j) whenever uF,i/uC,i > uF,j/uC,j then
value(a) = MaxSumπ,τ .

Proof: (By contradiction.) Assume uF,i/uC,i >
uF,j/uC,j and sa(i) = ` and sa(j) = k, where sk > s`.

Define αi and αj as follows.

αi = min
{

1,
ui,k
uj,k

}
αj =

αiui,k
uj,k

By the above equation, we know that

αiui,k = αjuj,k. (4)

Hence, αiTi will take the same amount of slack from sk as
αjTj . Let â(.) be the assignment that results from moving
αiTi to sk and αjTj to s`. We wish to prove value(a) <
value(â). We begin by proving the following properties.
Claim 1: αiuF,i > αjuF,j
This follows directly from Lemma 1 and Equation 4. Mul-
tiplying these together proves the claim.
Claim 2: αiui,` < αjuj,`. In particular,

αjuj,` − αiui,` = (αiuF,i − αjuF,j)(sk − s`). (5)

Recall ui,k = uC,i + skuF,i. Therefore,

αjuj,` − αiui,` =
αj(uC,j + s`uF,j)− αi(uC,i + s`uF,i)

+(αiuF,i − αjuF,j)(sk − s`)
−(αiuF,i − αjuF,j)(sk − s`) =

αi(uC,i + skuF,i)− αj(uC,j + skuF,j)
+(αiuF,i − αjuF,j)(sk − s`) =

(αiuF,i − αjuF,j)(sk − s`).

The last step follows from Equation 4. By assumption
sk > s`, and, by Claim 1, αiuF,i > αkuF,k. Therefore,
the final result is positive. This proves the claim.

Claim 2 tells us that moving Tj to s` will increase
the total utilization of tasks assigned to s`. In the worst
case slack` = 0, and swapping Ti and Tj forces some
task(s) to be removed from s`. Assume some portion, αq
of Tq is forced off of s`, where uF,q/uC,q ≤ uF,j/uC,j .
Specifically,

αq =
αkuk,` − αiui,`

uq,`
. (6)

Then moving αqTq to a slower processor ensures s` will
not be overfilled as a result of swapping Ti and Tj . (Note
that Tq may be Tk. Also, if Tk forces multiple tasks to be
removed from s`, the proof below will have to be modified
slightly. We assume a single task is removed from s` for

5
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readability.) Hence,
n∑
h=1

sâ(h)uF,h −
n∑
h=1

sa(h)uF,h

≥ αiuF,i(sk − s`) + αjuF,j(s` − sk)
−αquF,qs`

= (αiuF,i − αjuF,j)(sk − s`)

−αjuj,` − αiui,`
uq,`

uF,qs`.

By Claim 2, this is equal to

(αiuF,i − αjuF,j)(sk − s`)

− (αiuF,i − αjuF,j)(sk − s`)
uq,`

uF,qs`

= (αiuF,i − αjuF,j)(sk − s`)(1−
s`uF,q
uq,`

).

Each of these terms is positive. Therefore,
value(â) > value(a). Thus, if any other order is used,
value(a) 6= MaxSumπ,τ .

Because packing without migration is a special case
of packing with migration, algorithm fracMπ,τ finds
an upper bound for MPπ,τ . In order to find Mπ,τ ,
we loop through all tasks Ti in τ – each time calling
fracMπ,τ (π, tau−i)and calculating (m−1)uC,i+S(π) ·
uF,i +MaxSumπ,τ . After looping through all tasks, we
return the maximum value.

Even replacing this upper bound for Mπ,τ into The-
orem 1 will improve the analysis compared to the previ-
ous test, stated in Corollary 1. In the proof of the corol-
lary, we see that uF,i must be multiplied by s1 for all
i = 1, 2, . . . , n if the previous test is used. By contrast,
algorithm fracMπ,τ is able to multiply some of the fixed
priorities by smaller values.

4.2.1 Running Time

Lines 2 through 3 of algorithm fracMπ,τ take Θ(n) time.
Line 4 takesO(nlgn) time, assuming a reasonable sorting
algorithm is used. Lines 5 and 6 are executed m times.
Lines 7 through 17 are executed once for each task plus
once for each fraction of a task that is added to τ . At
most (m − 1) tasks are added back to τ . Therefore lines
7 through 17 are executed Θ(m+ n) times, giving a total
running time for fracMπ,τ of O(n log n + m). In gen-
eral, we assume n > m, which gives the running time
of O(n log n). Algorithm fracMπ,τ is executed n times,
giving a total running time of O(n2 log n).

5 Conclusion and Future Work
This paper has presented a variation of the task model
that differentiates between execution that scales with CPU

speed and execution that does not. We have shown that
using this model can improve a known utilization bound
for scheduling on uniform multiprocessors — namely the
bound for EDF scheduling with restricted migration. Un-
fortunately, the bound involves using an NP-complete
problem. Hence, we have shown methods of finding this
bound using integer linear programming. We have also
shown a method to approximate this bound inO(n2 log n)
time by calculating the expression when jobs are allowed
to migrate.

In the future, we hope to apply this task model to EDF
using other migration strategies and also to RM schedul-
ing. We also plan to determine the competitive ratio of
MaxSumπ,τ , the output of algorithm fracMπ,τ , and im-
prove the estimate if the ratio is too large.
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Abstract— This paper addresses design issues of embedded
software on multiprocessor platforms and for real-time appli-
cations. We focus on applications for which specific Real-Time
Operating Systems (RTOS) are required. In this context the
exploration of application tasks distribution onto multiproces-
sor architectures must follow a high-level approach for early
evaluating solutions performance. In this paper we present a
high-level multiprocessor RTOS model. The main contribution
of this model is to provide an efficient method to abstract
the dynamic and real-time mechanisms of embedded software,
to customize RTOS services on each processor and to adjust
the multiprocessor scheduling policy early in the design flow.
In addition, this distributed model provides the application a
unique Application Programming Interface. This simplifies the
exploration and the mapping of software tasks onto the system.
Experiments conducted with a vision application show that
very precise scheduling behaviors and synchronizations between
multiple processors can be modeled at a high abstraction level
with little simulation overhead.

I. I NTRODUCTION

With the increasing complexity of embedded applications
platform architectures include more and more parallel execu-
tion units. At the same time technology is able to integrate 1
billion transistors into a single chip. Systems on Chip (SoC)
now count heterogeneous processors with memory hierarchy,
DMA, I/O and hardware accelerators sometimes reconfig-
urable communicating around a shared bus or a Network-
on-Chip (NoC). In a real-time context the control of these
complex systems is often devoted to one or more RTOS. These
can either be deployed in software or hardware, partially or
completely depending on the non-functional constraints ofthe
global system. As a result, new design decisions must be taken
earlier regarding the implementation of specific distributed
RTOS.
The exploration of hardware/software systems was a research
topic for many years in the last decades, yielding a unified
modeling and simulation environment commonly adopted,
namely the SystemC language [12]. However, efficient and
accurate modeling solutions for real-time mechanisms in a
multiprocessor context are still lacking.
In this paper we propose a method that tackles this design
challenge by introducing a high-level RTOS model for custom
system design. Working at a high level of abstraction allows
the designer to jointly explore the distribution of the RTOSin
terms of custom services adapted to the application and the

parallel SoC architecture. Both dynamic behavior control and
embedded constraints satisfaction problems can thus be solved
by a single approach early in the design flow. Contributions of
this work thus consist in proposing a distributed and modular
RTOS SystemC model.The model follows a Transaction Level
Modeling (TLM) approach and introduces a Service Accurate
level in the sense that it allows both functional and timed ver-
ifications without the need of modeling processing resources.
By working at this level of abstraction, an early exploration
of the architecture dimensioning is also feasible.
This work falls under the project [1] OveRSoC, which consists
in developing a methodology for the design and the evaluation
of specific OS for reconfigurable system-on-chip (RSoC).
The remaining of the paper is organized as follows: Section
II presents the related work; Section III and IV introduces
the abstract modular RTOS model; Section V describes the
distribution of several instances of the model in a multipro-
cessor context. Experimental results are provided in section
VI. Finally, we conclude and discuss future works.

II. RELATED WORK

Several approaches have been developed to deal with explo-
ration and validation of embedded software at high-level. He et
al. in [8] classifies research on RTOS modeling and simulation
into three categories: System Call translation, Native OS and
Virtual OS. The latter corresponds to abstract models that ease
exploration. In that context, SystemC [12] was mainly selected
as the underlying modeling language for the developed exe-
cutable models. A first step was then to extend SystemC to
embedded software modeling features which still not supports
these facilities in its actual version. The works presentedin
[4], [7], [13] and [8] are examples of simulation environments
dealing with this challenge. In these works similar solutions
are provided to model the mechanisms of target RTOS such
as scheduling of multithreaded applications, preemption and
synchronization. Indeed, in SystemC a way to implement
several scheduling policies is to assign static or dynamic
priorities to the simulation processes and control which are
declared ready in the SystemC simulation kernel. Ordering
task executions on a sequential processing unit thus consists
in maintaining only one process unblocked. The API provided
by these models must be as general as possible in order to
match with most of existing (commercial) operating systems
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and so allow exploration. For example the SPACE project
[2] encapsulates existing RTOS into a common API. As a
consequence the entire code of the operating system must
be available since the RTOS and the application software
are cross-compiled and the resulting binary code is executed
by an ARM ISS. In [2] the method has only been applied
to µC/OS-II. In order to reach generality our approach is
based on a modular API and the corresponding embedded
software implementation. The API is generated according
to the needed services inside each RTOS instance in the
multiprocessor platform. In that sense, it is similar to [6]where
authors propose to automatically extract the services required
by system calls in the application code.
Most of the proposed abstract RTOS models target mono-
processor architectures. Yet increasing embedded systems
complexity demands parallel and heterogeneous platforms.
Madsen et al. in [11] have proposed a framework that supports
modeling of multiple RTOS. Application software is modeled
as a set of task graph executing on multiprocessor platform.
The approach is not interested in the exact functionality
of tasks. As said by Hwang et al. in [10] a tradeoff is
needed to determine the best abstraction level of simulation
models. Exactly, the dynamic behavior of distributed real-time
applications can only be reached with functional models either
using ISS approaches [3] or annotated TLM models [10] as it
is the case in this paper.

III. L EVEL OF ABSTRACTION

As the general methodology that consists in designing new
system from top to bottom, and considering that many projects
reuse already proved to work building blocks, we decide to
model a system at a high level of abstraction, where the
hardware is partially hidden. This will allow to simulate the
behavior of the application at high speed. As we want to focus
on the behavioral part of the system, generally managed by
one or several RTOS and sometimes some dedicated hardware
blocks like interrupts or timing, we focus our modelisationon
the services provided by the platform. The model needing to
be functional (running real calculus for modeled tasks or IP)
and also timed, if we want take into account all unpredictable
behaviors like interruptions. For those reasons, we call our
level of abstraction SAT forService Accurate plus Time.

Fig. 1. SAT level of modelisation

This level of modelisation, as shown on Fig. 1, implies that
the architecture is not modeled explicitly, all the application
tasks are functional, annotated with approximated or measured
execution timing, and all the RTOS services are explicit and
timed. We could also compare our level of abstraction to the
one defined by Donlin [5], introducing five level of abstraction,
shown on Table I.

TABLE I

LEVELS OF ABSTRACTION, IN HARDWARE DESIGN

ALG (Algorithmic)
Parallel processes behavioral simulation, without time or architecture
details. Used to functionally validate application
Communicating Processes with Time (CP+T)
Explicit processes parallelism and communications. Architecture highly
abstract, with estimations on tasks and communications timings.
PV and PVT (Programmer’s View + time)
Architectural components are explicited with registers details and com-
munications explicit arbitration, contentions and their time costs.
The communication timing model may account the multi-cycle cost ofa
subset of the transactions possible over the interconnect structure.
CA (Cycle Accurate)
It captures micro-architectural details: it typically havebit-level interfaces.
The model is clocked and all timing annotations are accurate tothe level
of individual clock cycles and arbitration of the communication
infrastructure is modeled.
RTL (Register Transfer Level)
As used in traditional design, models are implementation and archi-
tecture accurate. Intraclock cycle timing behavior is explicitly simulated.

We could consider that our level of abstraction is equivalent
to CPT, but this terminology of abstraction level is too much
focus on the Hardware point of view. Here we want to focus
on the RTOS service point of view, and all the dynamics
it include, whatever the implementation decided for each
services.

IV. D ISTRIBUTED RTOSMODEL

A. RTOS SAT model

The core element of our distributed architecture model
is a high-level functional model of a real time operating
system written in SystemC [9]. This RTOS model acts as
a Service Accurate + Timemodel of a processor in the
sense that all the necessary services of an embedded RTOS
are modeled as independentservice moduleswith their own
behavior. Moreover, eachservice modulehas its proper inter-
face that provides the corresponding service to an embedded
application. Figure 2 illustrates the hierarchical structure of
the SystemC RTOS model. This model includes mechanisms
for modeling dynamic creation of tasks, tasks preemption
and interrupt handling. In addition, each service function
may be annotated with timing information allowing a timed
simulation of a realistic system. The RTOS model is built as
a collection ofservice modulesimplemented in the form of
hierarchicalsc_channel to foster high level exploration of
custom architectures. The main RTOS model instantiates all
its modules and usessc_export to provide a global API
to the application code. Moreover, modules may have internal
APIs and ports to establish inter-module communications.
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Fig. 2. Modular RTOS model system

B. Distant services sharing

Based on this model, we propose a model for distributed
multiprocessor architectures exploration with the following
features: the whole application is decomposed into multiple
threads sharing the same addressable memory, the application
is statically partitioned onto multiple processing nodes (no
load balancing), each processor has its own scheduling strategy
(policy, priorities etc). In addition, multiprocessor communi-
cations are modeled as shared synchronization services (with
their own arbitration policy).

basic

OS
Scheduler

Timer
Task

Manager

IRQ
Manager

PROXY

T2 ITnTnT1

SKELETON

Fig. 3. Connecting proxy to skeleton

Our approach for modeling distributed OS services is in-
spired from the middleware CORBA philosophy by using
one of its principle: The proxy/skeleton service scheme (see
figure 3). A proxy service provides a local entry point to a
distant service accessible through some interconnection in-
frastructure. This imply to have a bidirectional connection for
communications between the proxy and the skeleton. And also
this could change the semantic of the service call, becoming
potentially blocking, because communications will potentially
delay randomly the result, depending on the architecture (bus
congestion etc. ). This adds dedicated ports and interfacesto
the RTOS modules responsible of this behavior.

C. Distant communications and invocations

All inter-processor communications are modeled using
transactions with respect to TLM 1.0 methodology. A unique
transport method is used for both requests and replies.
All communications are currently done instantaneously but
this allows a communication refinement process after. Thus
the use of a communication infrastructure model supports
the communication delay consumption allowing time accurate
simulation, by introducing bus or network-related timingsinto
transactional ports.

release

semaphore
distant_release

sem.
proxy

sem.
skel.

sem.
proxyTask 1 Task 2 sched.

ACK

get

semaphore
distant_get

ACK

NACK

change_state

premption

IRQ

notify

resume

Processor 1 Processor 2HW semaphore

Fig. 4. Activity diagram of local/distant calls to a shared semaphore
proxy/skeleton between two OS models

Figure 4 illustrates transactions between two local
semaphore services (proxies) and a shared distant semaphore
implementation (skeleton).Get and release semaphore
invocations are done locally to the proxy which forwards trans-
actions to the distant service. By using a simpletransport
method, all distant calls put the caller tasks into an active
waiting state. In case of access conflicts, the shared service has
its own arbitration policy.Replies are sent back to the caller at
the end of service execution, thus give flow control back to
the caller’s scheduler.

Communications from a distant service to local proxies
are done by using signals similar to interrupt requests that
are managed by local proxies. Suspended tasks may then be
resumed by their own schedulers depending on local policies.

In order to work correctly, a multi-RTOS system require at
least a synchronization service, allowing to exchange dataand
perform more complex communications. For that, we develop
a model of a shared hardware semaphore service (Figure
5). A task on a local RTOS ask for a distant semaphore
as for a local semaphore, and the local proxy semaphore
service then call the distant skeleton through its port. So the
current task is set to sleep until the skeleton send the answer
back, after its processing delay, and the communications delay,
integrated here because our high level model does not explicit
the communication channel.

When a semaphore release liberate a waiting task, the
skeleton inform the right distant proxy of this action, trough
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Fig. 5. Multi RTOS model with a shared hardware semaphore service

a specific distant call, triggering the specific interrupt handler
own by the proxy. This one will immediately stop the current
running process, set the ready state of the corresponding task
waiting for the semaphore, and then relaunch the scheduler.

By this way, at a high level, we are able to model simple
communication between nodes, and also as model synchro-
nization between multiple RTOS.

V. EXPERIMENTS

We applied our framework to a realistic application in the
field of image processing for robotic vision. The application
is used to learn object views or landscapes and extracts
local visual features from the neighborhood. We specified
the application as a set of 30 communicating tasks. The full
description of our application is out of the scope of this
paper. However, following a biologically inspired approach,
this vision architecture belongs to a larger sensorimotor loop
that brings interesting dynamical properties: the degree of
parallelism and the execution time varies according to input
data, namely the number of interest points.
In this context we made the profiling of the entire application

TABLE II

AVERAGE APPLICATION EXECUTION TIME IN MS

On board in simulation error in %

29268570400 ns 28369598240 ns 3-4

on a hardware platform. We also built the profile of the
µC/OS-II services (deterministic). For the purpose of
the exploration we targeted a multiprocessor architecture
(MPSoC) prototyped onto an Altera Cyclone-II FPGA
circuit. The timing data were measured and back-annotated
into the high-level model in order to explore and evaluate
the architecture dimensioning and the implementation
strategies: tasks distribution, services distribution, scheduling
algorithms...
To evaluate the efficiency of our modeling approach, we

performed two set of experiments. First we evaluated the
model accuracy and compared the simulated execution
time relatively to actual board measurements for multiple
implementations. The average application times are depicted
in table II. The high level simulation accuracy stands within
3-4% of board measurements.

TABLE III

SIMULATION COSTS FOLLOWING NUMBER OFRTOS

nb RTOS 0 1 2 3 4 5 6
simulation
time(second) 5.5 6 7.4 8.6 9.8 11.1 12.8
overhead(%) -8.9 0 22.5 43.2 63.2 84.2 112

Then we evaluated the simulation time of the application on
top of our RTOS model in comparison to a purely functional
description. With this aim we explored and simulated the
deployment of the application tasks. We vary the number of
processor within the architecture from 1 to 6 Nios-II. Tasks
execute and communicate in the same way on board and in
simulation trough a single shared memory space protected with
hardware semaphores. Table III shows the scalability of our
model till 6 processors, and indicates the average simulation
overhead for different platform sizes. Simulations were real-
ized on a workstation equipped with Intel DualCore at 1.66
GHz with 2GB of RAM under Linux. For monoprocessor
platforms the RTOS model does not impact the simulation
time since the overhead is only 9.8% more than the purely
functional application description. Results indicate that the
overhead is around 22% more per simulated RTOS. However
simulations times are kept in seconds even for a 6 processor
architecture where the number of system calls and preemptions
becomes very important.

VI. CONCLUSION

We have presented in this paper the basic concepts of an
abstract SystemC RTOS model for embedded software design
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onto multiprocessor architectures. Results with design ofa
robotic vision system demonstrate the accuracy of the simula-
tions and the scalability to complex multiprocessor platforms.
As a result the framework allows designers to early evaluate
the distribution of both application tasks and RTOS services.
The main contribution is to provide, thanks to a modular
structure, a high-level distributed RTOS model in SystemC
augmented with a multiprocessor synchronization mechanism.
Future works concern hardware/software co-simulation issues.
The distributed model is actually used in an industrial project
as the synchronization and control layer of a high-performance
embedded computer.

REFERENCES

[1] I. Benkermiet al., “System-Level Modelling for Reconfigurable SoCs,”
in Design of Circuits and Integrated Systems (DCIS’05), Nov. 2005.

[2] J. Chevalieret al., “SPACE: a hardware/software SystemC modeling
platform including an RTOS,” inForum on Design Languages, 2003.

[3] M.-K. Chung et al., “System-level hw/sw co-simulation framework
for multiprocessor and multithread SoC,” inInt. symposium on VLSI
Technology Systems and Applications, 2005, pp. 177–180.

[4] D. Desmet, D. Verkest, and H. D. Man, “Operating System based
software generation for Systems-on-Chip,” inConference on Design
Automation, 2000, pp. 396–401.

[5] A. Donlin, “Transaction level modeling: flows and use models,” in
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis (CODES+ISSS’04), 2004, pp. 75–80.

[6] L. Gauthier, S. Yoo, and A. Jerraya, “Automatic Generation and Target-
ing of Application Specific Operating Systems and Embedded Systems
Software,” 2001, pp. 679–685.

[7] P. Hastono, S. Klaus, and S. Huss, “Real-Time Operating System Ser-
vices for Realistic SystemC Simulation Models of Embedded Systems,”
in Forum on specification and Design Languages, Sep. 2004.

[8] Z. He, A. Mok, and C. Peng, “Timed RTOS Modeling for Embedded
System Design,” inIEEE Real Time on Embedded Technology and
Applications Symposium, 2005, pp. 448–457.

[9] E. Huck, B. Miramond, and F. Verdier, “A Modular SystemC RTOS
Model for Embedded Services Explorations,” inDesign and Architec-
tures for Signal and Image Processing, Grenoble, 2007.

[10] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable
performance estimation at the transaction level,” march 2008.

[11] J. Madsen, K. Virk, and M. Gonzalez, “Abstract RTOS Modeling for
Multiprocessor System-on-Chip,” inSymposium on System-on-Chip,
Nov. 2003, pp. 147–150.

[12] OSCI, “IEEE 1666TM Standard SystemC Language,” available at :
http://www.systemc.org.

[13] H. Posadaset al., “RTOS modeling in SystemC for real-time embedded
SW simulation: A POSIX model,”Design Automation for Embedded
Systems, vol. 10, no. 4, pp. 209–227, Dec. 2005.

DASIP 2008 November 2008

- 116 - 



A Novel Video Packet Loss Concealment Algo-

rithm & Real Time Implementation 
 

Abraham Suissa 

Pierre and Marie Curie Uni-

versity – Paris 6, EA 2385 – 

BC 252, 4 Place Jussieu, 

75252 PARIS CEDEX 05, 

France 

Abraham.Suissa@gmail.com 

Jennifer Mellor 

New Platforms and Technolo-

gies, ICBU, Logitech Inc., 

Fremont, California, USA 

Jennifer_Mellor@Logitech.com 

Frantz Lohier 

New Platforms and Technol-

ogies, ICBU, Logitech Inc., 

Fremont, California, USA 

Frantz_Lohier@Logitech.com 

Patrick Garda 

Pierre and Marie Curie 

University – Paris 6, EA 

2385 – BC 252, 4 Place 

Jussieu, 75252 PARIS 

CEDEX 05, France 

Patrick.Garda@upmc.fr 

 

Abstract— Streaming video data over a digital Radio Frequency 

(RF) link operating in the ISM band (e.g., 2.4GHz/5GHz) is 

known to be a challenging task that has recently captured consid-

erable industry attention. Various sources of air interference 

cause packets to be dropped despite retries and forward error 

correction (FEC) schemes found either at the transport or video 

encoding layer. However, there is an industrial interest for a 

concealment technique suitable for wireless cameras, featuring 

very low processing power. This article presents therefore an 

alternative to the conventional wisdom: a novel video packet loss 

concealment scheme that operates after the decoding/ decompres-

sion of a truncated video bitstream. The approach is therefore 

codec-independent and does not incur the overhead associated 

with typical FEC techniques. We demonstrate recovery up to 

20dB using a real-time implementation of our proposed approach. 

 

I. INTRODUCTION 

In order to ensure proper Quality of Service (QoS) when 

streaming audio/video data over an error prone transmission 

link, such as an RF channel challenged by interference sources 

including the hopping nature of certain technologies (e.g., 

Bluetooth), multi-path fading challenges, and competing air-

time access of devices, a combination of techniques is typically 

necessary both at the transport layer and data encod-

ing/compression layer. At the transport layer, we can cite co-

existence schemes that have been promoted around the Blu-

etooth technology or convolutional data coding techniques at 

the modulation layer (e.g., viterbi). For the case of video en-

coders such as H.264 or JPEG2000 (e.g. of Chapter 11), stan-

dards typically discuss the insertion of resynchronization 

markers in the compression loop as well as a structural bit-

stream arrangement to allow the decoder to continue the de-

coding process despite erasures encountered in the compressed 

image, which essentially prevents frame skipping.  

However, there is an industrial interest for a concealment 

technique suitable for wireless cameras [1], sharing the elec-

tromagnetic spectrum with some wireless networks. The very 

low complexity encoder processing power of these devices 

limits the video coding to very low complexity encoder. The 

Wyner-Ziv video coding algorithm [2] is attractive for its low 

complexity, but it is not yet standardized. Thus we relied on 

the Motion JPEG (MJPEG), which also features low complexi-

ty encoder. Then, the concealment task is performed by the 

decoding receiver. This receiver is actually a PC or a server 

(Figure 1); it has thus far more computing power that the wire-

less camera. 

 
Figure 1 : Video PLC difficulty overview 

Therefore, in this paper, we pursue an approach where a 

video packet loss concealment (VPLC) technique is executed 

after the truncated stream is decompressed. The technique is 

independent of the underlying transport or video encoding 

technology, the main assumption being that the video decoder 

is capable of identifying when an erasure occurs and can con-

tinue the video decoding process of an image as opposed to 

dropping the frame. Once the partially decoded image is recon-

structed, our algorithm, by using spatial and temporal informa-

tion of the stream, is able to recover the non-truncated frame 

with minimal distortion. 

This article is structured as follows. In section 2, we de-

scribe our unique approach for VPLC, which leverages several 

known techniques operating in the spatial and temporal do-

main. At the algorithm’s heart are the following techniques: 

motion estimation of deleted blocks, block copy and spatial 

interpolation of missing data, a deblocking filter and a sophis-

ticated decision tree which selects the execution of each of the 

above building blocks. In section 3, we discuss the key aspects 

of a sample implementation based on the motion JPEG 

(MJPEG) industry standard. We review the provision that such 

a standard offers for a decoder to resynchronize on a truncated 

stream and propose extensions to the baseline mechanism to 

further optimize the performance of our VPLC algorithm. 

Finally, in section 4, we present the performance gain of our 
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approach based on our experimental MJPEG-over-wireless 

streaming demonstrator. The benefits of our approach are dis-

cussed in terms of video quality improvement, processor ex-

ecution time impact and recovered frame rate. 

 

II. VIDEO PACKET LOSS CONCEALMENT SCHEME 

In this section, we present our new approach to video pack-

et loss concealment. The VPLC scheme uses motion vector 

estimation after decoding and a decision tree employing sever-

al methods of error concealment, including block copy and 

spatial interpolation, to achieve recovery of lost video data 

with minimal visual artifacts. 

In order to characterize the size and frequency of trunca-

tions to be concealed, we consider a straightforward compres-

sion and packetization scheme for streaming wireless video 

data.  For example, with a compressed JPEG image transmitted 

over an 802.11 connection, a single lost transport packet could 

realistically result in up to 4 consecutive 8x8 block rows of 

missing uncompressed video data.  Depending on the frequen-

cy of errors in transmission, each decoded video frame may 

incur several lost packets of several rows each.  This nature of 

video data loss is inherently challenging for recovery mechan-

isms and serves to demonstrate the applicability of our VPLC 

algorithm for a variety of codecs and/or packetization schemes 

for low to moderate probabilities of transport packet loss. 

 

A. Error Concealment Using Motion Vector Estimation 

1) Definition: For our proposed VPLC algorithm, there are 

several core concepts.  First, we maintain a reference image for 

motion detection based on a valid decoded video frame (e.g., 

the previous frame).  Then, we calculate motion vectors for the 

regions surrounding lost video data in the current frame based 

on the reference image.  A block matching technique [7] is 

used for this purpose.  We interpolate the values to estimate 

motion vectors for the missing data itself, and finally we use 

that motion vector information in our decision tree to apply the 

most appropriate techniques for replacing the missing blocks. 

One key point is that motion vector estimation is not only 

used to gauge whether there is motion in the region but to 

determine where in the reference image the now-missing data 

would have been.  At 15-30 frames per second (fps), there is 

generally little enough motion between frames that the likeli-

hood of locating the missing video data in the reference image 

is high. 

To obtain motion vectors of the missing blocks we perform 

block matching on the closest neighbor blocks, calculating 

motion vectors for the nearest valid blocks on the top and bot-

tom of the missing blocks. To estimate the motion vectors for 

the missing blocks, we use an interpolation between these two 

motion vectors as shown in Figure 2. 

 

 
Figure 2 : Motion vector interpolation 

2) Block Matching: Block matching techniques [7] match 

blocks from the current frame with blocks from a reference 

frame. In the proposed mechanism the block matching process 

is done on the luminance plane; processing in the chrominance 

plane is not required here because the luminance plane stores 

in average 80% of the signal energy. 

The displacement in block location from the current frame 

to the location in the reference frame is the motion vector. 

Block matching techniques can be divided into three main 

components: 

 Block determination 

 Search method 

 Matching criteria 

 

The first component, block determination, specifies the po-

sition and size of blocks in the current frame, the start location 

of the search in the reference frame, and the scale of the 

blocks. We focus on fixed size, disjoint blocks spanning the 

frame, with initial start location at the corresponding location 

of the block in the reference frame. 

The search method is the second component, specifying 

where to look for candidate blocks in the reference frame. A 

fully exhaustive search consists of searching every possible 

candidate block in the reference frame. This search is computa-

tionally expensive and another search method has been pro-

posed to reduce the error in the matching (section II.B.2. 

Search Method).  

The third component is the matching criteria. The match-

ing criteria are a similarity metric to determine the best match 

among the candidate blocks. 

SAD The sum of the absolute values of the differences in the 

two blocks: 

 

MAD The mean of the absolute values of the differences in the 

two blocks: 

 

MSD The mean of the square of the differences in the two 

blocks: 
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MPC The sum of the non-matching pixels in the two blocks; a 

match is determined by the absolute value of the difference 

being less than a threshold, tMPC. 

 

 

SSD The square of the differences in the two blocks: 

 

SAD and MAD only differ by a constant in the case of 

fixed size blocks and can be used interchangeably in our com-

parison. In practice, SAD is faster due to the removal of the 

divide operation. While MAD incorporates large differences, 

MSD penalizes blocks with one or more large differences. 

MPC on the other hand equally weights any difference above a 

threshold. In our implementation the MSD criteria is opti-

mized, making it faster than the other criterions and the best 

choice for us to use. 

3) Error Concealment Procedure: The concealment proce-

dure is as follows. If there is no motion in the missing block 

region, we conceal the missing block using Block Copy Con-

cealment. This common method exploits the statistical assump-

tion that a lost block in the previous frame is unlikely to be lost 

in the next frame. Replacing a lost block with the similarly 

positioned block in the previous frame is the easiest and fastest 

concealment method [4] [5] and works well in still regions of 

the image, such as backgrounds and inanimate objects.  

If there is motion in the region, however, we estimate the 

location of the missing block in the reference image and use 

that for copying to conceal the missing block.  This works well 

with animated objects or persons or in situations where the 

camera itself is in motion. 

The final path is when there is motion but the results of mo-

tion vector estimation cannot be used for concealment purpos-

es.  There are three cases in which this could occur: when the 

block on which we perform block matching does not exist in 

the reference frame, when the displacement of the missing 

block is larger than the search area, or when the interpolated 

motion vector indicates a block outside the boundary of the 

reference image. In any of these cases, we use Spatial Con-

cealment [4] [5] [6], a method which conceals each pixel of the 

missing block with a weighted interpolation of the surrounding 

four pixels of the adjacent undamaged blocks. 

 

 
Figure 3 : Block diagram of the algorithm decision tree 

Typically, we use the previous frame as the reference image 

for block matching; we refer to this as Simple Concealment. 

For better precision when performance constraints allow, we 

use both the previous and next frames, which we call Double 

Concealment, as shown in Figure 4. 

 

 
Figure 4: Motion vector estimation with two reference images 

4) Post Processing: In the process of concealing missing 

blocks with those from other images we often introduce an 

undesired blocking artifact, not unlike that seen with high 

JPEG compression ratios. By applying a deblocking filter [9] 

to the concealed section, we are able to significantly reduce 

this artifact and improve the image quality of concealed re-

gions. 
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Figure 5: Blocking Artifact 

 

 
Figure 6: After Deblocking Filter 

B.  Multi Resolution and Varying Block Size Concealment 

1)  Uniform Regions: In uniform color regions, the process 

of estimating and compensating blocks’ motion is challenged 

and can yield incorrect results. Issues can appear in situations 

where objects of interest have a uniform color. Blocks do not 

appear to be moving because all the blocks around them have 

the same color. We propose two methods and an improvement 

of the search method used for block matching in order to deal 

with this issue. 

2)  Search Method: We propose an additional search algo-

rithm that reduces the Uniform Region Problem. In a classic 

search method like the Full Search method (Figure 7), the 

reference block is indicated in blue and the search window is 

carried out around this block. In full search, we start the scan 

with the top left corner and finish with the bottom right corner 

following the arrow in Figure 7. The color of the reference 

block is light blue, and block matching is going to return all 

the light blue blocks as matched. As the figure suggests, there 

are multiple source candidates. 

 

 
Figure 7: Full search method 

In the Full search method the corresponding block is the 

first or last minimum, but as we can see in Figure 6 these are 

the farthest blocks from the reference block. We can assume 

that the movement of a block between two images is not large. 

We are more likely to find a block near its original position. 

This suggests it would make sense to start the search in the 

middle of the search window, in the nearest position to the 

reference block.  

The Spiral search method used in some MPEG-2 imple-

mentations is exactly what we need in this case. In the Spiral 

search method (Figure 8) we start with the nearest block and 

we finish with the farthest block. With the spiral search me-

thod in a uniform color region the returned corresponding 

block is always the closest block to the reference block. In this 

work we favored the image quality of the block searching 

algorithm over its complexity. 

 
Figure 8: spiral search method 

3)  Multi Resolution Error Concealment: In order to im-

prove the visual concealment and further mitigate the issues 

with uniform regions, it helps to perform block matching with 

high amplitude gradient blocks. Our suggested approach is to 

use the same image at a lower resolution.  In this case the same 

block size as before contains more information, as shown in 

Figure 9. The lower the resolution is, the larger the search area 

in an 8 by 8 block and the more likely we are to get blocks 

with high amplitude gradient pixels. 

 

 
Figure 9: Multi Resolution Error Concealment 

4)  Varying Block Size Error Concealment: Another me-

thod to deal with motion vector estimation inaccuracies in 

uniform regions is to use bigger blocks, i.e., 16×16 or 32×32, 

to perform block matching. This method gives the highest 

results in terms of image quality, but it increases execution 

time considerably and violates the real-time constraint of our 

implementation. 
 

III. REAL TIME IMPLEMENTATION USING M-JPEG 

In order to validate the VPLC algorithm described in the 

previous section, we propose a real-time PC implementation of 

our approach using the low complexity, mature and widely 
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accepted Motion-JPEG (M-JPEG) industry protocol. Leverag-

ing the JPEG still image standard, this format offers a basic 

error detection scheme for corrupted bit-streams based on the 

concept of restart markers. We propose an extension to the 

restart marker concept to better support our VPLC approach 

while introducing very limited overhead in terms of transport 

size.  Finally, we discuss how the decoding process integrates 

the video packet loss concealment algorithm and the experi-

mental results we saw. 

 

A. Error Detection and Recovery With JPEG 

1) JPEG Restart Markers and a Proposed Extension: The 

JPEG standard defines a mechanism to partition a compressed 

stream into independently decodable segments called restart 

intervals [3]. A restart interval is composed of a fixed number 

of MCUs (Minimum Coded Units) identified in JPEG headers 

by a DRI (Define Restart Interval) marker. The restart marker 

allows a decoder to identify a bit-stream segment that can be 

processed independently of what was decoded up to that point. 

The error recovery procedure is not explicitly defined by the 

JPEG standard, but the restart marker combined with the DRI 

provides the necessary information for a decoder to handle 

errors in the stream. Below is an example of 16-bit restart 

markers segmenting compressed data:  

FFD0 data FFD1 data FFD2 ... FFD7 data 

FFD0 

As shown in the example, the restart marker uses a modulo-

8 count of the restart interval. The counter resets to 0 for each 

new scan, and it can wrap around after or within a scan. Thus, 

depending on the truncation error rate, it is quite possible to get 

a situation where the decoder is unable to uniquely identify 

exactly where, within an image extracted from a video stream, 

the (x, y) coordinate of an erasure is located. Alternatively, to 

avoid the issues caused by the counter wrapping around, we 

could impose the rule that only 8 legacy restart markers are 

used in each image. For a color YUV 422 VGA image 

(640×480 resolution), which corresponds to 4800 8×8 blocks 

or 2400 MCUs, each restart marker would cover 7.5×8 lines of 

the image. This translates to a very large data loss, which 

would challenge any error concealment algorithm.  

Instead, we suggest an extension of the JPEG Restart 

Marker syntax by placing an additional byte next to FFDx, 

which we call the resync marker.  This resync marker wraps 

around only after reaching 0xFE.  We do not use 0xFF for the 

extra byte because of JPEG syntax restrictions. The sequence 

becomes: 

FFD000 data FFD100 data FFD200 data ... 

FFD700 data FFD001 data FFD101 ... 

With this improved scheme, the maximum number of uni-

quely identifiable restart markers becomes 2039. For a QVGA 

image we can insert a resync marker every MCU, and in VGA 

every 2 MCUs, which greatly improves the decoder’s ability to 

detect loss and resynchronize on a truncated bit-stream. 

2) Error Detection and Recovery with Resync Markers: 

While parsing a JPEG bit-stream featuring the proposed resync 

markers, we first determine if there are any missing resync 

markers within the image and then calculate the size and loca-

tion of the erasure. Once all the erasures of a frame have been 

identified, we reconstruct the truncated bit-stream by adding 

“blank” compressed data at the location of erasures and con-

verting our resync syntax to that of the legacy restart markers. 

After this operation, the bit-stream is ready to be decoded by 

any legacy JPEG decoder, with truncated areas appearing as 

black regions in the decoded image. The frame is then ready to 

be processed by the video packet loss concealment algorithm 

presented in section 2. 

 

B.  Experimental Results 

To validate our VPLC approach, we first focused on a pure 

PC software implementation. Various test sequences were 

collected and, for initial validation, erasures were artificially 

inserted before invoking our optimized software VPLC im-

plementation. Then, we expanded the validation and ben-

chmarking of our approach by using an integrated video over 

wireless streaming demonstrator challenged by interference in 

the ISM band. The test clips and test environment were se-

lected to cover a number of usage scenarios and data content 

ranging from high global motion to more static scenes, with 

various levels of detail in the captured videos.   

The main metrics collected for all these experiments were 

the CPU load of the PLC algorithm on a given PC configura-

tion, the recovered frame rate, and the image quality improve-

ment. To measure image quality, in addition to using the typi-

cal PSNR (Peak Signal-to-Noise Ratio), we measured the 

VQM (Video Quality Metric) scores [8]. This metric collects 

and aggregates various statistical attributes of images (percen-

tage of blurriness/blockiness, percentage of unnatural motion, 

etc.) that are important to the human perception of image 

quality to report an overall Mean Opinion Score (MOS). Con-

sidering the video PLC problem space, we find this metric 

significantly more relevant than PSNR alone. The error rate for 

simulating random erasures was set at 14%, with resync mark-

ers introduced every MCU for QVGA images. The PC confi-

guration used was a desktop PC running Windows XP Pro on 

an Intel Pentium 4 3.2GHz with 1GB of SDRAM. 

Table 1 shows a comparison between common VPLC me-

thods (Block Copy Concealment [4] [5], Spatial Concealment 

[4] [5] [6]) and our methods (Simple Concealment, Double 

Concealment, Multi Resolution, Varying Block Size) for VPLC. 

The image quality is improved as our concealment algorithm 

gets refined and features more CPU-demanding algorithmic 

blocks. It is intuitive that the higher the image quality, the 

more CPU time is needed to conceal a frame. As the table 

suggests, varying the block size during VPLC does not allow 

our implementation to run in real-time as the execution time 

exceeds 33ms and was thus excluded from the implementation. 
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Table 1: Image Quality vs. Execution Time (the smaller the VQM score, the 

higher the image quality) 

 

As the table 2 suggests, in an office environment with sig-

nificant interference in the ISM band, we have observed that 

using MJPEG compression, we can easily face close to half the 

received video frames being corrupted, even when the distance 

between the sender and receiver is limited (less than a meter). 

For example, table 2 shows that without our VPLC algorithm, 

14fps would be achieved at QVGA resolution. With our VPLC 

solution, even by dropping frames exceeding 30% erasures 

(1.4fps on average in this test) we are able to conceal up to ~12 

frames while maintaining a high PSNR (35.7dB using the 

multi resolution scheme) for most scenes, including those 

featuring a high degree of motion. 

Perturbations 
Reconstructed 

FPS 

FPS 

with 

Errors 

FPS 

with 

more 

than 

30% 

Errors 

FPS 

displayed 

after  PLC 

FPS 

displayed 

before  

PLC 

Office envi-

ronment 28.76 1.47 0.4 28.36 27.29 

Heavy interfe-

rence + Office 

environment 
25.85 11.72 1.4 24.45 14.12 

Table 2: Frame rate improvement using our PLC algorithm and a hardware 

prototype 

 

IV. CONCLUSION 

In this paper, we presented a new video packet loss 

concealment (VPLC) technique which is suitable for wireless 

transmission but independent of the encoding and transport 

mechanisms used. Video PLC is traditionally handled at the 

encoder and/or transport level. Our approach is unique in that 

video PLC is addressed after the decoding process. More 

specifically, we performed the motion estimation after the 

image decoding. We used Motion-JPEG and a proposed 

improvement to the JPEG syntax for error detection. We 

validated our VPLC algorithm in terms of real-time 

performance on a PC platform as well as from the standpoint 

of image quality and frame rate improvement. Frame rate was 

improved by 70% to 80% on a wireless hardware streaming 

demonstrator while video quality showed a 100% improve-

ment over a wide range of reference sequences.  

This VPLC algorithm is therefore well-suited to the wireless 

cameras, as it was performed in real-time by the decoding PC, 

and requires minimal modifications of the MJPEG codec. 

Observe that this algorithm could also fit the constraints of 

forthcoming wireless cameras operated on batteries or with 

green energy sources [1] and forthcoming low complexity 

encoders [2]. 

Our work could be further extended to characterize how our 

approach compares or complements video PLC tools offered 

by recent encoding techniques such as H.264 (data partition-

ing, reversible Huffman encoding, flexible macro block order-

ing) or the various tools offered by JPEG2000 and the recent 

Chapter 11 focusing on error resiliency. 
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Figure 10: Concealment examples – Erroneous image 

Method VQM PSNR (dB) Time (ms)

Truncated clip 74,8191 16,1353 0

Block copy Concealment 36,2835 29,2143 0,0487013

Spatial Concealment 48,7362 27,7853 0,0974026

Simple concealment 28,4018 31,8446 10,1461039

Double Concealment 24,8869 32,4958 19,6428571

Multi resolution Double 25,4259 35,7346 24,4480519

Varying block size 16x16 16,2172 34,6087 144,074675

Varying block size 32x32 14,0224 35,2812 582,282468
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Figure 11: Concealment examples – Block copy concealment 

 

 
Figure 12: Concealment examples – Spatial concealment 

 

 

 
Figure 13: Concealment examples – Simple concealment 

 

 
Figure 14: Concealment examples – Double concealment 

 

 
Figure 15: Concealment examples – Multi resolution concealment 

 

 

 
Figure 16: Concealment examples – Varying block size concealment (32x32)
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Abstract—Memory unit design becomes the main challenge
in embedded integrated circuit. Indeed, it has to minimize
power consumption while meeting high bandwidth requirements
as well as supporting versatile data access patterns. To deal
with such constraints, the MOREA reconfigurable architecture
is proposed. In addition to a flexible computing unit, MOREA
supports dynamic reconfiguration of storage resources. In this
paper, we focus on the address generation subsystem which
controls data streams between memories and computing unit.
A dedicated programmable unit has been designed to improve
regular address patterns generation while supporting complex
address generation schemes during control dominated threads.
The address generation unit implementation performances are
discussed and its silicon efficiency is evaluated on representative
computation kernels.

I. INTRODUCTION

Today’s embedded integrated circuit (IC) designers must
deal with low power consumption, high performances, low
cost and short time-to-market (TTM) constraints. In addition,
embedded applications have dynamic behavior, i.e they exhibit
versatile computation and memory access patterns.

For example, Fig. 1 shows a block diagram of a 3G
telecommunication system. It handles 16-bit audio samples
and 8-bit video pixels both. These data flow through several
stages before being physically transmitted. Firstly, source
coding reduces information quantity by processing a wide set
of word-level data. In such processings, memory accesses have
strong temporal locality. Secondly, channel coding increases
signal robustness against noise. Contrary to source coding,
it computes bitwise data and exhibits good spatial locality.
Hence, bit-level operators and datapaths are needed to meet
performance constraints. Thirdly, access technique multiplexes
the users and modulation adapts the signal to the transmis-
sion support. These stages handle respectively wordwise and
bitwise data in a streaming fashion. Finally, implemented
algorithms evolve over the years, e.g video codecs upgrading
to MPEG-4 standard and later. Thus, embedded applications
exhibit versatile computation and memory access patterns.

As a potential hardware support, digital signal processor
(DSP) offers good flexibility because of Harvard/Von Neu-
mann execution model. However, its high clock frequency

Fig. 1. Block diagram of a 3G transmission system.

TABLE I
WCDMA RECEIVER IMPLEMENTATION RESULTS FOR DART

RECONFIGURABLE PROCESSOR [2].

Architecture Energy efficiency

DART 39MOPS/mW

DSP TMS320C64x 2MOPS/mW

FPGA Xilinx Virtex 200E 5MOPS/mW

as well as its load/store execution model incur a signifi-
cant energy consumption overhead. On the contrary, fixed-
functional hardwired ASIC design provides a near-optimal
consumption/performance trade-off for a single algorithm.
Therefore, it is a costly solution in a complete application
context. Finally, a promising concept has emerged as the
coarse-grain reconfigurable architecture (CGRA) [1]. CGRA
allows to alter dynamically, i.e at runtime, datapaths according
to calculation patterns but, unlike FPGA, it targets at a narrow
application domain. As a result, CGRA is more power-efficient
than typical hardware solutions. For example, in [2], the
energy efficiency of the DART architecture has been discussed
and compared to programmable and fine-grain reconfigurable
architectures (Table I).

DART is a coarse-grain reconfigurable architecture opti-
mized for mobile telecommunication applications. It is orga-
nized in a hierarchical way to ease the distribution of control,
storage and processing resources (Fig. 2). The processing
primitives in DART are Reconfigurable DataPath (RDP) in-
tegrating functional units and memories interconnected with a
multi-bus network. Each memory is associated to a dedicated
address generator unit (AGU) built on a RISC architecture.
The memory hierarchy in DART is fixed: first, data are stored
in a shared cluster memory and then, they are transferred to
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Fig. 2. System-level architecture of DART processor [2].

Fig. 3. Power consumption in deep submicron CMOS chips (IC Insights
Inc., Technology Trends, 2003).

RDP local memories so as to be handled by functional units.
So far, as in DART, reconfigurability has been especially

applied in the litterature [1] to the processing unit. However,
storage resources are projected to cover about 90% of the
silicon area in 2010 [3]. Moreover, leakage current increases as
transistor geometry scale schrinks (Fig. 3). In addition, static
power is approximatively proportional to integration density.
As a consequence, IC power consumption is going to be
dominated by on-chip memory energy dissipation.

Furthermore, the memory hierarchy is usually sized con-
sidering the most demanding task. Consequently, important
amount of time and energy are wasted within the memory
subsystem during low activity periods and memory accesses
cannot be optimized with respect to application constraints.
So, in this context, we propose a memory-oriented CGRA. It
allows to dynamically reconfigure the memory unit according
to the processing needs.

In this paper, we are focusing on the address generation
subsystem which manages data flows between memories and
computation resources. The remainder of this paper is or-
ganized as follows. The next section briefly depicts existing
reconfigurable solutions for memory subsystems. In the section
III, MOREA architecture is described. In section IV, the
address generation unit is detailled and section V evaluates its

performance. Section VI discusses the AGU implementation
results. Section VII concludes this paper and discusses future
work.

II. RECONFIGURABLE MEMORY HIERARCHY

So far, except for memory blocks embedded in FPGA
[4], hardware reconfiguration has been mainly applied to
cache memories. For example, multi-banking is exploited in
set-associative caches so as to share ways (or banks) with
computing unit [5], i.e ways are configured as LUT, or with
upper level(s) of the hierarchy [6]. In [7]–[11], authors propose
to turn off banks or cache lines so as to reduce power for
little performance degradation. Besides, reconfiguration con-
trol mechanism implements an online management algorithm,
i.e specific hardware detects changes in application’s cache
usability and reacts with selecting a new configuration [6],
[8], [10]. However, in n-way set-associative caches, retrieving
one word requires to check n banks. Therefore, these self-
adaptive memories provide low bandwidth and consume a lot
of energy per access.

On the contrary, a compiler-controlled memory is described
in [12]. Smart Memories chip is a modular architecture which
contains 64 tiles. A tile integrates a multi-banked memory
unit which communicates with a processing unit through a
crossbar. The crossbar is dynamically routed and requests
contain a tag indicating which bank to access. As a result,
dynamic power can be saved when accessing a subset of the
banks. The memory unit is made of 16 mats and each of them
includes a SRAM with peripheral logic. The logic implements
a reconfigurable AGU which allows to use efficiently a mat as
a FIFO. However, for application with versatile address pat-
terns, address calculation is supported by the PU. Therefore, a
Smart Memories tile provides low performance when running
embedded applications.

III. MEMORY SYSTEM OVERVIEW

The proposed Memory-Oriented Reconfigurable Embedded
Architecture (MOREA) aims at minimizing power and delay
by taking advantage of different parallelism granularities (pro-
cess, task, operation, word-level). In computing systems, appli-
cations are composed of processes. Because of implementation
performance considerations, a process computes data stored in
a private address space. Then, result data are sent to one or
more processes thanks to inter-process communications which
are managed by synchronization mechanisms, e.g message
queues or pipes. So, at the highest level, storage resources
in MOREA are distributed over an array of tiles (Fig. 4). A
tile contains a single-port global memory which stores data
handled by a process. In addition, a NoC-based interconnect
implements inter-process communications.

figure
Then, a process is structured as a graph of threads. Threads

access to a common address space which results in massively
parallel communications. To support them, a tile is made of a
crossbar driving data among multiple clusters and the global
memory (Fig. 4), allowing threads to share and concurrently
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Fig. 4. System-level architecture of MOREA.

TABLE II
IMPLEMENTATION AREA COST OF MULTI-BUS AND CROSSBAR

INTERCONNECTS (TECHNOLOGY CMOS STMicroelectronics 0.13µm).

Nb of I/O per cluster Multi-bus area cost Crossbar area cost

4 50948µm2 104860µm2

6 58093µm2 197050µm2

8 64682µm2 312414µm2

access to an unique memory space. Thanks to a number of
clusters equal to 4, the crossbar layout can be done in a
space-efficient manner. More precisely, as shown in Fig. 4,
the clusters are floorplanned assuming a symmetrical point
which minimizes the crossbar area and so, propagation delays
as well as power consumption.

Crossbar between clusters allows threads implemented on
computing resources of a given cluster to access data stored
in other clusters. This avoids useless data transfers between
threads which share the same memory space. Moreover, the
sizing of threads, according to instruction-level parallelism
(ILP), is thus simplified since a thread can use the right
amount of resources spread across several clusters. However,
since energy, timing and area crossbar overheads are evolving
very quickly with I/O amount and wire length (see table II),
full connectivity within the tile cannot be allowed and special
attention must be paid on its sizing. Pratically, length of wire
can be limited in MOREA thanks to clusters floorplanning and
only 4 extra transfers are allowed for each cluster.

At the lowest level of the hierarchy, clusters are built of 4
local memories storing threads data. According to processing
needs and bandwidth requirements, these storage primitives,
depicted in Fig. 5, can be used as single-port memories or
simple dual-port memories allowing concurrent read and write
operations. As shown in Fig. 4, local memories are connected
to processing unit with multi-bus networks allowing complete
connectivity between computing and storage resources within
a cluster. An address generation unit is available for each port
of the local memories. These AGUs will be discussed in the
next sections and are used to automatically and efficiently
generate addresses of the data handled in the clusters. It can
be noticed here that we are not focusing in this study on com-

Fig. 5. Local memory architecture in MOREA.

puting resources organization and management. We consider,
at first, standard organization as in the DART architecture.

The configuration of the links between AGUs and memories
as well as memories and functional units are managed by an
hierarchical configuration unit. First, a global controller man-
ages the tile reconfiguration at each thread activation/ending.
This global configuration includes AGU program loading as
well as crossbar configuration between clusters. It may take
several cycles. Next, a lower level configuration controller,
located in each cluster, handles fast minor changes during
the execution of a thread, e.g a modification of the multi-bus
network configuration. In the next section, we are focusing
on the address generation unit which manages data stream
between memories and computation resources.

IV. ADDRESS GENERATION UNIT

A. Patterns classification

In embedded applications, processed data are typically or-
ganized in 1D/2D arrays. From a programming view point,
these arrays are accessed through nested loop kernels and
two types of address patterns are generally produced. The
first type concerns the regular address sequences. In this case,
the sequence {a} can be defined as an affine function which
depends on nested loop indexes. So, regular address patterns
can be formulated as follow:

{
a(i1, · · · , iN ) = (IT ·B) · C + d0

}
(1)
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for(i=0; i<X; i++){
for(j=0; j<Y; j++){

read(pixel[i][j]);
}

}

Fig. 6. Example of a C code with a regular access to an X × Y image.

/* initialization */
begin = 0;
end = N-1;

index = (end-begin)/2;
tmp = read(A[index]);

/* dichotomy search */
while(tmp != searched_value){

if(tmp > searched_value){
end = index;

}
else{

begin = index;
}

index = (end-begin)/2 + begin;
tmp = read(A[index]);

}

Fig. 7. Example of a C code with an irregular access to an 1D array.

with ij the index of loop j and i1 the innermost loop
index, N the number of nested loops and I the loop index
vector, B an N ×M matrix which determines the index(es)
of the M -dimension array element accessed at iteration I , C
a translation vector which defines the address memory of each
array element and d0 the address offset value. For example,
in the case of an image processing which extracts pixel value
through two nested loops, as presented in Fig. 6, the sequence
{a} is defined as1:

{
a(i, j) =

[
i j

] ·
[
1 0
0 1

]
· [Y 1

]
+ ∗pixel[0][0]

}
(2)

On the contrary, irregular address patterns do not exhibit any
linearity. For example, Fig. 7 presents the dichotomy search
algorithm. As we can see, the index of the read array element
depends on a tested condition in the if statement. Therefore,
this sequence can not be modelled with an affine function.

The next section describes the AGU architecture and ex-
plains how it can be programmed to generate regular and
irregular address sequences.

B. Address generator architecture

Generally, AGUs are built as RISC cores [13]. Because of
Von Neumann execution model, such AGUs can implement
all types of address pattern. Nonetheless, for regular address
sequences, instruction fetching and decoding waste significant
amount of time and energy. In MOREA, we propose an hybrid
architecture built on the basis of a RISC core coupled with a
reconfigurable unit (RU). A RU generates regular patterns with

1∗pixel[0][0] is the memory address of the first pixel

Fig. 8. System-level view of a stepper.

Fig. 9. Reconfigurable Unit (RU) architecture.

few configuration instructions. Thus, it allows to save time and
energy for regular address sequences generation.

The RU architecture is based on generic address generator
(GAG) developped for the Xputer machine [14]. This address
generation architecture supports efficiently complex regular
address patterns. GAGs are made of steppers and the AGU
uses this unit as its building block.

A stepper produces a linear sequence of M addresses ak at
clock frequency and according to (3). Pattern generation starts
when Run goes up (see Fig. 8). As soon as Output is equal to
Limit, Flag is asserted which signals the end of the sequence.





a0 = Base
ak+1 = ak + Step, Step ∈ Z
aM−1 = Limit

(3)

Basically, Base, Step and Limit parameters describe one loop
index evolution. Since index value update and comparison are
automatically done within a clock cycle, a stepper generates
more efficiently stride-based address patterns than typical
RISC core. Nevertheless, embedded applications manage 2D
data arrays which are accessed through two nested loops. In
this case, Base and Limit inputs are no longer fix and depend
on the outermost loop index. Therefore, in order to sustain high
address generation throughput, two supplementary steppers
are added to compute Base and Limit values according to
the outermost loop index evolution (Fig. 9). To update the
outermost loop index when the innermost loop exits, the Flag
output of the first stepper is connected to the Run input of the
two other steppers.

Fig. 10 shows the AGU architecture. It is made of a control
unit which fetches and decodes address generation instruc-
tions. These instructions ensure the configuration of all stepper
entries. Each stepper entry is directly connected to a specific
register. The AGU includes an ALU which allows computation
necessary to configure stepper entries. Furthermore, the ALU
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Fig. 10. Address generator architecture.

TABLE III
INSTRUCTION SET OF CORE PROCESSOR.

Instruction mnemonics Operands Description

LOAD RAi, <value> RAi ← <value>

STORE RAi RAi ← data

MOVE RXi, RAj RXi ← RAj

OUT {W, R} RAi @ ← RAi

ADD RAi, RAj , RAk RAi ← RAj + RAk

SUB RAi, RAj , RAk RAi ← RAj − RAk

AND RAi, RAj , RAk RAi ← RAj · RAk

LSH RAi, <direction>, <n> logical shift

ROP {W, R} (<N>) @ ← RU (N cycles)

BNZ <label> branch if not zero

BS <label> branch if signed

BF <label> branch if PU flag set

WAIT <N> wait for N cycles

END end of execution

NOP No OPeration

can be used for every address calculation. This unit is the
main block to produce irregular address sequences. The ALU
block supports several simple operations, e.g add/sub, which
are completed by control and transfert instructions at core
processor level. Table III shows the instruction set of the core
processor. Plus, a status register indicates sub operation results
in a short manner. ALU computes operands from register file
and data network as well as immediate values. Consequently,
a lot of addressing modes are available.

V. EXAMPLES OF ADDRESS GENERATION

In this section, we discuss AGU performance and con-
sumption and present three examples of address generation
with the corresponding AGU program. The two first examples
are simple but show that it is possible to generate efficiently
regular and irregular address sequences with our architecture.
The third example presents a more complex application, the
motion estimation. Finally, we present some results about the
implementation of our address generator structure. With the
first estimation, we give some information about the area cost
and power consumption.

Fig. 11. Configuration of stepper entries to execute a zigzag scan pattern
for a 4× 4 image.

LOAD RA0, 0
MOVE RX0, RA0
MOVE RX2, RA0
LOAD RA0, -3
MOVE RX1, RA0
LOAD RA0, 4
MOVE RX3, RA0,
LOAD RA0, 1
MOVE RX4, RA0

MOVE RX6, RA0
LOAD RA0, 3
MOVE RX5, RA0
ROP R

a) Program for configuration 1.

LOAD RA0, 13
MOVE RX0, RA0
LOAD RA0, 7
MOVE RX2, RA0
LOAD RA0, 1
MOVE RX3, RA0,

MOVE RX6, RA0
LOAD RA0, 4
MOVE RX4, RA0
LOAD RA0, 15
MOVE RX5, RA0
ROP R

b) Program for configuration 2.

Fig. 12. AG program to execute a zigzag scan pattern to a 4× 4 image.

A. Example of regular address pattern generation

The first algorithm considered here is the zigzag scan pattern
as it can be used in JPEG compression for example. Fig.
11 presents the two consecutive RU configurations needed to
produce the address sequence for a 4× 4 image.

The first part of the address sequence (sequence
0, 4, 1, 8, 5, 2, 12, 9, 6, 3) is produced by the first configuration.
To produce the second part (sequence 13, 10, 7, 14, 11, 15), a
second configuration is necessary.

For the first configuration, the steppers 2 and 3 allow to
produce the consecutive base (stepper 2) and limit (stepper 3)
addresses for the address sequence. The generator produces
addresses in 4 steps : first step, base = 0, limit = 0 which
produces address 0; second step, base = 4, limit = 1,
step = −3 which produces addresses 4, 1; third step, base = 8,
limit = 2, step = −3 which produces addresses 8, 5, 2; etc.

The same analysis can be done for the second configuration.
For this kind of address sequence, our solution can ensure

the generation of addresses with two consecutive configura-
tions. They are done through the AGU program presented in
Fig. 12.

B. Example of irregular address generation

Another example of address generation concerns a data-
dependent address pattern. The computation of an image
histogram uses the value of each pixel to address a memory
and increments the pixel value occurency. Fig. 13 presents the
two address generators used to implement this application. The
first AGU is configured to read the value of image pixels. So,
if the image is stored at address memory 1000, it generates
addresses 1000, 1001, 1002, · · · . Then, each pixel value is used
as an input data of the second AGU. This value is simply
used as an offset added to the histogram base address. For
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Fig. 13. Hardware implementation in MOREA of the image histogram
algorithm.

Fig. 14. Description of the motion estimation, three-step search (TSS)
algorithm.

example, if the histogram is stored at address value 2000, the
first address produced is 2000+12 = 2012 which corresponds
to the occurency of the pixel value 12.

C. Example of motion estimation algorithm

In this section, we present the implementation of the motion
estimation application as it is used in video compression.
Motion estimation exploits temporal redundancy within a
video sequence to reduce information quantity. For each
16 × 16 macroblock of a reference frame, the most similar
one, according to a particular metric, e.g Sum of Absolute
Difference (SAD, see (4)), is searched within a current frame
(Fig. 14). Then, the address memory of the first pixel of the
matching macroblock is stored which defines the translation
vector of the reference macroblock within the current frame.

SAD =
15∑

i=0

15∑

j=0

|MBreference[i][j]−MBcurrent[i][j]| (4)

The current frame is scanned according to the three-step
search (TSS) algorithm. In the first step, four macroblocks,
at a distance d = 8 of the reference one, plus the centre
macroblock (red marks in Fig. 14) are compared. Then, in
the second step, the centre of the search path is moved to
the macroblock with the minimum distorsion and the distance
d is halved, etc. Consequently, contrary to the preceding
examples, SAD comparisons require branching mechanism in
AGU. A current macroblock is accessed through a pseudo-
code C which is presented in Fig. 15.

To produce this sequence of addresses, our model of address
generator allows two execution models. The first consists in

do{
tmp = DATA; /* External data */
tmp += OFFSET; /* MB first pixel address */

/* Read of current MB */
for(i=0; i<16; i++){

for(j=0; j<16; j++){
pixel_read_address(tmp+j);

}
tmp += WIDTH;

}
} while(condition)

Fig. 15. Part of the motion estimation TSS algorithm which focuses on the
MBcurrent pixels address generation.

STORE RA0
LOAD RA1, 25344

label3 :
ADD RA0, RA0, RA1
LOAD RA1, 0

label2 :
LOAD RA2, 0

label1 :
LOAD RA3, 1
ADD RA2, RA2, RA3
LOAD RA3, 16
SUB RA3, RA3, RA2
BNZ label1
ADD RA3, RA0, RA2
OUT R, RA3
LOAD RA3, 1
ADD RA1, RA1, RA3
LOAD RA3, 16
SUB RA3, RA3, RA1
BNZ label2
LOAD RA3, 144
ADD RA0, RA0, RA3
WAIT N
BXF label3
STORE RA0
LOAD RA1, 25344

a)

STORE RA0
LOAD RA1, 25344

label :
ADD RA0, RA0, RA1
MOVE RX0, RA0
LOAD RA1, 1
MOVE RX1, RA1

MOVE RX6, RA1
LOAD RA1, 15
ADD RA0, RA0, RA1
MOVE RX2, RA0
LOAD RA0, 144
MOVE RX3, RA0
MOVE RX4, RA0
ROP R, 255
WAIT N
BF label
STORE RA0
LOAD RA1, 25344

b)

Fig. 16. AGU programs to produce motion estimation memory accesses; a)
this version only uses the classical processor instructions, i.e. without using
the reconfigurable unit instruction set; b) this version uses the reconfigurable
unit instruction set to produce the addresses of the MBcurrent pixels.

executing a program which produces, cycle by cycle, the value
onto the address bus of the image memory (see Fig. 16.a). The
second consists in configuring the reconfigurable unit of the
AGU and keeps this unit producing the correct sequence of
address (see Fig. 16.b)

These two programs produce exactly the same sequence
of addresses but, if we consider their execution, we can see
that the second needs much less cycles than the first. Table
IV shows that the presence of a reconfigurable unit in the
address generator allows to drastically reduce the number of
decoded instructions. So, the energy consumption will be also
strongly reduced. Furthermore, for the version which uses the
reconfigurable unit, the AGU produces one address per cycle,
while the version without can produce a new address each 9
cycles. This last point is very important and ensures that the
address generator can support the processing unit frequency.

table
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TABLE IV
COMPARISON BETWEEN THE TWO POSSIBLE ADDRESS GENERATOR PROGRAMS, I.E WITH AND WITHOUT USING RECONFIGURABLE UNIT.

w/o RU w RU Gain
Code size (number of instructions) 23 17 26%

Execution time (number of cycles) 35011 6827 81%

Number of accesses to instruction memory 32696 197 99%

TABLE V
AGU ARCHITECTURE SYNTHESIZED AREA RESULTS.

Area cost (µm2) RU area %
RU AG datapath AG vs. AG DP vs. AG

Global 7962 26792 125414 30% 6%
memory

Local 4529 15857 47998 29% 4%
memory

VI. IMPLEMENTATION RESULTS OF OUR ADDRESS
GENERATOR ARCHITECTURE

To validate our proposal, our address generator architecture
has been synthesized with Synopsys Design Compiler tool
for CMOS STMicroelectronics 0.13µm transistor technology.
The timing constraint is set to 5ms to produce a 200MHz
clock frequency. Actually, two address generation units were
implemented. First, an architecture for a 64K×32 bits global
data memory. It handles 16-bit address data and its instruction
memory can store up to 256 23-bit words. Second, an AGU for
a 256×32 bits local memory which computes 9-bit operands.
The capacity of its instruction memory is 64× 16 bits. Table
V presents the extracted area results. The reconfigurable unit
covers 30% of AGU datapath area. Overall, it represents less
than 10% of the combined datapath and instruction memory
area.

However the integration of a reconfigurable unit in the AGU
improves significantly address generator performances (Table
VI). Thus address generation throughput, expressed as Million
of Addresses Per Second (MAPS), is increased by a factor
×5 as compared with a RISC architecture. Moreover, the area
efficiency is also improved by a factor ×4.8. So, this hybrid
structure offers a much better area/performance tradeoff for
versatile pattern generation than typical solutions.

Besides, thanks to RU capabilities, up to 99% of instruction
memory accesses can be eliminated (see table IV), and so the
dynamic energy consumption.

Finally, we must consider the area penalty due to AGU
within the memory subsystem. As shown in Fig. 17, the rela-
tive occupied silicium area by AGU within memory subsystem
decreases as memory capacity increases. For example, a 30%
area penalty is induced for a 2048-word data memory. Conse-
quently, our address generation solution incurs acceptable area
overhead for large memory block.

VII. CONCLUSION

In this paper, we have presented a distributed memory
architecture and, in particular, the structure of the address

TABLE VI
PERFORMANCES OF THE TWO POSSIBLE AGU ARCHITECTURES, I.E WITH

AND WITHOUT USING A RECONFIGURABLE UNIT, FOR THE MOTION
ESTIMATION ALGORITHM IMPLEMENTATION.

Performance (MAPS) Area efficiency (MAPS/mm2)
w/o RU w RU w/o RU w RU

Global 19 97 162 773
memory

Local 19 97 189 921
memory

Fig. 17. AGU area penalty within MOREA cluster memory subsystem.

generator. This specific block is built from a core processor
which executes an address generation program. To be efficient,
this block includes a reconfigurable unit which is able to
support the generation of regular address sequences. The core
processor supports the configuration of the RU. The regular
address sequence is then produced through sequential logic
configured to generate one address per cycle. For all irregular
address patterns, the core processor can execute classical
instructions through a small execution pipeline.

We have showed how our generator architecture can be
configured to produce regular and irregular sequences of
addresses, via the implementation of representative data ac-
cess patterns in our AG. Furthermore, we have presented
implementation results of our address generator. These results
show that substantial time and energy savings can be obtained
thanks to the reconfigurable unit. Further works include the
prototyping of a complete MOREA tile and the demonstration
of a complete embedded vision application.
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Abstract— One of the most important applications
of Digital Signal Processing is wireless communication.
This kind of application requires low power imple-
mentation of DSP, which generally uses fixed-point
arithmetic. The fixed-point architectures should be
developed to maintain the energy consumption power
at a reasonable level. In this paper, an approach which
adapts the fixed-point specification according to the in-
put receiver SNR (Signal-to-Noise Ratio) is proposed.
To underline our approach interest, two applications
are examined, one for QPSK receiver and other for
WCDMA receiver. An architecture used for this dy-
namic precision scaling concept is also detailed.

I. Introduction

Wireless communication is one of the most important
sector for Digital Signal Processing (DSP) applications.
In 2007, 74 % of Digital Signal Processors sold was used
for wireless applications [1]. Most of wireless terminals
are nomadic and are supplied by battery. The design
of low power terminals is one of the key challenges in
this domain. New services are provided (image, video,
Internet access) and require high data rate. Consequently,
the complexity of the baseband digital part is growing.
However, the energy consumption can not be increased
due to the limited battery lifetime. Thus, new strategies
to reduce or maintain the energy consumption power at a
reasonable level must be proposed.

Efficient implementation of DSP applications in embed-
ded systems requires the use of fixed-point arithmetic.
Thus, the vast majority of embedded DSP applications
are implemented in fixed-point architectures [2], [3], [4],
[5]. Indeed, fixed-point architectures are cheaper and more
energy efficient than floating-point architectures because
in fixed-point architecture, the word-lengths of the data
are lower.

The energy consumption of an application depends on
the word-length of the manipulated data. The energy
consumption can be reduced by decreasing the word-
length of the data. Nevertheless, this also reduces the
computation accuracy. The unavoidable error due to finite
word-length computation increases when the data word-
length is reduced. In [6], an LMS (least mean square)
adaptive filter has been studied. The energy consumption
is divided by a factor of two between two fixed-point

specifications having a signal to Quantization Noise Ratio
of 90 dB and 30 dB.

The traditional approach to design a fixed-point system
is based on the worst-case principle. For a digital commu-
nication receiver, the maximal performances and the max-
imal input dynamic are retained and the more constraint
transmission channel is considered. Nevertheless, the noise
and the signal levels evolve during time. Now, the data
rate depends on the service (video, image, speech) used
with the terminal and the required performances (bit error
rate) are linked to the service. These different elements
underline that the fixed-point specification depends on
external elements (noise level, input signal dynamic range,
quality of service) and can be adapted during time to
reduce the average power consumption.

In [7], different trade-offs between accuracy and energy
are explored in the context of Software Defined Radio. New
standards like the further extension of WLAN (802.11g)
offer multiple configurations according to link noise robust-
ness and data rate. Different modes (modulation scheme
and coding rate) are proposed. For each mode an opti-
mized fixed-point specification is determined and leads
to a specific implementation. The selection of a fixed-
point specification for each modulation scheme and coding
rate makes possible the decrease of the average energy
consumption by a factor three. In this approach, the
adaptation of the fixed-point specification is only linked
to the modulation scheme and coding rate.

In [8], word-length tunable VLSI architecture for an
OFDM (Orthogonal Frequency Division Multiplexing) de-
modulator has been proposed. The data word-length are
determined at run time according to the observed error
at the system output. For this word-length determina-
tion process, word-length search symbols are inserted in
the frame. This approach saves 32% and 24% of the
power consumption for different transmission channels.
This technique requires a specific hardware and energy
are wasted for the fixed-point optimization process which
is carried-out at run time. Moreover, this technique must
modify the transmission packet format and can not be used
in standard systems.

In this paper, an approach in which the fixed-point
specification is adapted according to the input receiver
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Fig. 1. Synoptic of the Dynamic Precision Scaling approach

SNR (Signal-to-Noise Ratio) for one modulation scheme
and one data rate is proposed. This concept is called Dy-
namic Precision Scaling (DPS). Our approach interest is
underlined through a WCDMA (Wide-band Code Division
Multiple Access) receiver example.

The paper is organized as follows. In Section 2, the
principles of Dynamic Precision Scaling is detailed and the
target architectures used for implementing this concept are
presented. A simple example corresponding to a QPSK
(Quadrature Phase Shift Keying) receiver is analyzed in
Section 3. Then, a WCDMA receiver is studied in Section
4. The path search module and the rake receiver are
considered. For these different examples, the number of
bits required for the integer and the fractional part are
determined according to the signal-to-noise ratio.

II. Dynamic Precision Scaling (DPS)

A. Principle

In the Dynamic Precision Scaling (DPS) approach, to re-
duce the energy consumption, the fixed-point specification
is adapted according to the external environment param-
eters. During time, the system switches between different
fixed-point specifications when the external environment
parameters are modified. In our approach, different fixed-
point specifications are available. They are determined at
the system design level. Let Sfp, be the set of all the fixed-
point specifications which can be used.

To adapt the fixed-point specification to the external
environment parameters, a metric p describing the exter-
nal conditions is used. This metric is determined inside the
digital system from the measurement of the input signal
and/or the output signal. The fixed-point specification is
selected according to this metric value as illustrated in
Figure 1. Let ffp, be the function defining the fixed-point
specification to used according to the p metric value:

ffp : R −→ Sfp
p 7−→ ffp(p)

(1)

In the examples presented in this paper, the metric p is
the signal to noise ratio (SNR) at the input of the receiver.
Different techniques can be used to estimate this SNR [9].
For the WCDMA receiver, data-aided techniques can be
used. Indeed, a pilot sequence is available in the control
symbol frame (DPCCH) of the WCDMA norm in the
context of UMTS/3G wireless communications. Otherwise
for the QPSK receiver, SNR estimators can be used with
an estimate of the transmitted symbols from the receiver
decisions. The selection of the estimator is a trade-off
between the estimation quality and the estimator complex-
ity. Indeed, the supplementary energy consumption due
to adaptation part must be minimized to not wreck the
energy gain due to fixed-point specification adaptation.

B. Architecture for DPS

To adapt the fixed-point specification during time, the
architecture must be programmable or reconfigurable. For
processors, a specific code (function) is associated to each
fixed-point specification. The processor switches between
the part of code when the metric p is modified. For
reconfigurable architectures, a configuration is associated
to each fixed-point specification. The architecture is recon-
figured when the metric p is modified.

To adapt the fixed-point specification during time the
processing unit must be flexible in terms of supported
word-length. The aim is to reduce the energy when the
word-length is lower than the supported maximal value.
Two kinds of approaches are available to minimize the
energy consumption through word-length flexibility. One
way is to have operators supporting Sub-Word Parallelism
(SWP) operations. The operator processes several opera-
tions in parallel on operands of smaller word-length. An
operator (multiplier, adder, shifter) with a word-length
of N is split to execute k operations in parallel on sub-
words of N/k word-length as illustrated in Figure 2. This
technique can accelerate the code execution time up to
a factor k. Thus, the energy consumes at each cycle is
constant and independent of the operand word-length.
But, the execution time of the processing depends of the
operand word-length. Thus the global energy consumption
is reduced by diminishing the processing execution time.
The other way is to use operator executing only one
operation per cycle but able to manipulate data with
different word-lengths. In [10], a multiplier able to perform
operations on 9, 11, 14 and 16 bits is proposed.

III. Symbol detection

A. Introduction

In this section, to analyse deeply the quantization noise
effects, a simple example is considered. It consists of
a transmitter and a receiver using QPSK modulation.
The transmission channel is additive white gaussian noise
(AWGN) with Eb/N0 varying between 0 dB and 10 dB. No
channel coding is used. The input signal of the receiver and
the bit error rate are observed. Throughout this paper, the
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Fig. 2. Sub-Word Parallelism operator for multiplication and
addition in the case of k = 2

term Eb/N0 is used in the different simulations. In general,
Eb/N0 is equal to SNR divided by spectral efficiency. In the
case of QPSK modulation, Eb/N0 is equal to SNR/log2 4.
In case of spread spectrum transmission with a spreading
factor SF, Eb/N0 is equal to SNR× SF. For convenience,
the term SNR is used in the text in the rest of the paper.

The aim of the following analyses is to determine the
minimal number of bits required for the integer and frac-
tional parts. The fixed-point specification must guarantee
no overflow and maintains the bit error rate performances.

B. Range estimation

The aim of this part is to determine the minimal value
of the integer word-length which guarantees no overflow.
In case of an AWGN channel, the input signal y(k) of the
receiver is the sum of emitted symbols and white gaussian
noise:

y(k) = s(k) + c(k) (2)

where s(k) is the set of modulated symbols:

s(k) ∈ {±1± i} (3)

Equations (2) and (3) show that the higher the noise
level is, the larger the dynamic range of received signal.
For example, the dynamic range at 0 dB should be as twice
as the one for very low noise level.

The dynamic range obtained for different SNR levels is
presented in Figure 3. The range of input signal decreases
when the signal/noise ratio increases. It decreases from 3.2
(at 0 dB) to 1.7 (at 10 dB). Between these two SNR values,
one bit at the receiver input can be saved.

C. Precision analysis

The aim of this part is to determine the minimal value of
the fractional word-length which leads to a Bit Error Rate
(BER) close to the BER obtained with infinite precision
(floating point simulation in our case) computation.

The channel is assumed to be a white gaussian c(k) with
noise variance σ2

c = N0
2Eb

. The expression of the probability
density function (pdf) fc(x) of c(k) is thus as follows:

fc(x) =
1

σc
√

2π
exp
−x2

2σ2
c

(4)
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Fig. 3. Range analysis for a symbol detection in the case of AWGN
channel and QPSK modulation.

The signal y(k) is then quantized with quantization step
size q = 2−m. The expression of the probability density
function fq(x) of the quantization noise is then as follows:

fq(x) =
1
q
Id[−q

2 , q
2 ] (5)

Thus the noise after quantization corresponding to the
sum of the channel noise and the quantization noise has
the following probability density function:

fn(x) = fc ∗ fq(x) =
∫ ∞

−∞
fc(t)fq(x− t)dt (6)

=
1
2q

(erf
x+ q

2√
N0

− erf
x− q

2√
N0

) (7)

and the following probability distribution:

Fn(x) =
∫ x

−∞

1
2q

(erf
t+ q

2√
N0

− erf
t− q

2√
N0

) (8)

In case of BPSK and QPSK, the probability of bit error
for single quantization is:

BER(m,SNR) = 1− Fn(1) (9)

Figure 4 shows the results of the analytical expression
(9) for m ∈ {0, 1, 2, 3} and for infinite precision. The
precision criteria is defined with a parameter a (a � 1)
so that BER(m,SNR) < (1 +a) BER(∞,SNR). From this
analysis, the theoretical data fractional word-length of a
QPSK modulation can be deduced and is presented in
Figure 5 for different SNR values. The fractional word-
length increases with the SNR and up to three bits at
the receiver input can be saved depending on the channel
conditions.

In order to verify this theoretical analysis, simulations of
the BER for a QPSK modulation in different quantization
and channel conditions have been performed and are
presented in Figure 6. As the emitted signal is binary (for
real part and imaginary part), a fractional word-length
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Fig. 5. Theoretical fractional word-length of a QPSK modulation
with an AWGN channel for different SNR values.

of zero, one, two and three bits will be used. Again, the
more the SNR increases, the longer the fractional word-
length required to meet the precision criteria. Figure 6
confirms that the demodulation process needs one bit at 0
dB, two bits at 4 dB and more than three bits at 10 dB.
After the approximation to finite word-length precision,
the quantization error must be negligible compared to
channel noise SNR. Thus, a higher number of bits is needed
for fractional part when the noise level is lower.

With a dynamic adaptation of the fixed-point specifica-
tion according to the SNR, a reduction of the word-length
can be achieved compared to a classical approach. For
instance, in this case, a classical design needs a word length
of 2 + 5 = 7 bits. With the proposed dynamic precision
scaling, 2+1 = 3 bits at 0 dB and 1+5 = 6 bits at 10 dB.
Between these two SNR values, three bits at the receiver
input can be saved.
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Fig. 6. Simulation values of the BER for a QPSK modulation with
an AWGN channel in different quantization and channel conditions.

D. Precision analysis for multiple quantization errors at
the receiver

In the general case, the receiver includes some processing
and therefore generates multiple rounding quantization
noises q1, q2, ..., qK . Due to the central limit theorem, the
sum of these noises is then considered gaussian and has
the following pdf:

fQ(x) =
1

σQ
√

2π
exp
−x2

2σ2
Q

(10)

where

σ2
Q =

K∑

i=1

σ2
qi

=
K∑

i=1

q2i
12

(11)

Thus, the total noise including the processing and quan-
tization errors at the receiver has the following probability
density function fN (x):

fN (x) =
1√

σ2
c + σ2

Q

√
2π

exp
−x2

2(σ2
c + σ2

Q)
(12)

and the following probability distribution FN (x):

FN (x) =
1
2

(1 + erf
x√

σ2
c + σ2

Q

√
2

) (13)

In case of BPSK and QPSK, the probability of bit error
for multiple quantizations is:

BER(σQ,SNR) = 1− FN (1) =
1
2

erfc
1√

σ2
c + σ2

Q

√
2

= Q(
1√

σ2
c + σ2

Q

) (14)

The case of the WCDMA receiver presented in the
following section corresponds to this theoretical BER.
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IV. WCDMA receiver

A. Presentation
WCDMA is a standard for the third-generation of cellu-

lar network which is based on DS-CDMA (Direct Spread
CDMA) technology. In these systems, a rake receiver is
used to counter with the effects of multi-path fading. A
finger is allocated to each path to decode the symbol asso-
ciated with the path. One important component associated
with the rake receiver is the path searcher. A path searcher
finds the delay of different paths, which is then used to
synchronize the input signal with the code generated in
the receiver and thus to obtain an optimal combination of
received energy.

In WCDMA, there are two layers of spreading codes [11]:
channelization code and scrambling code. The channeliza-
tion code Cch is used to achieve orthogonality between
channels when time-shift is equal to 0. The scrambling
codes used in uplink are Gold codes SG. The input data dt
is multiplied with the spreading codes, and the transmitted
signal Txt is:

Txt = dtCchSG (15)

In a multi-path (time dispersive) Rayleigh channel, the
global received signal Rxt is the sum of elementary signals
Rxk,t for different channel paths:

Rxk,τk
= akTx−τk

+ nk + ik (16)

where τk is the delay of kth path in the channel, ak is the
attenuation, nk and ik are additive white gaussian noise
and channel interference respectively.

At the receiver, the delay τk of each path is estimated by
the path searcher module. Then, the symbol are decoded
with a rake receiver made-up of different fingers, one
for each estimated path. Each path is processed by a
finger and is despreaded synchronously by multiplying
with conjugated spreading codes:

dr,k = Rxk,τk
CchS

∗
G

= (ak,τk
Txt + nk,τk

+ ik,τk
)CchS∗G

= (ak,τk
dtCchSG + nk,τk

+ ik,τk
)CchS∗G

= ak,τk
dt + (nk,τk

+ ik,τk
)CchS∗G (17)

Then, dr,k is summed up on a symbol duration. Due to
the code properties, the second part of the right handside
of (17) is negligible regarding to the first part which
is ak,τk

dt.SF, with SF the spreading factor. SF is then
the processing gain of spreading spectrum. In our case,
a spreading factor of SF = 16 is used for DPDCH,
which is the data symbol frame of the WCDMA norm in
the context of UMTS/3G wireless communications at the
speed of 240 Kbps without channel coding. The processing
gain is thus equal to 12 dB.

A Rayleigh channel model respecting the 3GPP channel
case 3 [12] without Doppler effect is used, corresponding
to a multi-path fading with four path components (gain,
delay): (0 dB, 0 ns); (-3 dB, 261 ns); (-6 dB, 521 ns); (-9
dB, 781 ns).
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Fig. 7. Data flow graph of a symbol decoder in the WCDMA receiver.

B. Symbol detection

1) Range estimation: The flow graph of one finger of a
rake receiver is presented in Figure 7. In the finger, the
correlation between the input signal and the codes is used
to amplify useful signal to detect the transmitted symbol.
The correlation process increases the range of useful signal,
but not that of noise. An approach is then proposed to
determine more accurately the data dynamic range. Before
the correlation process, the whole useful signal plus noise
is considered. After this process, only the useful signal is
taken into account when calculating the dynamic range.

In equation (16), the received signal is:

s(n) =
∑

Rxk =
∑

akTx−τk
+ nik (18)

where nik is interference plus noise, which can be con-
sidered gaussian with variance σ2. Assuming that a user
has one DPDCH channel, from (15), dtCch take values
in {±1 ± i}. Thus Tx = dtCchSG ∈ {±2,±2i}. In our
simulations, Tx is normalized into {±1,±i}, hence its
power is 1. By definition, SNR = 1/σ2.

The increase of users in a cell rises the interferences.
These interferences are processed as noises and thus in-
crease the SNR. To take account of the different cases,
a few number of communications in a cell with good
transmission conditions and a great number of users with
bad transmission conditions, a great range of SNR is
considered (0 to 25 dB).

The input s(n) consisting of signal plus noise is nor-
malized to have the maximum amplitude of both real
and imaginary parts one. Because a gaussian noise σ2 has
99.7% of its values in [−3σ, 3σ], assuming the real and
imaginary parts of

∑
akTx−τk

are in [−1, 1], the input is
considered in [−1− 3σ, 1 + 3σ]. The normalization process
is thus implemented by dividing the input by 1 + 3σ then
cut off by 1.

Multiplication with complex scrambling code cK(n) re-
sults in doubling the amplitude. Each real and imaginary
part is then multiplied with OVSF code, which does not
change absolute value. Averaging in 256 chips results
in an important attenuation of noise, which leads the
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Fig. 8. Estimated and simulation based values of data range in
different channel conditions for the symbol decoder.

output to signal-only. Thus, to evaluate the dynamic range
after the correlation, only the useful signal is taken into
account. Both real and imaginary parts of s5(k) are in
[− 2

1+3σ ,
2

1+3σ ]. As a result, the channel estimation coeffi-
cient α̂i is in [− 2

1+3σ ,
2

1+3σ ].
Multiplication with real OVSF code does not change

dynamic range. Then, accumulation results – with the
same explication as above – in [− 4·SF

1+3σ ,
4·SF
1+3σ ] for the real

part and in [− 4·256
1+3σ ,

4·256
1+3σ ] for the imaginary part.

Estimated and simulation based values are presented in
Figure 8. The accI and accQ data are studied as they have
the largest dynamic range and the largest variation when
SNR changes. In both simulation and estimation, there
are a difference of 3 bits between 0 dB and 15 dB, 4 bits
between 0 dB and 25 dB.

It is noticed that there are a difference from one to
two bits between estimated and simulated results. This
difference is explained by the channel model used in the
simulation. If a single path channel model, for example,
is used, the difference is less than 1 bit. Moreover, the
analytical estimations are more pessimistic.

2) Precision analysis: Similar to (11), the total quanti-
zation noise in a symbol decoder can be presented by the
sum of quantization noises in each step. Suppose the same
bits N are used in every quantization, some calculations
show that:

σ2
Q,I =

2−2N

12
× 9 · SF (19)

σ2
Q,Q =

2−2N

12
× 9 · 256 (20)

The normalization of the signal has an impact on noise:
σ′2 = σ2 × 1

(1+3σ)2 . The total noise σ2
Q,I + σ′2 has then

less dependance on σ (thus, SNR). In fact, it is showed in
Figure 9 that about 10 bits are sufficient to approximate
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Fig. 9. Simulation based values of BER in different channel condi-
tions for the symbol decoder.
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L=256: OVSF code length
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power

Fig. 10. Data flow diagram of a PDP path searcher

floating-point precision when Eb/N0 varies between 0 dB
and 10 dB.

In conclusion for the rake receiver, the optimised word-
length of the output is equal to 16 bits at 25 dB and 12
bits at 0 dB. Thus, between the two SNR values 4 bits can
be saved.

C. Path searcher

A path searcher (PS) with power delay profile (PDP) al-
gorithm is now studied. This module analyses in temporal
windows of a chip length the correlation between the input
signal and the code generated inside the receiver. This
PS module achieves the coarse-grain delay synchronization
and then the fine-grain synchronization will be carried-
out by the Delay Locked Loop (DLL) inside each finger.
The processing is focused on the control channel and the
unknown complex amplitude ak is removed by computing
the real and imaginary part and then taking the module.

The signal flow graph is presented in Figure 10. First,
the PS module computes the correlation between the input
signal and the code associated with the control channel.
Then, the square module of the correlation is computed
and this value is compared to an adaptive threshold t(l). A
path is detected if this value is greater than the threshold.
The adaptive threshold is proportional to the average of
all the correlation values.
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Path Searcher.

1) Range estimation: Firstly, the filtered received data
Rx is normalized into [−1, 1] with the same method that
the one presented in IV-B.1. It is then multiplied with
complex conjugate of spreading code CchS

∗
n and results

in [−2, 2] for each real and imaginary part. Accumulation
along with NW symbols (NW : correlation window size)
– only the signal is summed up significantly – results in
[−2NW

1+3σ ,
2NW

1+3σ ], and then averaging into [ −2
1+3σ ,

2
1+3σ ]. All

these analyses are summarized by the data flow graph of
Figure 10.

The estimated and simulation based dynamic range
of each value is presented in Figure 11. Both estimated
and simulation based results have a difference of 3 bits
in accumulation value between 0 dB and 25 dB, and a
difference of 6 bits in power profile.

It is noteworthy that estimated and simulated results
differ of 1 or 2 bits. This depends on the channel model
and is due to fact that the Nyquist filter is not taken into
account, which can slightly modify the values.

2) Precision analysis: In the Path Searcher, quantiza-
tion noise of each power profile is chi-square distributed
with variance of:

σ2
Q,PS =

q4N2

9
=

2−4NL2
c

9
(21)

where Lc = 256 the length of OVSF code in DPCCH
channel.

This PS module is based on the decision theory and
classical criterions are used to analyze the performances.
The misdetections corresponding to the non-detection of
an existing path and the false-alarms corresponding to the
detection of a non-existing path are measured.

The results are obtained with a monte-carlo approach.
Simulations are performed for different Rayleigh channel
models, each having four paths. For each kind of Rayleigh
channel, 500 experiments are carried out. In Figure 13,
the average number of paths which have been missed are
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Fig. 12. Number of false-alarms for the Path Searcher.

reported. In Figure 12, the average number of non-existing
paths which have been detected are reported.

Given that the precision is limited for small word-length,
a lot of power values are coded with a value of 0 and
thus the average value t(l) is smaller than in the infinite
precision case. Consequently, the number of false-alarms
increases when the fractional word-length decreases. The
number of misdetections decreases with the fractional
word-length. This phenomenon appears surprising at first
sight, but is due to the threshold reduction when the
fractional word-length is decreased. From theses results
two conclusions can be drawn. The threshold t(l) de-
pends of the SNR even in the case of infinite precision.
The reduction of the computation accuracy modifies the
threshold t(l) value, and, in our case, the misdetection is
too important for low SNR and low computation accuracy.
Thus, the parameter α must be adapted according to
the SNR value and the fixed-point specification. This
adaptation of the parameter α according to the SNR will
allow the improvement of the misdetection and false-alarm
probability.

V. Conclusion

In this paper, the concept of energy consumption reduc-
tion by adapting the fixed-point specification is addressed.
The concept and the target architecture were presented.
The results show that the global number of bits required
to limit the degradation of the BER depends on the SNR
at the receiver input. For the rake receiver the difference
is around 4 bits between different values of the SNR.
For the path searcher, the false-alarm and misdetection
probability are used as performance metric. The difference
is around 6 bits between the extreme values of SNR. This
great difference is due to the square operation which em-
phases the phenomenon. For the future work, the energy
consumption associated to each fixed-point specification
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will be determined to evaluate the gain in terms of energy
consumption of our approach.
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Abstract— The paper describes a novel approach for image rep-
resentation in compressed videos. The proposed hierarchical 
structure directly provides a semantic object partitioning of the 
video sequence. In addition, we present in detail how such a rep-
resentation can be integrated within the current standard as 
MPEG-4 AVC/H.264. The dedicated implementation yields a 
similar – yet restricted - stream structure provided a specific en-
coder. The overall sequence partitioning can be used for several 
challenging applications as videosurveillance and video protec-
tion. This paper focuses on a selective visual encryption which 
provides a fully compliant H.264 stream in which moving objects 
appear ciphered unless the appropriate deciphering key is used. 

I. INTRODUCTION 
In domains such as videosurveillance or sign-language se-

quences, the most important part of visual information can be 
reduced to a small region inside the image. You can choose to 
focus on mobile vehicles or pedestrians in the first case, on the 
hands and head of the signer in the second one. However, 
pointing directly one of these elements inside a video stream is 
currently a difficult if not impossible task considering the cur-
rent standard. One of the aims of MPEG-4 is to provide Uni-
versal Multimedia Access [10], which can in our case mean 
being able to decode specifically a targeted object inside a 
video sequence. If such a result can be obtained through trans-
parency layers each containing one object, a single video 
stream cannot encapsulate all these elements. 

Enabling to encode independently the objects inside a video 
stream makes it possible to support new applications. The 
growth of multimedia data exchanges brings up once more the 
problem of confidentiality and privacy. In videosurveillance, a 
security operator has to watch tens of videos at the same time. 
The increasing number of cameras usually implies new opera-
tors. But security clearance is not always easy to obtain. If 
persons and vehicles inside the stream were ciphered precisely 
enough so that the scene could be understood, privacy issues 
would not be a problem anymore. Totally decrypted stream 
would only be available providing the appropriate decryption 
key. 

In this paper, we first introduce a new video stream hierar-
chy that provides a semantically higher interpretation of the 

content in Section II. From this new representation modelling, 
we also suggest new tools exploiting this description. Even if 
such a structure is not directly implementable in a current stan-
dard, we develop through Section III an MPEG-4 AVC/H.264 
compatible implementation requiring some restrictions to the 
proposed approach. Section IV exposes an application being 
made possible by this specification: the selective visual en-
cryption uses this independent object definition to blur the 
moving objects inside videosurveillance sequences. If the 
process follows the previous specifications, it is possible to 
cipher an already compressed stream anywhere on the trans-
mission channel. A dedicated encoder implementation makes it 
possible to reach similar results now with H.264 [9].Finally 
Section V gathers concluding remarks and perspectives of fu-
ture work. 

II. SEMANTIC OBJECT ORIENTED SLICING  
We will here expose the limitations we encountered with the 

current standards when dealing with videosurveillance sys-
tems. Up to now our algorithms processed MPEG-2 or MPEG-
4 part 2 streams, and this article exposes our studies when we 
started investigating H.264. Surveillance brings up specific 
data and requirements, that we wanted to integrate in our new 
H.264 implementation, but that the standard could not directly 
address. These observations led us to define a new approach to 
image hierarchy, based on semantic visual objects. The struc-
ture led to new tools, providing several improvements to the 
current standards.  

A. Limits of the current slice partitioning 
Video compression standards up to H.264 provide a frame-

work for both independent visual objects through layers and 
image partitioning through slices and slices groups, yet these 
two domains remain different and were not defined to be di-
rectly compliant one with another. 

First, independent objects as defined for scene composition 
are implemented as different parts of a stream, consisting of 
videos, texts, avatars, etc. But if each object is coded inde-
pendently from the others, visualising two objects implies de-
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coding two sequences. There is not a unique compressed 
stream containing both objects. 

Secondly, when dealing with slices and slices groups inside 
a single video stream as a H.264 sequence, dynamic change of 
the partitioning tends to be tricky. Considering you can define 
for each image the shape of each object, H.264 does not define 
any adapted procedure to fit these. Current decoders will there-
fore expect an Intra coded image after a Picture Parameters Set 
unit containing an MBAmap (Macroblock Allocation map) 
change. The objects can each be defined inside a slices group, 
using an MBAmap. H.264 main profile only allows one slices 
group, making this statement impossible, but the baseline and 
extended profiles can contain up to height slices groups. How-
ever, considering a videosurveillance scene, one group being 
allocated to the background, you could only have seven inde-
pendent objects in an image, which can be problematic de-
pending on the activity in the watched site. 

Inside the slices groups, slices can be defined only as a sub-
portion of the macroblock stream, implying you can’t choose 
to assign a slice to any sub-part of an object. This could be 
convenient for example to reconstruct only a small background 
rectangle behind a car after an occlusion. 

B. The proposed approach 
1) Definitions: To explain the present hierarchy of the video 

stream, we first have to define some terms as we consider 
these: 

We call “object” a connected set of pixels, blocks or mac-
roblocks which possesses its own movement inside the video 
sequence compared to the other objects. Dealing with video-
surveillance, it can refer to a vehicle, a pedestrian, an animal, 
etc. 

 

 
Fig. 1  Slice definition 

 
An object group in then defined through a common descrip-

tor chosen by the user when the stream is encoded. Such a 
descriptor can be low or very-low level (colour, size, direction 
of the movement, etc.) or medium/high level (per-
son/vehicle/background, spatial localisation in the sequence, 
etc.). An object group can therefore be the red objects, the 
ones moving to the left or even every people inside the image. 

A slice is defined as a sub-portion of an image, as opposed 
to a sub-portion of the stream in the current standards: up to 
H.264, a slice is identified inside the stream by the VLC word 
"first_mb_in_slice". This definition implies that from a mac-
roblock, a slice will occupy the following entire lines of the 

image, inside the current slices group, until the next slice 
starts. It is not possible to define any sub-part of a slices group 
as a slice. In the suggested approach, a slice can be defined 
inside the MBAmap or by to extreme macroblocks as for a 
bounding box (Figure 1). The term "slice" is used as a refer-
ence / continuity to the MPEG definition, but for a better un-
derstanding, it should be interpreted as an object part in our 
approach. 

This new slice definition allows a partial reconstruction af-
ter an occlusion for example. As shown in the Figure 2, two 
objects are defined, one being the car, the other the back-
ground. The car is reconstructed by motion estimation through 
one slice. The background however is composed of two slices: 
most is obtained by copying the previous image, but the part 
right behind the car has to be reconstructed as it was not de-
fined in the previous image. We therefore instantiate a slice, 
only corresponding to this area, which allow a very fast identi-
fication and reconstruction of the two sub-parts of the back-
ground. 

 

 
Fig. 2  Reconstruction after occlusion 

 
2) Hierarchy and stream structure: Having defined these 

elements, we can now introduce the image hierarchy we sug-
gest (Figure 3). An image contains one or several objects 
groups, without number limit to foresee future high definition 
videosurveillance cameras that might shoot several tens of 
objects at the same time. By "no limit on the number of ob-
jects", we mean that if several profiles are defined, even the 
base one should be able to contain over a hundred objects, and 
higher profiles might deal with thousands of objects (case of a 
very high definition camera inside an airport hall for example). 
Each objects group can contain one or several objects present-
ing a common attribute as chosen by the user at the encoding 
process. Finally, each object can contain one or several slices, 
which are defined by the encoder to optimise reconstruction. 
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Fig. 3  Image hierarchy 

In comparison with one of the underlined limit of the cur-
rent standards, there is now only one video stream, containing 
a sequence structured as above. Figure 5 shows the video 
streams corresponding to the scene presented in the sequence 
Figure 6 and the tree Figure 4. 

Each of the hierarchy elements possesses its own header, 
which contains the descriptors used through the encoding 
process to determine the slices / objects / objects groups, pro-
viding an efficient tool for fast navigation inside the stream. 
Descriptors shall include normalised ones, as the MPEG-7 
visual descriptors, but also enable proprietary ones for wider 
or specific applications. The segmentation suggested is based 
on motion, as declared by the object definition. From this seg-

mentation, several descriptors are extracted for each object, 
and will then be used for the classification process (supervised 
or not) which provide the objects groups. The overall object 
declaration process leads to a motion indexation. 

 

 
Fig. 5  Stream structure 

 
Two objects groups, corresponding to the mobile objects 

and the background, are represented in the Figures 4 and 6). 
The first contains two objects (two cars). The first object is 
defined through a single slice, while the second one is made of 
two slices (front and back of the car). The second object group 
contains one object which is composed of two slices (the back-
ground already present in the previous image and the part 
needing a specific reconstruction after an occlusion). 

 

Fig. 4  Structure tree. 

 

DASIP 2008 November 2008

- 142 - 



 

 
Fig. 6  Sequence (the yellow car is getting inside the frame from the left, while 

the grey one goes from the right to the left). 

 
The tree shown in figure 4 corresponds to the image in the 

middle of figure 6 and to the stream of figure 5. Object 1-2 is 
made of two slices as the front of the car can be reconstructed 
by motion compensation while the rear – not present in the 
previous frame – is intra-coded. The same phenomenon can be 
seen for object 2-1, for which the previously occluded back-
ground is reconstructed differently from the rest of it. 

3) Encoding, compression and tools. To allow a totally in-
dependent reconstruction of the objects, these have to be re-
constructed without pointing to one another. Therefore, the 
motion compensation is restricted inside an object. If the ob-
jects are defined precisely enough, the compression impact of 
such a constraint is minimal: there is no need to point out of an 
object to obtain the matching blocks. This aspect requires the 
prediction of each object position inside an image before the 
image in compressed. It can be achieved by a tracking solution 
combined with a matching algorithm. For example a Kalman 
filter will predict the expected position of the objects detected 
from the previous images to the new one. A refinement, 
through background subtraction for example, will improve the 
shapes and identify new objects inside the image. The object 
declaration and position will be identified through an 
MBAmap similar to the one in H.264 and will be contained 
inside the image header. The map itself can be compressed by 
motion compensation, allowing a minimal impact on compres-
sion ratios. The encoder/decoder will have to take into account 
the dynamic changes of the MBAmap. 

Using this slice definition, we also introduce the notion of 
pass-over. With H.264, a skipped macroblock will be recon-
structed considering the motion prediction of the neighbouring 
blocks. To recopy exactly the same blocks as the reference 
image, a motion vector equal to zero has to be coded. The 
pass-over corresponds to this null vector, providing a shorter 
syntax combined with the possibility of multi-reference, which 
we defined as multi-reference pass-over. In many fields as in 
videosurveillance, objects move in front of an immobile back-
ground. The area that was occluded can now be reconstructed 
from any previous image where it was defined, as illustrated 
by figure 7. When several objects are moving at the same time, 
the multi-reference allows the pass-over to point to a different 
frame for each previously occluded slice. The slices as defined 
above also optimise the approach, as a single pass-over refer-
ence can be provided for the slice. There is no need for a mac-
roblock per macroblock declaration as in H.264.  

 

 
Fig. 7  Multi-reference pass-over. 

 
4) Advantages. The proposed image hierarchy allows an in-

dependent object decoding and therefore display without any 
reconstruction problem. The non-decoded objects will leave 
flat areas. This can be optimum depending on the targeted ap-
plications: for instance, only vehicles are required for auto-
matic registration plate identification; only the background and 
people inside a sub-portion of a video have to be decoded if 
the user zoomed inside a sequence. 

The new structure was also designed to provide a new mul-
timedia access. It is possible to directly access a given level of 
hierarchy, i.e. to the parts of the sequence considered as sig-
nificant, by navigating quickly inside the image / objects group 
/ object headers. This navigation can be achieved through sev-
eral approaches. If the user knows what he is looking for (e.g. 
a red object), he will instantiate the decoding process specify-
ing a decoding process limited to the corresponding objects. 
The navigation can also be interactive: a parsing process gets 
the descriptors inside the headers and the user specifies the 
ones he wants to be taken into account. The interactive decod-
ing process can also be done by point and click selection on 
the sequence to indicate which parts of the sequence the user 
wants to go on visualising. 

Having the descriptors defined inside the headers also pro-
vide a powerful tool for indexation, therefore for requests, 
from a unique stream. The metadata are coded inside the com-
pressed video and do not require a dedicated encoding and/or 
transmission. The process implementation makes it possible to 
use these data without having to include other tools. The over-
all structure allows a semantic navigation, based on the defini-
tion of a hierarchy or an object category, instead of the previ-
ous possibilities which were restricted to spatial or temporal 
sub-portions of a sequence. 

If a sequence is coded using for each image only one object 
group containing one object made of one slice, the compres-
sion process is similar to the one obtained via the current stan-
dards, which implies a comparable compression ratio. 

III. H.264 IMPLEMENTATION 
With new investigations led by the MPEG experts group as 

MPEG-A Surveillance Multimedia Application Format 
(SMAF), a compression standard dedicated to or at least opti-
mised for videosurveillance might appear. If the suggested 
structure might later be proposed for standardisation, the cur-
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rent ones made us design a specific H.264 encoder/decoder 
that tends to the hierarchy provided some restrictions. 

A. Preliminary remarks 
As exposed before, one of the first problems we have to 

face here is the dynamic slicing compatibility. The H.264 stan-
dard does not describe or require a specific implementation 
concerning this point. The only detailed fact is that for an 
MBAmap update, a Picture Parameters Set unit has to be sent 
first. Usually the PPS is used for quantification parameters, the 
number of reference frames, the weighted bi-prediction etc. 
Considering this, most decoders expect an Intra coded image 
after a PPS, even if the standard does not specify it. Our use of 
the PPS and dynamic MBAmap being quite unusual or even 
unexpected, most of the decoders will not be able to process 
the sequence. It is yet possible to design a fully compliant de-
coder taking into account these specific sequences. 

We restrict the detailed image structure to fit the possibili-
ties provided by H.264, as shown in Table I. The image level 
remains as it was, and a new image is identified by the frame 
number (framenum) index. The objects group level is not used. 
We use the slices group to define the object level, inside which 
the slices we suggested are replaced by the H.264 slices defini-
tion. 

 

TABLE I 
HIERARCHY EQUIVALENT IN H.264 

New approach H.264 
Image Image (access unit) 
Objects group None 
Object Slices group 
Slice / object Part Slice 
 
Many tools or advantages described before are therefore not 

available or not as powerful as expected when restricted to 
H.264. The pass-over without the new slice definition is dis-
carded and replaced by the current macroblock per macroblock 
declaration of the standard. The hierarchical structure com-
bined with the descriptors cannot be inserted directly inside the 
compressed video stream. If provided, these elements will 
have to be inserted inside dedicated Network Abstraction 
Layer (NAL) units, preferably considering the types 30 and 31 
(undefined, and not used by the RTP protocol). 

H.264 restrictions dealing with slices group also imply us-
ing the baseline and extended profiles. The main profile only 
allows one slices group, making the expected stream definition 
worthless. The baseline and extended ones can provide up to 
height slices groups, which is still restrictive considering the 
semantic use of these, but can however deal with seven mobile 
objects in the scene at the same time (the eighth slices group 
being allocated to the background). 

B. Encoding process 
Dealing with videosurveillance, there is no defined start of a 

sequence, which discards the initialisation problems. However, 

a one Group of Pictures (GoP) initialisation time is sufficient 
to start the following procedures. 

1) Detecting the moving objects. This task can be achieved 
through many algorithms. However to maintain a fast comput-
ing process, as well as low CPU time and memory needs, we 
suggest to use analysis in the compressed domain. This ap-
proach, as detailed in [1.2.5.6.7.8], exploits the information 
contained in the transform coefficients (integer transform for 
H.264) and/or the motion vectors to detect the mobile objects 
inside the compressed video stream. This approach allows an 
object segmentation function analysing up to 500 images per 
second (720x576 4:2:0 on a 2.66 GHz core). The detection of 
the moving objects is achieved on an image per image basis, 
which is relevant considering videosurveillance uses Intra and 
Predicted frames to avoid the delay generated by Bidirectional 
frames. Then a Munkres matching algorithm combined with a 
Kalman filter are run to follow the object trajectory over sev-
eral frames and to predict the position of each object inside the 
frame to be encoded. 

Some criticism could be objected concerning the lower seg-
mentation resolution implied by the analysis in the compressed 
domain. Intrinsically these algorithms provide a block or mac-
roblock sensitivity; however refinements can be achieved to 
obtain a pixel precision, as described in [1]. Anyhow, we need 
this segmentation to define slices group, which means only a 
macroblock resolution is relevant. 

2) Dynamic slicing and compression of the current image. 
We now have one image to compress and we know where the 
mobile objects are and their shape at a macroblock resolution. 
The next step is to define the slices groups and the MBAmap. 
To be as close as possible to the new image hierarchy, we as-
sociate one slice group with one object, but if more than seven 
mobile objects are present in the image, it is possible to have 
one slices group containing two or more objects. In this case, 
the descriptors will be used to group preferably objects having 
the highest similarity (e.g. cars together). The additional NAL 
units can be used to store the descriptors obtained from the 
analysis in the compressed domain. 

The compression is then performed almost normally: for 
each object the H.264 standard compression is achieved, but is 
restricted inside the object only, using its occurrences inside 
previous images matched by the algorithm which was used to 
predict the object position. Considering the object segmenta-
tion is precise enough, this particularity will not affect much 
the compression ratio as one object can usually be predicted 
from itself in the reference images. It also tends to the inde-
pendent object coding inside a unique stream expected from 
the suggested image hierarchy. 

C. Resulting stream 
The compressed video obtained is H.264 compliant, al-

though using a dynamic slices change which might not be 
taken into account by any decoder. Yet the background is 
coded independently from the moving objects. These can also 
be accessed one by one, provided no more than seven are pre-
sents in the current image. If more are inside the same image, 
they can be accessed group by group, each providing objects 
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with the highest similarity found during the compression proc-
ess. 

As we suggested when defining the image description hier-
archy, this new structure can be used to decode independently 
the different objects inside a videosurveillance stream, but it 
can also make many other applications possible. 

IV. SELECTIVE VISUAL ENCRYPTION 
When dealing with videosurveillance, a recurrent problem is 

linked to the privacy of the people. Streams can be intercepted, 
people waiting for a granted access to a company in a security 
office can overlook the monitors, etc. Some work focused on 
ciphering H.264 videos, and now we propose to enhance them 
with selective encryption. 

 

A. H.264 encryption 
The underlying idea is to provide a tool that can create a 

visually ciphered video which is compliant with any H.264 
decoder. C. Bergeron in [3] described a method based on AES 
[4] to obtain such a results by analysing which bits of the Vari-
able Length Code (VLC) words inside a H.264 stream can be 
altered without denaturing the stream. Knowing these bits, an 
encryption key can be applied only on these, resulting in the 
expected ciphered sequence. 

In our case, we only want to cipher mobile object inside a 
stream, making it possible to understand the scene without the 
decryption key and maintaining privacy over people and vehi-
cles. Without all the above dedicated implementation of an 
H.264 encoder, it would be possible to identify the moving 
objects and cipher them with no more attention. The problem 
would in this case come from the prediction which is not re-
stricted inside each object. The Intra-coded images would dis-
play more or less the same results as the one we claim, but the 
further the image is from an Intra-coded one, the more spread 
the encryption will be, because of the intra-prediction used in 
each frame in H.264, altering the whole field of view. 

B. H.264 selective encryption 
Considering the image hierarchy description and the H.264 

implementation described in sections II and III, we can now 
only apply the H.264 ciphering on the slices groups dedicated 
to mobile objects. Objects being independently coded inside 
the stream, there is no ciphered zone spreading inconvenient. 
The 30 and 31 NAL units, a priori containing the descriptors, 
will also be used to identify the slices groups which were ci-
phered so that the decoder can select on which part of the im-
age to apply the decryption key. 

The difference between the two encryption processes is il-
lustrated by figure 8, while the overall process is shown in 
figure 10. 

The proposed scheme works as well on videos where ob-
jects are small (wide angle camera in videosurveillance) or 
when they occupy most of the field of view, in case the result 
is close to the one encoding the whole sequence as in [3]. 
However, to exploits the possibilities offered by this selective 

encryption, small objects allow contextual identification, as 
shown in Figure 9. 

 

 
Fig. 8  Selectivity improvement. 

 
  

   

 

 
Fig. 9  Results in videosurveillance (Top: Speedway sequence, Bottom: 

Caretaker [11] Corpus). 
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Fig. 10  Selective visual encryption algorithm. 

V. CONCLUSIONS AND PERSPECTIVES 
Many applications require a semantic knowledge of a video 

sequence, mainly the ones based on requests, as network re-
search, videosurveillance, television archive centre, etc. The 
current video standards do not allow these tasks directly on a 
single stream. By not being able to organise semantically the 
data inside the sequence, it is impossible to directly apply 
functions adapted to different image areas. Aiming the regions 
considered as pertinent from the application focus allows proc-
esses such as encryption, watermarking or protection through 
redundancy. With the current standards, the most effective 
generic approach will decompress the image, determine the 
areas to be processed, apply the process, and finally recom-
press the image. The CPU and/or memory resources for such a 
result can become prohibitive when not impossible considering 
hi-definition videos are becoming a usual medium. 

In this context, we suggested a new image definition hierar-
chy, which supports a full access to semantic objects inside a 

video sequence by coding them independently in a single 
stream. As this structure cannot be implemented respecting the 
current standards, we also explained a restriction to this defini-
tion making it available and compliant with H.264. A first ap-
plication we presented using this method uses these specific 
streams to select the mobile objects and encrypt them to en-
hance videosurveillance sequences with privacy respect. Our 
future work will focus on implementing this H.264 restriction 
of the new hierarchy. We will measure the results and validate 
our approach experimentally. Considering the compression 
impact, our implementation will be compared to the MPEG-4 
scene representation using H.264 sub-streams, as well as 
unique H.264 streams using the "box-out" and "foreground 
with left-over" slice group mapping. Considering the descrip-
tor aspect of the structure, we will test the results dealing with 
recall on request and partial decoding of a selected object. 

As many applications become possible through this struc-
ture, we will also investigate the range of its perspectives and 
if needed detail the sub-parts that might require a extended 
specification.  
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Abstract— In this contribution the modeling of power con-
sumption for the VLIW processor TMS320C6416T is presented
taking into account typical software algorithms in signal process-
ing. The modeling is performed at the functional level making this
approach distinctly different from other modeling approaches in
low level technique. This means that the power consumption can
be identified at an early stage in the design process, enabling
the designer to explore different hardware architectures and
algorithms. Some typical signal processing algorithms are used
for the purpose of validating the proposed model. The estimated
power consumption is compared to the physically measured
power consumption, achieving a very low resulting average
estimation error of 1.75% and a maximum estimation error of
only 3.6%.

I. INTRODUCTION

Many applications in special areas such as hand-held com-
putation, tiny robots, and guidance systems in automated
vehicles are powered by batteries of low rating. In order to
avoid frequent recharging or replacement of the batteries, there
is significant interest in low-power system design. Very Long
Instruction Word (VLIW) Digital Signal Processors (DSP)
are the most worthy choice for such an application domain
because of their optimal performance at low power [1], [2].

The importance of the power constraints during the design
of embedded systems has continuously increased in the past
years, due to technological trends toward high-level integration
and increasing operating frequencies, combined with the grow-
ing demand of portable systems. This has led to a significant
research effort in power estimation and low power design [3].

Power measurement tools are available only for the lower
levels of the design, at the circuit level and to a limited extent
at the logic level. These tools are very slow and impractical to
use to evaluate the power consumption of embedded software
since the application power consumption would only be known
at the very last stage of the design process.

In this paper, an approach for modeling the power con-
sumption of a VLIW DSP, from the software point of view,
is presented. The contribution of this work aims to precisely
estimate the power consumption of the core processor while
running a software algorithm at an early stage in the design
process. The targeted DSP is the TMS320C6416T (for the rest
of the paper it is referred to as C6416T for brevity) from Texas

This work has been funded by the Christian Doppler Laboratory for Design
Methodology of Signal Processing Algorithms, as well as the comet funded
the K-project: Embedded Computer Vision.

Instrument. This processor features the highest-performance
among the fixed-point DSPs of the C6000 DSP platforms.

The rest of the paper is organised as follows: Section II
presents an overview of several existing power consumption
modeling techniques for general purpose processors. A general
overview of the target architecture is presented in Section III.
It is followed by a detailed description of the functional
level analysis for the targeted architecture in Section IV. The
proposed power consumption model is verified in Section V
and the reliability of the estimation is demonstrated. Finally,
Section VI summarizes the main contributions of this paper.

II. RELATED WORK

Recent approaches to model the power consumption of
DSPs can be separated into two main categories: hardware
level models and instruction level models. Hardware level
models calculate power and energy from detailed electrical de-
scriptions, comprising circuit level, gate level, register transfer
(RT) level or system level. Instruction level models deal only
with instructions and functional units from the software point
of view and without electrical knowledge of the underlying
architecture [4].

Traditional methodologies perform power estimation at low
abstraction levels such as circuit, gate or RT level [5], [6],
micro-architectural-level simulation [7], [8], [9]. While pro-
viding excellent accuracy; these methodologies are slow and
impractical for analyzing the power consumption at an early
design stage. Moreover, these methodologies require the avail-
ability of lower level circuit details or a complete Hardware
Description Language (HDL) design of the targeted processor,
which is not available for most of commercial off-the-shelf
processors [9]. Several instruction level estimation models
have been proposed. These can be classified into Instruction
Level Power Analysis (ILPA) and Functional Level Power
Analysis (FLPA).

An instruction level power model for individual processors
was first proposed by V. Tiwari [10]. By measuring the current
drawn by the processor as it repeatedly executes distinct
instructions or distinct instruction sequences, it is possible to
obtain most of the information that is required to evaluate
the power consumption of a program for the processor under
test [10]. Power is modeled as a base cost for each instruction
plus a circuit state overhead that depends on neighboring
instructions. The base cost of an instruction can be considered
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as the cost associated with the basic processing needed to
execute the instruction. An experimental method is proposed
by the authors of [10] to empirically determine the base
and the circuit overhead costs. In this experimental method,
a program containing an infinite loop consisting of several
instances of the given instruction is used. The average current
drawn by the processor core during the execution of this loop
is measured by a standard off-the-shelf, dual-slope integrating
digital multimeter.

Much more accurate measuring environments have been
proposed to precisely monitor the instantaneous current drawn
by the processor instead of the average current. One of
these approaches has used a high-performance current mirror,
based on bipolar junction transistors as current sensing cir-
cuit [11]. Another approach, to reduce the spatial complexity
of instruction-level power models, is presented in [12] Therein,
inter-instruction effects have been measured by considering
only the additional energy consumption observed when a
generic instruction is executed after a No Operation (NOP)
instruction.

The ILPA based methods exhibit usually a small margin of
error, typically 2 to 4 percent. However, these methods have
some drawbacks. One of these drawbacks is that the number
of current measurements is directly related to the number of
instructions in the Instruction Set Architecture (ISA), and also
the number of parallel instructions composing the very long
instruction in the VLIW processor. The problem of instruction
level power characterization of K-issue VLIW processor is
O(N2K) where N is the number of instructions in the ISA and
K is number of parallel instructions composing the VLIW [13].
Also they do not provide any insight on the instantaneous
causes of power consumption within the processor core, which
is seen as a black-box model. FLPA was first introduced by
J. Laurent et al. in [14].

The basic idea behind the FLPA is the distinction of the
processor architecture into functional blocks like Process-
ing Unit (PU), Instruction Management Unit (IMU), internal
memory and others [14]. At first, a functional analysis of
these blocks is performed to specify and then discard the
non-consuming blocks (those with negligible impact on the
power consumption). The second step is to figure out the
parameters that affect the power consumption of each of the
power consuming blocks. For instance, the IMU is affected
by the instructions dispatching rate which in turn is related to
the parallelism degree. In addition to these parameters, there
are some parameters that affect the power consumption of
all functional blocks in the same manner such as operating
frequency and word length of input data [15].

By means of simulations or measurements it is possible to
find an arithmetic function for each block that determines its
power consumption depending on a set of parameters. For the
determination of these arithmetic functions for each functional
block, the average supply current of the processor core is
measured in relation with the variation of each parameter.
These variations are achieved by a set of small programs,
called scenarios. Such scenarios are short programs written

in assembly language and consisting of unbounded loops
with a body of several hundreds of certain instructions that
individually invoke each block. The power consumption rules
are finally obtained by curve-fitting the measurements values
[15].

The parameters that affect the power consumption for
each functional block can be extracted from the assembly
code generated by the Integrated Development Environment
(IDE). Some parameters cannot be extracted directly from the
assembly code, such as the execution time and the data cache
miss rate. Therefore, at least one simulation is required to
obtain these parameters with the aid of the profiler.

The functional level power modeling approach is applicable
to all types of processor architectures. Furthermore, FLPA-
modeling can be applied to a processor with moderate effort
and no detailed knowledge of the processors architecture is
necessary [16].

Fig. 1. C6416T block diagram.

III. TARGET ARCHITECTURE

A block diagram of the C6416T CPU is shown in Fig. 1.
The CPU contains a program fetch unit, an instruction dispatch
unit, an instruction decode unit, two data paths each of four
functional units, as well as 64 32-bit registers. The program
fetch, instruction dispatch, and instruction decode units can
deliver up to eight 32-bit instructions to the functional units
every CPU clock cycle. The processing of the instructions
occurs in each of the two data paths (A and B). The CPU
also has a 32-bit, byte-addressable address space and a 256
bit read-only port to access internal program memory as well
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as two 256-bit ports (read and write) to access internal data
memory. However, the internal L2 memory is unified for data
and program, the L1 memory is organized into separate data
and program caches [17].

This DSP is considered as a complex processor architecture
since it features a deep pipeline (11 stages) and can execute
up to eight parallel instructions per cycle.

IV. MODELING METHODOLOGY FOR C6416T

After applying the FLPA, the C6416T architecture is subdi-
vided into six distinct functional blocks (clock tree, instruction
management unit, processing unit, internal memory, L1 data
cache and L1 program cache) as shown in Fig. 2. The pa-
rameters that affect the power consumption for the determined
functional blocks are also shown in Fig. 2. The C6416T fetches
instructions from memory in fixed bundles of 8 instructions,
known as fetch packets. The instructions are decoded and
separated into bundles of parallel-issue instructions known as
execute packets.

The dispatching rate α represents the average number of
execution packets per fetch packet. The processing rate β
stands for the average number of active processing units per
cycle. The internal memory read/write access rates express
the number of memory accesses divided by the number of
required clock cycles for executing the code segment under
investigation. Finally the data cache miss rate λ corresponds to
the number of data cache misses divided by the total memory
accesses.

Fig. 2. Functional level power analysis for C6416T.

A. Experimental setup

In our setup, the DSP core voltage is 1.2 V and the operating
frequency ranges from 600 MHz to 1200 MHz. The arithmetic
functions in the following sections IV-B, IV-C, IV-D, describe
the current, drawn by the DSP core at operating frequency
of 1000 MHz. All measurements are carried out on the DSP
Starter Kit (DSK) of the C6416T manufactured by Spectrum
Digital Inc. There are three power test points on this DSK for
DSP I/O current, DSP core current and system current. The
Code Composer Studio (CCS3.1) from Texas Instruments is
used as the IDE.

Several assembly language scenarios have been developed
to separately stimulate each of the functional blocks. All
scenarios consist of unbounded loops with a body of more than
1000 instructions, to avoid the effect of branching instructions
on the measured current. First of all, the effect of the operating
frequency on the power consumption is determined. The oper-
ating frequency linearly affects the current drawn by the DSP
core and hence, also linearly affects the power consumption
of the processor. Figure 3 shows the relation between the
operating frequency and the current drawn by the DSP core.

For demonstration purposes the process of determining the
power consumption rules for IMU, PU and L1 data cache
functional blocks is presented.
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Fig. 3. Model function of the C6416T clock tree.

B. IMU power consumption model
The IMU unit consists of two main sub-units which are

the instructions fetching unit and the dispatching unit. The
C6416T processor fetches eight instructions per cycle as one
fetch packet. The dispatch unit then subdivides this fetch
packet into execution packets. Since the C6416T has eight
functional units, it is capable of simultaneously executing up
to eight instructions. Consequently, the dispatch unit can divide
the fetch packet into one (maximum parallelism) to eight
(sequential) execution packets. Therefore, it is obvious that
the dispatch rate is the only parameter that affects the power
consumption of the IMU.

The proposed scenario should not invoke any other func-
tional unit but the IMU. Hence, the scenario is composed
of an unbounded loop with more than 1000 NOPs. As the
NOP instruction does not require any processing unit for its
execution. The scenario varies the dispatch rate (number of
fetch packets / number of execution packets) from 0.125 to
1.0.

Figure 4 indicates the characteristics of the current drawn
by the core processor with a varying dispatch rate. By curve
fitting the measurement values in Fig. 4 the arithmetical
function in (1) is obtained.

IDD IMU = −0.0918α2 + 0.284α+ 0.0603 (1)
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Fig. 4. Measured IMU current values vs. model function of (1).

The quality of the fitting process is measured by the value
R-squared (R2): A number from 0 to 1, which is the square
of the residuals of the data after the fit. This value expresses
what fraction of the variance of the data is explained by the
fitted trend line. It reveals how closely the estimated values
for the trend line correspond to the actual data. A trend line
is most reliable when its R2 value is at or close to 1.0 [18].
Since the R2 value for the arithmetic function in (1) equals
0.9994 that means (1) is an excellent fit for the curve values
in Fig. 4.

The arithmetic function in (1) does not consider the effect
of the pipeline stalls. Many reasons cause the pipeline to stall.
For instance, one data cache miss stalls the pipeline for at least
6 cycles. Hence, the arithmetic function in (2) is presented to
account for the pipeline stall effect.

IDD IMU = (−0.0918α2 + 0.284α+ 0.0603)(1− PSR) (2)

where PSR stands for pipeline stall rate which can be ex-
pressed as the number of pipeline stall cycles divided by the
total cycles required for executing the code segment under
investigation.

C. PU power consumption model

The data path of the C6416T consists of eight functional
units. These functional units can work simultaneously, if
the dispatch unit succeeds to compose an execution packet
with eight instructions. The dispatch rate can be used as the
affecting parameter for the PU power consumption. But, the
fact that the NOP does not require any PU for its execution
convinced us that another parameter yields a better description
of the PUs. The new parameter is the processing unit rate
which expresses the average number of active processing
units per cycle. Another important parameter that affects the
processing unit power consumption is the word length of the
data operands. In the C6416T the word length varies from 8
bits to 32 bits. Thus, in our model 16 bit word length has been
chosen to be the typical word length.

More than 1000 different instructions compose the scenario
that varies the processing unit rate. That is to account for the
inter-instructions effect. The current measured from the DSK

is the sum of the clock tree, IMU, and the PU currents. Headed
for attaining the current drawn by only the PU, the IMU and
clock tree currents are subtracted from the measured current.
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Fig. 5. Measured PU current values vs. model function of (3).

Figure 5 depicts the effect of varying the number of active
PU per cycle on the current drawn by the core processor. The
arithmetic function that best fit the curve in Fig. 5 is a linear
equation as shown in (3)

IDDPU = (−0.0049β + 0.0065)(1− PSR) (3)

The arithmetic function in (3) resulted in R2 value of 0.9982
that means it is the best fit for the curve values in Fig. 5.

Compared to other functional units such as clock tree or the
IMU, it is clear that the PU does not significantly contribute
to the total power consumption of the core processor. It
is important to mention that the scenario for invoking the
PU does not include any memory instructions. The internal
memory operations are handled in a separate scenario.

D. L1 data cache power consumption model

The L1 data cache functional block represents the flow of
data from the L1 data cache to L2 memory and vice versa.
Different scenarios are prepared to stimulate the effect of the
data cache miss.

The data cache miss rate is used as the affecting parameter
for the L1 data cache functional block. Taking into account
the fact that L1 data cache is two-way associative cache, a
scenario that varies the number of data cache misses per a
fixed number of memory accesses has been developed. In this
scenario, arbitrary data are pre-loaded into both blocks of set
0. To force a data cache miss, data from certain addresses in
the L2 memory, which must be mapped into set 0 blocks, are
loaded to L1 data cache. The addresses of the new data to be
loaded are different from those already in set 0. Hence, a data
caches miss occurs.

Figure 6 shows the effect of varying the data cache miss rate
on the current drawn by the core processor. The best arithmetic
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function that fit the measured values in Fig. 6 is obtained as
indicated in (4) with R2 value of 0.9909.

IDDL1D = (−2 · 10−5λ2 + 0.0041λ)(1− PSR) (4)

The arithmetic function in (4) is a quadratic-polynomial.
This arithmetic function differs from the corresponding linear
function that was proposed in [16] for the cache functional
block. The squared-function yields better description for the
L1 data cache block due to the fact that L1 data cache pipelines
the cache misses, to decrease the resulting pipeline stalls. The
proposed model in [15] did not separately investigate the effect
of data cache misses instead it is included in the processing
unit functional block.

More details regarding the way in which the functional
blocks were stimulated can be found in [19].
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Fig. 6. Measured L1 data cache current values vs. model function of (4).

V. VALIDATION

For purpose of validating the proposed power consumption
model of the VLIW processors the following benchmarks
examples are presented. A finite impulse response (FIR) filter
that uses 240 coefficients is a common signal processing
benchmark. The FIR benchmark is found in the Texas Instru-
ments signal processing library for C64x processor family. The
dot product for two arrays of length 128 and input data of 16-
bits is also one of the typical signal processing operations.
Two more benchmarks are used from the image processing
library of Texas Instruments the Sobel filter of window 3× 3
and the image threshold are applied for an input image of
size 256 × 32 (Columns×Rows). The input data for all the
previously mentioned benchmarks are located in the internal
data memory.

First of all, all optimization options which are included in
the CCS3.1 are turned off because these optimization options
affect the speed or the code size only and are not dedicated
to power optimization. The second step is to compile the

benchmarks. From the generated assembly files the required
parameters for the model are calculated with the aid of the
CCS3.1 profiler for the parameters that can not be estimated
statically such as the data cache miss rate. For instance, the
processing unit rate which is defined as the average number
of active processing units per cycle is calculated from the
assembly code. The parameter β is the result of dividing the
number of processing units (equals the number of instructions
excluding the NOP) by the number of cycles per code iteration.

Figure 7 presents the result of the estimated power con-
sumption versus the measured one for the above mentioned
benchmarks. The average estimation error is 1.75% and in the
worst case is 3.6%.

Fig. 7. Estimated vs. Measured power consumption of the C6416.

VI. CONCLUSION

In the presented paper different power consumption ap-
proaches that are applied on various levels of abstraction
have been recapitulated. A functional level power analysis
technique has been applied to the commercial off-the-shelf
VLIW processor C6416T. The processor architecture has
been divided into several functional blocks. The parameters
that affect the power consumption of each functional block
have been determined. These parameters have been calculated
from the generated assembly code of the IDE. The inter-
instructions as well as the pipeline stall effects have been
investigated in our proposed model. The power consumption
has been estimated for several signal and image processing
benchmarks. The estimated power consumption is compared
with the physically measured power consumption and a very
low resulting average error of 1.75% is realized. A maximum
estimation error of only 3.6% is achieved. There are some open
issues to be studied in the future, for example, the effect of
parameters estimation quality on the power estimation using
the proposed model.
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Abstract— Embedded processors, particularly for low power ap-

plications, can benefit from optimization. The memory system is a 

fundamental candidate for optimization and has been investigated 

for some time. Cache memories are one of the most complex 

memory structures which require particular mathematical mod-

els for analysis in order to have efficient optimization. This paper 

proposes energy and throughput models for a data cache, which 

could be used for overhead analysis for various cache types with 

relatively small amount of inputs. These models analyze the over-

heads on an application basis, thus providing the hardware and 

software designer with the feedback vital to tune the cache or 

application for a given energy budget. The models are suitable for 

use at design time in the cache optimization process for embedded 

processors considering time and energy overhead.   

I. INTRODUCTION 

The recent drive towards low power processing has chal-

lenged the designers and researchers to optimize every compo-

nent of the processor. However optimization for energy usually 

comes with some sacrifice on throughput, and which may re-

sult in overall minor gain. 

 

 

Fig. 1 Power consumption of a typical battery operated processor    
(adapted from[1]) 

 

Fig. 1 shows the operation of a typical battery operated em-

bedded system. Normally, in such devices, the processor is 

placed in active mode only when required, otherwise it remains 

in a sleep mode. An overall power saving (increased through-

put to energy ratio) could be achieved by increasing the 

throughput (i.e. lowering the duty cycle), decreasing the peak 

energy consumption, or by lowering the sleep mode energy 

consumption. This phenomenon clearly shows the inter-

dependence of energy and throughput for overall power sav-

ing. Keeping this in mind, a simplified approach is proposed 

that is based on energy and throughput models to analyze the 

impact of a cache structure in an embedded processor per ap-

plication basis. The remainder of this paper is divided into five 

chapters. In the following two chapters related work is dis-

cussed and the energy and throughput models are introduced. 

In the fourth and fifth chapters experimental environment and 

results are discussed, and the final chapter forms the conclu-

sion. 

II. RELATED WORK 

The cache energy consumption and throughput models have 

been the focus of research for some time. Wen-Tsong et al. [2] 

present an algorithm to find optimum cache configuration 

based on cache size, the number of processor cycles and the 

energy consumption. Their work is an extension of the work of 

Preeti et al. [3, 4] on data cache sizing and memory explora-

tion. The energy model by Wen-Tsong et al. though highly 

accurate, requires a wide range of inputs like number of bit 

switches on address bus per instruction, number of bit switches 

on data bus per instruction, number of memory cells in a word 

line and in a bit line etc. which may not be known to the model 

user at an earlier stage. Another example of a detailed cache 

energy model was presented by Milind et al. [5]. These ana-

lytical models for conventional caches were found to be accu-

rate to within 2% error. However, they over–predict the power 

dissipations of low–power caches by as much as 30%. CACTI 

(cache access and cycle time model) [6] is an open-source 

modelling tool based on such detailed models to provide thor-

ough, near accurate memory access time and energy estimates. 

However it is not a trace driven simulator, so energy consump-

tion resulting in number of hits or misses is not accounted for a 

particular application. Chen et al. in [7] have presented a 

framework for data locality prediction, which can be used to 

profile a code to reduce miss rate. The framework is based on 

approximate analysis of reuse distance, pattern recognition, 

and distance-based sampling. Their results show an average of 

94% accuracy when tested on a number of integer and floating-

point programs from SPEC and other benchmark suites. Ex-

tending their work Xipeng et al. in [8] introduce an interactive 

visualization tool that uses a three-dimensional plot to show 

miss rate changes across program data sizes and cache sizes. 

Another very useful tool named RDVIS as a further extension 

of the work previously stated was presented by Beyls et al. [9, 

10]. Based on cluster analysis of basic block vectors, the tool 

gives hints on particular code segments for further optimiza-

tion. This in effect provides valuable feedback to the pro-

grammer to improve temporal locality of the data to increase 
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hit rate for a cache configuration. The following chapter pre-

sents the proposed cache energy and throughput models, which 

can be used to identify an early cache overhead estimate based 

on a limited set of input data. These models are an extension of 

the models previously proposed by Qadri et al. in [11]. 

III. THE D-CACHE ENERGY AND THROUGHPUT MODELS  

The cache energy and throughput models given below strive 

to provide a complete application based analysis. Thus they 

facilitate the tuning of a cache and an application according for 

a given power budget. The overhead can be obtained by taking 

the ratio of energy/throughput with cache to the corresponding 

values without cache. 

A. Energy Model  

If �����  and ������  is the energy consumed by cache read 

and write accesses, ����	
���� the leakage energy of cache 

structure in stand-by mode, ��� the energy consumed by 

cache to memory accesses, ��� the energy miss penalty and 

����  is the Energy consumed by other instructions (which do 

not require data memory access), then the total energy con-

sumption of the code ������  in Joules [J] could be defined as 

 

������ � ����� � ���	�� � ����
���� � ���� � ��� � ��	�� .  (1) 

Further defining the individual components,  

����� � ����� . ����.���� . �1 � �����

���
�, (2) 

���	�� � ���	�� . ����.��	�� . �1 � �����

���
�, (3) 

���� � ��. 	����� � ���	��
. �1 � �����

���
�, (4) 

��� � �	��� . 	����� � ���	��
. ���	��. �����

���
�, (5) 

where ����� is the number of read accesses, ������ the number 

of write accesses, ����.���� the total dynamic read energy for 

all banks, ����.����� the total dynamic write energy for all 

banks, �� the energy consumed per memory access, �����  the 

per cycle idle mode energy consumption of the processor,  

����� the miss ratio (in percentage), and ����� is the miss pe-

nalty (in number of stall cycles). 

It is worth noting that ����	
���� depends upon the time for 

which cache is not accessed; and could be calculated using the 

following equation 
����
���� � ����
 . �������	���, (6) 

where ����������� is the total time for which cache was idle in 

seconds. 

B. Throughput Model 

Due to the concurrent nature of cache to memory access 

time and cache access time, their overlapping can be assumed. 

If ������ is the time taken for cache operations, �	�	 the time 

saved from memory operations, �	
 the time miss penalty and 

�	���  is the time taken while executing other instructions 

which do not require data memory access; then the total time 

taken by an application with a data cache could be estimated as 

������ � ������ � ���� � ��	 � ��
�� . (7) 

Furthermore,  

������ � �� . ����� � ���
��	. 
1 � �����

���
� and 

(8) 

��	 � ������ . ����� � ���
��	. 
�
��.
��
��

100 � 
(9) 

where �� is the time taken per cache access and ������ is the 

cycle time in seconds [sec]. If leakage energy is considered, 

then ����������� could be calculated by subtracting the time for 

which cache was active (�������������) from the total time for 

which processor was active, where  

������������� � ������ � �	
. (10) 

IV. THE EXPERIMENTAL ENVIRONMENT 

To analyze the above given models, AVR ATmega644P 

microcontroller architecture was used as the target evaluation 

platform for its being a non-cache system [12]. This particular 

processor is a part of Atmel’s picoPower family of energy effi-

cient processors. UCLA’s AVRORA (AVR Simulation and 

Analysis Framework) [13] was used to obtain coarse-grained 

code profile and cycle count information. The AVRORA’s 

code profile is termed coarse-grain because it gives cycle 

counts and number of calls based on sections of the software; 

however it does not provide the exact count of memory ac-

cesses as required for the mathematical models proposed 

above. Furthermore, the AVRORA is based on ATmega128 

ISA; and the Call and Return instructions of ATmega644P 

require one cycle more than the ATmega128. To overcome 

these problems a software tool, the Essex AVR Code Profiler 

was designed. The Essex AVR Code Profiler uses the output 

from AVRORA code profiler, along with the object dump file, 

in order to generate instruction level profile for a given code.   

CACTI 4.2 [6] was used for estimating cache and data memory 

access time and energy consumption. As the models analyze 

the cache overhead based on a specific applications rather than 

provide  generic results; applications based on MiBench [14] 

and the MSP430 competitive benchmarking [15] were selected 

for analysis purpose. 

1) BasicMath: The basic math application is a part of 

automotive suite of MiBench. It performs cubic function solv-

ing, integer square root and angle conversions from degrees to 

radians.  

2) QSort: The QSort application is also a part of auto-

motive suite of MiBench. It sorts a large array of strings into 

ascending order using the quick sort algorithm.  

3) FFT: This benchmark is a part of telecommunication 

suite of MiBench. It performs a fast Fourier transform on an 

array of data. Fourier transforms are used in a wide variety of 

digital signal processing applications to find the frequencies 

contained in a given input signal. 

4) Dijkstra: The Dijkstra benchmark is a part of network 

suite of MiBench. It constructs a large graph in an adjacency 

matrix representation and then calculates the shortest path be-

tween every pair of nodes using repeated applications of 
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Dijkstra’s algorithm. The Dijkstra’s algorithm is a well known 

solution to the shortest path problem. 

5) MatrixMul: It is a part of MSP430 competitive 

benchmarking suite. The application multiplies a 3 x 4 matrix 

by a 4 x 5 matrix. 

6) FIR Filter: It is a part of MSP430 competitive 

benchmarking suite. It calculates the output from a 17-

coefficient tap filter using simulated ADC input data. 

 

The above benchmarks were carefully chosen with particu-

lar reference to typical low power application scenarios rang-

ing from sensor networks to automotive and digital signal 

processing. For the above cited applications the Essex AVR 

Code Profiler generated the instruction cycles distribution re-

sults as shown in Fig 2. The instructions are classified as Call, 

Push/Pop, DMStore (data memory store), PMStore (program 

memory store), DMLoad (data memory load), PMLoad (pro-

gram memory load), branch, jump and miscellaneous (i.e. in-

structions which do not require data memory access). 

 
Fig. 2 Instruction Cycle distribution as per classification. 

 

To identify cache access time, energy per read and write 

access; the CACTI cache modeller was used for a 512 bytes, 4-

way set associative cache with the parameters shown in Table 

I.  

TABLE I 

CACTI CACHE INPUT PARAMETERS 

Cache Parameter Value 

Number of banks 2 

Total cache Size [bytes] 512 

Size in bytes of a bank 256 

Number of sets per bank 8 

Associativity 4 

Block Size [bytes] 8 

Read/Write Ports 1 

Read Ports 0 

Write Ports 0 

Technology Size [nm] 355 

Vdd [Volts] 2.618 

 

The cache fabrication technology was selected as 355nm 

which is the same as of ATmega644P [16]. The size of the 

cache was selected to be realistically in par with the actual 

ATmega644P data memory size, i.e. 4 KB. It is interesting to 

note that, the power dissipation of a direct mapped cache could 

be about 30% of a same sized four way set associative cache 

[17], so it can result in greater energy efficiency. However, 

typically a direct mapped cache has the highest miss rate, as 

the miss rate tends to decrease with the increase in the cache 

associativity [18]. Thus a 4-way set associative cache presents 

a viable compromise with energy efficiency and miss rate. 

Furthermore, if the cache is gated as proposed in a scheme by 

Michael et al. [19],  stand-by leakage energy could be reduced 

up to 97% of active leakage energy. Thus assuming the same 

structure in this case, �����  could be ignored for simplification 

purpose. Also the particular version of CACTI used does not 

provide leakage power data for 355 nm process technology. 

V. RESULTS 

For the given cache parameters, the cache modeller resulted 

in access time of 2.83ns, and a total dynamic read and write 

energy of 0.34nJ, and 0.068nJ respectively. As the AT-

mega644P energy consumption per memory access informa-

tion is unknown, it was conservatively assumed to be the same 

as the per cycle energy consumption of the processor i.e. 1nJ at 

2V and 1MHz [12]. The cache miss penalty was assumed to be 

10 cycles. This assumption was based upon the one made by 

Hiroyuki et al. [20], however practically the cache miss pen-

alty varies according to cache organizations and its miss han-

dling policies. The code profiler resulted in the data depicted in 

Table II. 

TABLE II 

CODE PROFILER OUTPUT 

Application Memory Read 

Operations 

Memory Write 

Operations 

BasicMath 91087797 46282571 

QSort 16922 13500 

FFT 23034 10126 

Dijkstra 215852 87288 

MatrixMul 490 268 

FIR Filter 116587 67009 

 

The energy and throughput models results are detailed in 

Fig. 3 to 8, with corresponding graphs of power efficiency in 

cycles/watt. The graphs at the left show energy and time over-

head versus miss rate for the particular benchmark applica-

tions. The overhead is obtained by taking the ratio of en-

ergy/throughput with cache (by using the proposed models) to 

the corresponding values without cache. To analyze the de-

pendence of energy and throughput overheads on miss rate, a 

complete range of miss rates is considered. This in turn would 

help in rationalizing the feasibility of the particular cache 

structure for some range of miss rates. The graphs at the right 

show the power efficiency against miss rate, giving average 

power consumption statistics for the complete range of miss 

rates.  
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With the data listed in Table II, the energy models results 

showed that, the QSort application gave the least Power Effi-

ciency (see Fig. 4b). Also in Fig 4a, the energy overhead for 

QSort varied from a minimum of 0.99 to a maximum of 2.8, 

and the time overhead varied from a minimum of 0.044 to a 

maximum of 4.76 for miss rates varying from 0 to 100%. It can 

be inferred from the results that, for miss rates below 15% data 

cache is feasible in terms of power efficiency for applications 

like QSort, with the assumed miss penalty. While on the other 

hand all the other applications except matrixmul showed data 

cache feasibility for miss rates below 20% (see Fig. 3, 5, 6, 8). 

For matrixmul the cache appears to be feasible for miss rates 

below 25% (see Fig. 7). It must be also be noted that these 

results are particular to the ATMega644P microcontroller and 

cannot be generalized for other platforms. The least power 

efficiency of QSort is due to its highest ratio of memory access 

instructions to non-memory access instructions as compared to 

any other application, as shown in Fig 2. It can be said that an 

increase in energy overhead and decrease in time overhead can 

be observed as this ratio increases, below the miss rate thresh-

old point (where energy and throughput overhead both have a 

value greater than 1). Generally, for miss rates below that 

threshold value (which in the case of QSort is 20% and for all 

others is typically 30%) the energy overhead is greater than the 

time overhead, and the phenomenon tends to reverse above this 

threshold. A greater power efficiency is observed below this 

threshold value and the cache becomes feasible for miss rates 

lower than that.   

The applications selected for benchmarking were not opti-

mized for miss rate reduction; furthermore the specific miss 

rate is also unknown. The proposed models were analyzed for 

several applications because in practice an embedded system 

has to run single (or a set of few) application(s) for its whole 

life. Thus it is important to carefully select a cache configura-

tion and to perform code optimization in order to reduce the 

miss rate.  
 

 

 

 

 

(a)  (b) 

Fig. 3 BasicMath (a) Energy and Time overhead vs. Miss Rate. (b) Energy-Delay product vs. Miss Rate  

 

 

 

(a)  (b) 

Fig. 4 QSort (a) Energy and Time overhead vs. Miss Rate. (b) Energy-Delay product vs. Miss Rate 
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(a)  (b) 

Fig. 5 FFT (a) Energy and Time overhead vs. Miss Rate. (b) Energy-Delay product vs. Miss Rate 

 

 

 

(a)  (b) 

Fig. 6 Dijkstra (a) Energy and Time overhead vs. Miss Rate. (b) Energy-Delay product vs. Miss Rate 

 

 

 

(a)  (b) 

Fig. 7 MatrixMul (a) Energy and Time overhead vs. Miss Rate. (b) Energy-Delay product vs. Miss Rate 
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(a)  (b) 

Fig. 8 FIR Filter (a) Energy and Time overhead vs. Miss Rate. (b) Energy-Delay product vs. Miss Rate 

A design exploration strategy for finding optimal cache 

configuration and code profile is shown in Fig. 9. At first the 

miss rate prediction is carried out on the compiled code and 

preliminary cache parameters. Then several iterations may be 

performed to fine tune the software to reduce miss rates. Sub-

sequently, the tuned software goes through the profiling step. 

The information from the cache modeller and the code pro-

filer is then fed to the energy and throughput models. If the 

given energy budget along with the throughput requirements 

is not satisfied, then the cache parameters are to be changed 

and the same procedure is repeated. This strategy can be 

adopted at design time to optimize the cache configuration 

and decrease the miss rate of a particular application code. 

 

 

 Fig. 9 Proposed design cycle for optimization of cache and application code  

VI. CONCLUSION 

In this paper straightforward mathematical models were 

presented that can provide an early estimate of a data cache 

energy and throughput overheads for a particular application. 

A design exploration strategy was also put forward to facili-

tate the identification of an optimal cache configuration and 

code profile for a target application. It can be inferred from 

the results that a cache structure is not always beneficial in 

terms of power efficiency for any application in low power 

embedded systems. However if the code is optimized for 

minimum possible miss rate which is significantly lower than 

the threshold defined in previous chapter, then a cache be-

comes a good choice for increased throughput and energy 

efficiency. In future work the presented models are to be ana-

lyzed for a soft core configurable processor, so that a fair 

estimate of their accuracy can be found. Also miss rate pre-

diction strategies could be explored to further these analyses. 
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Abstract—Model Driven Development and the core concept
of Model Transformation has gained wide acceptance especially
when used with UML languages. Model Transformations are used
to map models in one language to another and can be used to
transform a design model into an implementation or for analysing
a design model to identify faults. However, transformations are
a one time bridge and the instances of transformed models can
not be automatically mapped back into the original language.
This is despite the fact that a mapping must already exist
between the two models. This mapping is represented in the
trace of the transformations execution. Tracing is a feature of
several transformation frameworks where by the source of every
destination element is recorded.

Tracing has originally been applied for change propagation
in chains of transformation and in debugging Model Trans-
formations. In the current paper we present a novel use of
Model Transformation tracing: for reverse instance transforma-
tion. That is, the automatic transformation of instances of the
destination model back into instances of the source model. We
demonstrate the method in a case study of UML2Alloy, a complex
transformation from UML to the Alloy analysis language. In
this case study, A UML Class Diagram is transformed in to
its equivalent Alloy form. The presented method automatically
transforms analysis (instances) of the Alloy model, back into
UML-Object Diagram form that are valid instances of the
original UML Class Diagram.

I. INTRODUCTION

Model Driven Development (MDD) [34] aims to promote
the role of modeling in software development. Models in the
context of MDD are captured in machine-readable representa-
tions, using languages which are widely adopted by the soft-
ware industry [35]. Hence, it is possible to communicate such
models to various parties and reuse them. This results in lower
software production cost and shorter development cycles.
Central to the MDD is the idea of automated transformation of
models via tools, commonly known as Model Transformation
Frameworks, that execute transformation automatically [4],
[23], [1], [31]. A typical Model Transformation framework
accepts three inputs, a metamodel of the source language, a
metamodel of destination language and a specification of the
transformation which maps the model elements of the source
to the destination. Then, for any given model complying to the
metamodel of the source the tool executes the transformation
resulting in the creation of an instance of the metamodel of
the destination.

In complex applications domains, MDD can also be used to
create multiple models of the systems automatically to bridge

the gap between technical spaces [22]. For example, MDD can
be used to create analysable models from a design model [21],
[3]. In such cases, the result of the analysis must also be
transformed back to be presented to the designer. In this paper
we demonstrate that traceability is an important issue in such
Model Transformations. In effect traceability is a mechanism
for recording the link between the source and target model
elements [11], [29]. Establishing such links allows defining
the reverse transformations automatically.

This paper reports on our current research on extending
the Simple Transformer (SiTra) [1] with traceability capabil-
ities. SiTra is a simple and lightweight implementation of an
extensible Transformation Engine. SiTra has been success-
fully applied to model transformation in various application
domains[2], [8], [7]. The paper also reports on a case study
involving application of new version of SiTra to a complex
Model Transformation from UML to Alloy [7].

The paper is structured as follows, the next section gives a
brief background to the subject at hand. The concepts of Model
Driven Development and Model Transformation, tracing trans-
formations and the transformation framework: SiTra. Next we
we shall describe the problem followed by an outline of the
solution in terms of the architecture and algorithm, as well as
how SiTra was modified to accommodate traceability. Finally
we present an example Model Transformation in UML2Alloy
that applies the solution to a specific problem, followed by
some discussion.

II. BACKGROUND

A. Model Driven Engineering

Model Driven Architecture (MDA) [25], a flavour of MDD
which is initiated by the Object Management Group (OMG).
MDA makes use of Meta Object Facility (MOF) [28] which
describes the metamodels. Metamodels are themselves models,
from which models of the system are instantiated. MOF can be
compared to EBNF, which is used for defining programming
languages grammars. As a result, MOF is a blueprint from
which MOF Compliant metamodels are created.

Figure 1 depicts an outline of MDA and the process of
Model Transformation. A number of Transformation Rules
are used to define how various elements of one metamodel
(source metamodel) are mapped into the elements of another
metamodel (destination metamodel). The process of Model
Transformation is carried out automatically via software tools
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Fig. 1. An Overview of MDD

which are commonly referred to as Model Transformation
Frameworks [37], [1], [13]. A typical Model Transformation
Framework requires three inputs: source metamodel, destina-
tion metamodel and Transformation Rules. For any instance
of the source metamodel, a Transformation Engine executes
the rules to create an instance of the destination metamodel.

The central concept of MDD is Model Transformation
[32], the mechanism for bridging technical spaces. Model
transformations take as input one or more source models that
conform to source language and translate them into one or
more target models in the context of a destination language.
Judson et al. [20] propose that transformations can be applied
from one of two dimensions; vertical, that change the context
for example Design to code or horizontal, as analysis for
example UML2Alloy.

B. Model Transformation Traceability

Traceability is a feature in a Model Transformation Engines
that keeps record of which element(s) in the source model
maps to which element in the destination. Bondé et al. [5]
apply the traceability to change propagation, thus if the source
changes slightly, the change can be reflected in the destination
without re-running the entire transformation. Change propaga-
tion is most useful when several successive transformations are
applied to a model, so the models can be made interoperable.
Moreover, the ability to trace the source of an element has
been used in debugging of Model Transformation [16]. Thus,
traceability support is a desirable part of a Transformation
Engine feature set and for developer support.

Jouault [19] identifies two groups of model transformation
traceability stratergies, automatic or manual tracing. Automatic
tracing requires no manual intervention by the developer, the
trace information is recorded transparently during the transfor-
mation. Manual tracing, as the name suggests, requires explicit
tracing rules be defined as part of the Model Transormation
to be traced. Each method has it’s merits, automatic tracing
requires little developer intervention and leads to less cluttered
transformations; manual tractability gives the developer con-
trol over what information is traced. For further classification
of tracing strategies in frameworks, see [11]. It is clear that
intergrated traceability support in the form of automatic tracing
is a desirable feature for a Model Transformation framework.

The requirements for traceability information vary between
frameworks. Vanhooff and Berbers [36] encode traceability in-
formation into a UML Profile for Traceability, where a model
of the transformation is extended with trace information. The
approach is taken so that large Model Transformations can
become smaller transformations as part of “Transformation
Chains”. The smaller transformations are more axiomatic so
have dependencies on preceding transformations outcomes and
rely on trace information. The Kermeta [12] framework with
a similar aim of enabling chains of transformations, defines a
distinct meta-model of traceability information. So a model of
the trace is populated at transformation time. The OMG’s QVT
[29] Model Transformation specification aims for a generic
approach to transformation traceability, defining the Trace
Class and Trace Instance entities. Trace instaces are created
with the appropriate information during transformation. The
precise form of traceability support across languages depends
on the motivation for adding traceability to a framework.

C. Simple Transformer (SiTra)

There are a wide range of languages available to specify
MDD Transformation Rules [4], [13], [29]. Such languages,
which are mostly extending [30], not only provide strong con-
structs for the specification of Model Transformations, but also
are supported by Model Transformation Frameworks for exe-
cuting the transformations. However, none of these languages
are widely adopted by the academic community or industrial
tool vendors. Much anticipated Query View Transformation
(QVT) by OMG is now finalised [29] and is expected to
result in a unifying language for specifying transformations.
To execute a specification of a Model Transformation in the
above languages, they must be transformed into lower-level
languages such as Java.

In a large project, it is possible to divide the specification
and implementation of Model Transformations between two
different groups of people who have relevant skills. In the case
of smaller groups of developers and newcomers to MDD, the
combined effort involved in becoming an expert in the two sets
of skills described above is overwhelming. In particular, the
steep learning curve [24] associated with current MDD tools,
such as [10], [9], [14], is an inhibitive factor in the adoption
of MDD by even very experienced programmers. Simple
Transformer (SiTra) [1] is a simple and lightweight Model
Transformation Framework aiming to use Java for both writing
Model Transformations and providing a minimal environment
(the execution engine) for transformation execution. SiTra
consists of two interfaces, the Rule interface, which user
defined mapping rules have to implement and the Transformer
interface, which provides the skeleton of the methods that
carry out the transformation. The authors of SiTra provide
a simple implementation of the Transformer interface and to
use SiTra for simple transformations. The modeller only needs
to define the transformation rules by implementing the Rule
interface, which consists of three methods: check(), build() and
setProperties(). If the rule is applicable for the source element
in question, the check() method of the rule interface returns
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Fig. 2. A Model of the Tracing Mechanism

true and the build() method is executed. The build() method
generated the target model element. The setProperties() is
used to set the attributes and links of the newly created
target element. SiTra has been successfully applied to Model
Transformation in various application domains[2], [8], [7]. For
further details on SiTra please refer to [1].

III. OUTLINE OF THE APPROACH

A. Description of the Problem

Often a Model Transformation is used to produce a model
of a target language as an intermediate step in a process. For
example, a model transformation may be used to transform a
model from a source language A to a target language X, to
take advantage of more advanced tool support in X. In such
a case, the toolset of the target language is used to process
(e.g. analysis, refactoring) the produced model. The results of
this processing need to be interpreted in the domain of the
original language A. If the transformation between the source
and the target languages is not bidirectional this is not a simple
task. In this section we present an algorithm, which uses the
tracing information of a Model Transformation to interpret the
results of a process on the target model, using concepts of the
source language, in a unidirectional transformation. Moreover
we propose extending the SiTra framework with support for
traceability, to implement our method.

B. Architecture and Algorithm

Figure 3 depicts an overview of the method proposed.
On the metalevel (M2) elements of the Source and Target
metamodels (A and X respectively) are mapped using the
Model Transformation T. On the model level (M1) if a source
model B is given as input to the transformation a target model
Y will be automatically generated. The execution of the Model
Transformation will also generate a set of traces T’, which
record how each element of the source model is mapped to an
element of the target model. If Z is an instance of the target
model on the M0 level, using the trace information T’, we can
construct C, which is an instance of the source model B.

The algorithm to extrapolate C is as follows. For all ele-
ments in Z, find the source of the parent element from T’ and
create an instance of that element. Once all elements in Z are
applied to the algorithm, the resulting instance model C is
produced. This is a valid instance model of B at M0-level in
the source language, created automatically. The algorithm is
shown in Figure 4.

C. Tracing Support in SiTra

In this section we describe how the SiTra Model Trans-
formation engine is modified to add traceability support.
SiTra, was developed by Akehurst et al. [1] as a simple
Object Oriented Transformation Engine, in principle based
on a modified visitor pattern. The engine has been modified
to support both Model to Model (M2M) and Model to Text
(M2Text) transformation tracing.

The MOF Queries Views and Transformations (QVT) spec-
ification [29] defines a tracing mechanism that can be used
to trace which source metamodel elements are mapped to
which target metamodel elements and the inverse. Based on
the tracing mechanism of the QVT specification, we have
developed and implemented an extension to the SiTra Trans-
formation Engine. Figure 2 depicts our model for tracing M2M
transformations.

More precisely, our tracing consists of an interface (ITrace),
which holds a collection of TraceInstances (ts). Each Trace-
Instance, represents a mapping between a source and a target
model element, through a SiTra rule. An implementation of
the ITrace interface, provides a number of methods to query
the ts collection. More specifically the resolve method, queries
the ts collection, and returns all target instances that have
been created during the transformation, from the src instance.
Likewise, resolveone should return only the first instance of the
target element that has been created during the transformation
from the src instance. The method names preceded with ‘inv’
(i.e. invresolve), perform the inverse (i.e. return the source
elements that have been mapped to the target element passed as
a parameter). The QVT specification, also defines a number of
additional methods that can be used to query the trace model.

To populate this tracing model, we have extended the
implementation of the transform method of the SiTra distri-
bution. Our implementation ensures that, for each rule being
executed, a trace is recorded (i.e. a TraceInstance), which
keeps track of the instance of the SiTra rule responsible for the
transformation, the instance of the source metamodel provided
as input to the rule and the instance of the target metamodel
produced by the rule.

A similar tracing model has been implemented in SiTra for
Model to Text (M2Text) transformations, which are usually de-
fined in order to transform the abstract syntax model elements
to a textual notation. Each TraceInstance of the M2Text trace
model maps an element of the metamodel of the languages,

DASIP 2008 November 2008

- 162 - 



A
Source Meta 

Model

B
Source 
Model

C
Instance 

Model

X
Destination 
Meta Model

Y
Destination 

Model

Z
Instance 

Model

T'
Trace

M2:
Meta Level

M1:
Model Level

M0:
Instance Level

Reverse 
Transformation
Using Trace

T
Transformation

Fig. 3. Architecture of the Proposed Solution

Input: Instance Model: Z, Trace: T’, Model: Y, Model: B
Output: Instance Model: C
foreach element z in model Z do

find the class element of z, y from the model Y
query T’ using y to find class element b, the source of y
using z, create c in instance model C

end

Fig. 4. Algorithm for Reverse Instance Transformation

to a range in the generated text model. The range is identified
by the rows and columns it occupies in a text file.

IV. CASE STUDY:UML2ALLOY

To demonstrate the method, we apply the approach to a
model transformation from UML class diagrams enriched with
OCL constraints [35], to the Alloy language [18]. Alloy is an
increasing popular textual language based on first-order logic
and fully automated analysis capabilities. The transformation
from UML to Alloy is implemented as part of a tool called
UML2Alloy [3], which uses the SiTra transformation frame-
work. UML2Alloy has successfully been applied to the anal-
ysis of agile manufacturing [7], E-Business applications [6]
and Security in E-Commerce systems [15].

UML is now widely accepted for designing systems before
implementation, allowing better modelling as a part of the
development process. The idea behind UML2Alloy is to allow
the designer to specify the system using UML and simultane-
ously harness the analysis capabilities of the Alloy language
to identify possible faults in the created design via the Alloy
language. More precisely, the Alloy language is supported by
a tool called Alloy Analyzer, which is able to automatically
simulate an Alloy model by creating a arbitrary instance of
the model. Additionally the analyser offers the ability to debug
overconstrained models [33], by locating the statements which
are responsible for the inconsistent model.

Figure 5 depicts an overview of the problem addressed in
this paper in the context of UML2Alloy. The UML2Alloy
transformation maps elements of the UML and OCL meta-
model to elements of the Alloy metamodel, which has been
developed using the Alloy grammar [3]. If a UML model is
given to the UML2Alloy implementation, it can automatically

create an Alloy model. This Alloy model can then be au-
tomatically analysed, by exploiting the Alloy Analyzer API.
If the model is consistent the Alloy Analyzer will create a
arbitrary instance of the model in XML form. If the model is
overconstrained, however, it will return the lines and columns
of the statements responsible for the inconsistency.

In both in simulation and analysis we need to represent the
results of the outcome of the Alloy Analyzer, from the Alloy
language concepts back to the UML domain. If the analyser
provides an instance of the model, we need to represent the
instance in terms of a UML Object Diagram [35]. If, on
the other hand, the analyser returns the regions in the Alloy
text file that are responsible for an overconstrained Alloy
model, we need to locate the original UML model elements
responsible for the inconsistency and present them to the
user. Since the transformation from UML to Alloy is not
bidirectional [34] (e.g. the multiplicity constraints of a UML
association are mapped to an Alloy fact, but an Alloy fact does
not necessarily correspond to UML association multiplicity
constraints), we need to employ the technique presented in the
previous section to carry out reverse instance transformation.
How this technique is used in UML2Alloy, is described in the
next section with the help of an example.

In order to take advantage of the analysis capability of
the Alloy language, for the designer who wishes to use only
UML, we will employ the tracing techniques presented in
the previous section. Figure 6 shows the proposed solution,
in terms of Alloy. Given a UML2Alloy transformation and
trace, it is possible to transfer the outcome of the analysis
into the UML form. In the case where the model is simulated
to generate instances, we transform the instance back into
UML Object Diagram, following the algorithm shown in
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Fig. 5. UML2Alloy Case Study: Problem of Reverse Instance Transformation

Figure 4. In this case, for every instance element in the Alloy
Instance model, find the signature in the Alloy Model. From
the Trace, find the source Class in the UML model of the
Signature. Finally instantiate the Class using the data from
the Alloy instance in a UML Object Diagram. If repeated
for all elements in the Alloy instance, an Object Diagram
representation of the Alloy instance is created. When there
is an inconsistency found in the model by Alloy Analyzer, the
position in the text model is given. This position can be traced
back to the cause in the UML, using the same algorithm.

In the next section contains a brief introduction to the
Alloy language. Following this, there is an example model
and model transformation in UML2Alloy where the outcome
of the analysis are transfered back into UML form.

A. The Alloy Language

In this section we present a brief overview of the Alloy
language [18] and supporting tool, the Alloy Analyzer. The
Alloy language was designed for automatic reasoning and
analyse of software systems. The five high-level constructs
(termed paragraphs) in the language are Signatures, Facts,
Predicates, Functions and Assertions. Multiples of these are
used in the construction and analyse of a model. There is also
the Run sentence, required to initiate analysis of a model.
For the definition of models, Signatures, Functions and Facts
in analogy to UML are classes, methods and constraints
respectively. For analysis there are Predicates, used to simulate
the models’ properties with sample instances. Assertions are
used in analysis in attempt to (in)validate a particular property
of a model by producing counter-examples. The notion of
model scope is important as Alloy’s underlying logic is First-
Order. As first order logic is undecidable in the general case,
a scope must be set at execution time to bound the analysis
space.

Using the Alloy Analyzer, a model in the Alloy language
automatically be analysed and simulated. Models in the Alloy
languages are translated into a series of boolean expressions.
This form is suitable for analysis via off-the-shelf satisfiability
(SAT) solvers. Simulation of the Alloy model is used to
generate valid instance models.

The process is that the Alloy Analyzer automatically trans-
lates an Alloy model to a SAT formula that can be analysed by
SAT solvers. In the case of assertion, the statement is negated
and the Alloy Analyzer tries to find an instance of the model

UML
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UML Model
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Meta Model
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Model
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Definition
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Fig. 6. UML2Alloy Case Study: Proposed Solution Using Tracing

that conforms to the negated statement. If it can find one, this
is a counterexample, if it cannot find one, the assertion may
be valid. In the case of simulation, it searches for cases for an
expression evaluates which to true, this expession will encode
an arbitrary instance of the model.

V. EXAMPLE

In this section we introduce the example model and trans-
formation to demonstrate the tracing mechanism. The UML
model (Figure 7) is transformed into the Alloy model (Figure
8) using the UML2Alloy trasformation in SiTra. The first part
of each model (Figures 7a, 8a) is consistent in either language;
conforming instances can be created by hand in UML or
automatically in Alloy. We use the first models (Figures 7a,
8a) to demonstrate reverse instance transformation. The second
part of each model (Figures 7b, 8b) extends on the first valid
part to add contradictory constaints, making the original model
inconsistent. The inconsistent model has no valid instances
in either language and this property of the models is used to
demonstrate the reverse instance tracing, to discover the source
of the inconsistency in the original UML. The textual Alloy
models presented here are refactored slightly to aid readability
and for purposes of brevity.

We use a two-class, UML model shown in Figure 7 as the
example in this section. According to the model, one Person
can be associated either one or no Bank Accounts. The Person
class has a single integer attribute representing age. The first
part of the model (Figure 7a) is legal UML, valid instance of
this model can be created by hand, as UML Object Diagram.
In the second (Figure 7b), invalidating part of the model, two
OCL constraints are added to the model specifying purposely
contradictory constaints about the age of a Person. Both parts
of the models are transformed into the Alloy model, shown in
Figure 8.

The Alloy model (Figure 8a) consists of two signatures
(sig), Person and Bank Account, here the keyword some
enforces the existence in an instance model. Person has the
two atoms, age is a relation to one integer and ba is a relation
one or no (lone) Bank Account. The first fact paragraph fact{
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(a) Valid Elements of Model

context Person inv first:self.age>20
context BankAccount inv second:self.per.age<18

(b) OCL Constraints (Introducing Contradiction)

Fig. 7. Example UML Model

per = ∼ba }, signifies that ba and age form a single and
the same relation from Bank Account to Person and vice-
versa. Simulation of the first part of the model should yield
sample instances using the Alloy Analyzer. In the second part
of the Alloy model (Figure 8b) two facts constrain the model
in contradictory way; that is the age of a Person must be both
less then eighteen and greater then twenty.

In this example, mapping between the two models is per-
formed by the UML2Alloy tool automatically, we explain the
mapping here for the sake of clarity. The UML classes Person
and Bank Account are transformed into signatures of the same
name. The age attribute in person becomes the integer field
age in the Person signature. The association is transformed
into fields in the respective signatures, named per and ba
and facts representing multiplicity. The OCL constraints are
transformed into facts in the Alloy model. In UML2Alloy the
above is a two step process, the first transformation is to a
MOF like model of Alloy which is mapped via a one-to-one
transformation into the Alloy textual form.

In the following two sections, we use the example to
demonstrate the traceability from two perspectives. Firstly,
given valid models (Figures 7a, 8a), transform the Alloy
instances back into UML form. Secondly, given an invalid
UML model (Figure 7), trace back the element(s) causing the
inconsistency in the UML, as discovered in the Alloy model
(Figure 8a) Alloy Analyzer.

A. Example One: Reverse Instance Transformation

The Figure 9, shows the output of analysis from the Alloy
Analyser in XML form, our method will automatically create
an Object Diagram form of this instance. It Depicts a sample
of the output Analysis of the Alloy Analyser. In this partial
sample, there is an instance (atom) of the Person signature
from the Alloy model, labelled as Person$0. There are also
two fields, that form tuples (relations) from Person$0 to an
integer (5) for the age atom. The secondBankAccount$2 via
the ba atom, instances of thePerson signature’s atoms.

Reverse instanstance transformation, this context, is taking
an Alloy instance model and transforming it to back into the
original UML form. Although this may seem a straight forward
problem, possibly solved by transformation, often times there
is a difference in semantic expressiveness of elements between
the source and destination language. Reverse instance trans-
formation is not possible in all cases using only the source
and destination model as the transformation can change from
a specific to a general one.

some sig Person{
age : one Int,
ba : lone BankAccount}

some sig BankAccount{
per : one Person}

fact{ per = ˜ba }
fact{per in BankAccount lone->one Person}
fact{ba in Person one->lone BankAccount}

(a) Alloy Model, Valid Segment

fact{all p : Person | int p.age > 20}
fact{all b : BankAccount | int b.per.age < 18}

(b) Alloy Model, Contradictory Segement

Fig. 8. Alloy Model Resulting from Transformation of Figure 7, using
UML2Alloy

We demonstrate the issue in the example in Figure 9 where
it is not possible to know the origin (in the UML model) of
the Alloy instance atom marked age. This is because an Alloy
field could have been mapped from a UML attribute or a UML
association. The issue becomes more apparent in the instance
(Figure 9) where the original association between Person and
Bank Account has become a pair of Alloy atoms ba and per.
In Alloy, these atoms are semantically equivalent to the age
atom and thus indistinguishable for instance creation, without
trace information.

For this example we assume the Model transformation of the
consistent UML model in Figure 7a into the consistent Alloy
model Figure 8a. We shall create a UML representation of the
instance (Figure 9), which was created by analysis of the Alloy
model (Figure 8a). The method of finding the origin in UML
using the algorithm in the case of Figure 4 is as follows. Take
the instance tuple age that maps the atom Person$0 (Figure
9)to the Int 5, find the parent element in the Alloy model
(Figure 8). The parent element is the atom age, in the signature
Person. The origin of this element is found by querying the
trace, the origin here is is the attribute age of person, in the
source UML model (Figure 7). At this point, it is possible
to instantiate the age attribute in the UML Object Model of
Person$0, using data from the Alloy tuple i.e. with a value of
5.

B. Example Two: Model Inconsistency Tracing

Due to design errors it may be possible to define an
inconsistent model, such as the model shown in Figure 8b.
Discovering the cause of design inconsistencies in a model
is highly desirable. A UML model can be transformed into
Alloy and simulated to find inconsistency using the Alloy
Analyzer. An inconsistent model in Alloy will result in no
instance being generated. However the offending sentence(s)
will be know from the analysis in the Alloy model, but
not the original UML. The Alloy Analyser uses UnSat Core
[17] feature of the SAT solver to find the line and column
numbers of the inconsistent portion. This analysis does not
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...
<sig name="Person" extends="univ">

<atom name="Person$0"/>
</sig>

<field name="age">
<type> <sig name="Person"/> <sig name="Int"/> </type>
<tuple> <atom name="Person$0"/> <atom name="5"/> </tuple>

</field>

<field name="ba">
<type> <sig name="Person"/> <sig name="BankAccount"/> </type>
<tuple> <atom name="Person$0"/> <atom name="BankAccount$2"/> </tuple>

</field>
...

Fig. 9. Example One: Partial XML Output from Alloy Analyzer

apply directly to the UML model, however our method is
able to trace the source of an element in the original UML
and thus the originating cause of inconsistency. UML2Alloy
allows inconsistency to be uncovered via analysis in Alloy and
our method uncovers the root cause of the inconsistency in the
original model, using the trace.

Our solution will trace the root cause of inconsistency in
a UML model, after it has been transformed and analysed
using Alloy. The method is as follows, assume the Model
Transformation from the inconsistent UML in Figure 7 (com-
bined) to the Alloy representation of the same in 8. The Alloy
Analyser will uncover the inconsistency and the place (line(s),
column(s)) at which the problem occurs in the Alloy model.
To find the cause of the inconsistency in UML, first identify
the element in the model causing the error. In this case, the
UnSat Core gives the expressions from the two facts in 8b as
the cause. To find the error in the UML Model, query the trace
using the given ranges returns the result in OCL form, shown
in Figure 10 and the location in the source model. This will
highlights the two conflicting statements in the UML form for
the developer to maneuver as necessary. The strength of the
method is apparent in a large model with potentially many
complex or similar constraints, as it is possible to pinpoint
precisely which statement caused the inconsistency. We have
shown that using our method to reverse transform elements in
the destination model, it is possible to find the source of an
inconsistency in the original UML model.

[self].age>20
[self].per.age<18

Fig. 10. Example Two: Result of Text to Model Tracing

VI. RELATED WORK

A common motivation for traceability in the literature
has been to support chains of transformation, sequences of
transformations with dependency, as found in [12], [36], [19].
The approach used in these methods is to add specific rules
for traceability information and create a separate model of
traceability as output of transformation.This model is then

used as input for further transformation stages. So the trac-
ing approach for chains of transformations with dependency
is fundamentally different from ours. In [19], an important
discussion is made about generating trace information from a
generic perspective based on an approach similar to [36], [12].
Our approach generates trace information automatically which
is used internally in the context of the original transformation.
We have demonstrated that it is possible to generate useful
trace information automatically, without requiring specific
rules in the original transformation.

The extension of the SiTra implementation to support trac-
ing of model transformations, has been inspired by the QVT
standard [29]. The QVT standard provides a number of meth-
ods to query the transformation traces, while the transforma-
tion is being executed (i.e. provides the ability to access target
objects created from source objects and the inverse). Since
the QVT specification does not provide any guidelines on
how to implement the standard, the SiTra extension presented
in this paper, which follows the QVT naming convention
for methods, can be considered as an implementation of the
tracing mechanism of the QVT standard.

Additionally the SiTra extension to provide tracing for
model to text transformations is based on another OMG
standard, the MOF Models to Text Transformation language
specification [27]. In particular, the metamodel of the standard
provides the ability to trace from which model element, a block
of text has been created. An implementation of model to text
tracing is presented in [26]. Our metamodel for model to text
tracing is similar to the metamodel presented in [26]. However,
these methods are more general than our extension to SiTra,
since they address issues like synchronisation and change
propagation between a model and its textual representation,
if either the model or the textual representation changes. Our
model to text transformation is simpler, since the generated
Alloy textual model, is used as an intermediate step in order
to be able to exploit the Alloy Analyzer API.

VII. CONCLUSION AND FUTURE WORK

This paper presents a implementation Traceability, a mech-
anism for recording the link between the source and target
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model elements in Model Transformation Frameworks. Trace-
ability is often used for the management of Model Transfor-
mation process for change propagation or debugging purposes.
In this paper, Traceability produces the reverse transformation
automatically at the instance level. Such applications of Trace-
ability are essential for horizontal Model Transformations such
as UML2Alloy.

The presented approach, which is inspired by QVT, is
formulated as an algorithm. The SiTra framework is extended
to a new version to do both model-to-model and model-to-
text transformations, while the algorithm is implemented to
allow traceability in both cases. The paper also reports on a
case study based on the model transformation in UML2Alloy,
which uses the new version of SiTra. Using a brief exam-
ple, the process of Model Transformation carried out via
UML2Alloy is described and the role of tracing mechanism
is explained.

In the current implementation, only the binary transfor-
mation rules are traceable. So to handle ternary rules, they
must be modified to create multiple binary rules. Discovery
of methods of extension to ternary rules remains a subject for
future research. There is a clear scope for extending the current
framework to fulfill the original objectives of Traceability such
as change propagation and debugging. This also remains an
area for future research.
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Abstract— Signal processing algorithms become more and
more complex and the algorithm architecture adaptation and
design processes cannot any longer rely only on the intuition
of the designers to build efficient systems. Specific tools and
methods are needed to cope with the increasing complexity
of both algorithms and platforms. This paper presents a new
framework which allows the specification, design, simulation
and implementation of a system operating at a higher level of
abstraction compared to current approaches. The framework is
base on the usage of a new actor/dataflow oriented language
called CAL. Such language has been specifically designed for
modelling complex signal processing systems. CAL data flow
models expose the intrinsic concurrency of the algorithms by
employing the notions of actor programming and dataflow. Con-
currency and parallelism are very important aspects of embedded
system design as we enter in the multicore era. The design
framework is composed by a simulation platform and by Cal2C
and CAL2HDL code generators. This paper described in details
the principles on which such code generators are based and shows
how efficient software (C) and hardware (VHDL and Verilog)
code can be generated by appropriate CAL models. Results on
a real design case, a MPEG-4 Simple Profile decoder, show that
systems obtained with the hardware code generator outperform
the hand written VHDL version both in terms of performance
and resource usage. Concerning the C code generator results,
the results show that the synthesized C-software mapped on a
SystemC scheduler platform, is much faster than the simulated
CAL dataflow program and approaches handwritten C versions.

I. INTRODUCTION

With the unbounded increase of signal processing systems
complexity made possible by both the advances in algorithm
theory and by new generations of silicon technology, digital
systems designers need new tools for the design of efficient
systems employing ”reasonable” design resources. Increas-
ing the level of abstraction has always been a solution to
appropriately handle the increasing complexity of systems
design. Transistors, gates, VHDL and Intellectual Property (IP)
blocks are example of different abstractions layers which have
been successfully introduced in the past with the attempt of
easing the design of more and more complex systems. In the
authors opinion the current new challenge is not only to add
a new abstraction layer, but also to close the gap between
the specification and the implementation layers. Such gap, in
the recent years, has been tried to be filled by using C/C++
reference implementations of the specifications. However, the

path from such specifications expressed as generic C/C++
reference SW to gate design has shown to be harder to be
efficiently accomplished. One of the main reasons of such
difficulty is the fact that C/C++ do not provide the operators
that enable to naturally express parallelism, data flows and
other fundamental architectural features without adding a huge
amount of low level programming details. In other words the
operators are defined at a level that is by, far too, low compared
to the one at which a designer would like to express his
architectural ideas. Also other approaches and methods aiming
at closing the gap from specification to synthesis have yet to
deliver on their promise. Several methodologies based on using
UML, different variants of C/C++ (i.e streamC [1]) combined
with SystemC/TLM library at different levels of the design
flow are used. Some of them make use of exploration tools,
simulators and code generators which can output hardware and
software code specific to FPGA or other processor platforms,
mainly using VHDL and C. Section II briefly reviews these
different approaches and methods for building digital systems.

This paper presents a new design framework, currently
in its early phase of development, based on CAL language,
an actor and dataflow oriented language designed for the
specification of complex signal processing systems. The new
framework includes: a simulator of the system specified by
CAL, a hardware generator for the direct synthesis of HDL
and a software generator for the synthesis of C from CAL.
The paper explains why and how this framework is a very
promising approach for the design and development complex
heterogeneous processing systems.

Section 1 introduces the CAL language, a dataflow and
actor-based language that constitutes a very interesting can-
didate to support a design flow for designing complex signal
processing systems. The major features of the new approach
are simplicity, conciseness and expressiveness. Modelling sys-
tems in a concise and simple way is a good starting point, but
at the same time enabling the automatic generation of efficient
code is an extremely challenging step. Sections IV and V show
how efficient hardware and software code can be generated
directly from CAL language system descriptions.

Section VI discusses the reasons for which CAL language
and the associated framework are a good approach to support
a design flow for building complex heterogeneous systems.
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Section VII concludes the paper.

II. RELATED WORK

This section provides a brief overview of the current design
flows based on UML, SystemC, and C/C++. A comprehensive
overview of the state of the art of system level modeling can
be found in [2].

Although UML was originally conceived for modelling
large software systems, Kukkala et al. [3] developed a design
flow for multiprocessors Systems on Chip (SoC) by using
UML 2.0 models as the starting point of the design flow.
UML models (i.e. application, platform and mapping models)
are written according to the experience of the designers.
However, there is limited support for the elaboration of
UML specifications. When building a system from monolithic
C/C++ specifications (such as one of the the MPEG reference
softwares for instance) UML models must be completely
written by hand. This task is very time-consuming and error
prone. Furthermore, according to [4], “UML 2.0 lacks both a
reference implementation and a human-readable semantic”.

Modelling HW using a high level description languages
such as SystemC can be a solution for representing func-
tionality, concurrency, communication, software and hardware
components at different (system) levels of abstraction. A
language modelling complex systems should also provide a
support for analysis and synthesis. SystemC is mainly used
for simulation because it is not synthesisable in its whole
generality. In practice, it can be reduced for ensuring the use
of a synthesizable subset. The problem is that this subset of
the language is placed at a quite low level of abstraction.
Simulation capabilities at a high level of abstraction are an
interesting feature of SystemC, but during the implementation
step, the designer is forced to re-write the code using only
the synthesisable subset. Such operation is a time consuming
and error-prone task. In a nutshell, it is hard to use SystemC
as a high level design language because in general it is not
possible to implement directly systems just developing at high
level the system specification.

Several tools propose a direct conversion of C code into
VHDL. C-based methodologies for modelling systems lack
concurrency and a concept of time. Hardware is inherently
parallel and time is essential to represent its behaviour accu-
rately, especially for real-time embedded systems. The main
problems of using C as a Hardware Description Language
are discussed in detail in [5] and [6]. In conclusion, the lack
of intrinsic concurrency and the concept of time as well as
the way communication mechanisms are written in imperative
languages are the main limitations and drawbacks of C or
similar languages for hardware representation.

III. CAL A LANGUAGE FOR ALGORITHM AND
ARCHITECTURE SPECIFICATION

The more important features that system designers would
like to find in a design language would be the capability of
representing both algorithm and architecture at a single level of
abstraction. Unfortunately, it is difficult to specify an algorithm

at a high level of abstraction and at the same time being
able to deduce from such description an efficient low level
representation. How can high level and low level constructs
be combined into a single language? Furthermore, such lan-
guage should support full simulation of the system behaviour.
Thus, designers have been forced to use several languages to
represent complex algorithms at different levels of abstraction
during the entire design flow. Generic C, architectural C,
SystemC, synthesizable SystemC is a possible first stage of
a design methodology. The main drawback of such multistage
approaches is how to implement the conversions between all
these languages avoiding resource consuming hand re-writing
[4]. Compilers often support only a subset of the languages,
making the different conversions between the languages a
headache! Thus, the reduction of the number of languages and
abstraction levels composing a design flow is a fundamental
issue. Ideally, the unique language transformation should be
a direct translation from the high level language down to an
implementation language such as C, VHDL or Verilog.

Abstract languages do not often support simulation capa-
bilities and architectural representations are available at too
low levels of abstraction. Standard imperative languages do
not express easily parallelism. These facts reduce considerably
the set of possible candidates. The new actor/dataflow oriented
language called CAL has been specifically developed so as to
support the features discussed above.

A. CAL language

CAL is a dataflow and actor oriented language that has
been recently specified and developed by one of the authors
of this paper as a subproject of the Ptolemy project at the
University of California at Berkeley. The final CAL language
specification has been released in December 2003 [7]. CAL
describes algorithms by using a set of encapsulated dataflow
components called actors communicating with each others.
An actor is a modular component that encapsulates its own
state. The state of any actor is not shareable with other
actors. Thus, an actor cannot modify the state of another actor.
The only interaction an actor has with another actor is only
thought inputs and outputs ports. The behaviour of an actor
is defined in terms of a set of actions. The operations an
action can perform are to consume (read) input tokens, to
modify internal state, to produce output tokens. The topology
of the connections between actors input and output ports
constitute what is called a network of actors. It is expressed
by using an XML dialect known as network language (NL)
that also includes the possibility to includes attributes (i.e.
parameters) that may be different for the instantiation of the
same (parametric) actor in a network of actors. Each action of
an actor defines the kind of transitions that internal states can
undergo and actions can be fired under specific conditions: (1)
the availability of input tokens, (2) the value of input tokens,
(3) the state of the actor or (4) the priority of that action. In an
actor, the operations are executed sequentially. The execution
of actions follows the following cycle:

1) Determine, for each action, whether it is enabled, by
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testing all the conditions specified in that action. It
depends on the availability of token(s) at the requisite
input(s), the value of input tokens, the state of the actor
and the priority of each action.

2) If one or more actions are enabled, pick one of them to
be fired next;

3) Fire that action.
4) Go to (1).
The transitions of an actor are purely sequential: actions

are fired one after another. At the network level, the actors are
completely independent and can work concurrently, each one
executing their own sequential operations. Figure 1 illustrates
a CAL model in general and the reader can find examples of
CAL actors in figures 4 and 5(a).

Fig. 1. Illustration of a CAL model

The selection order and the firing conditions for actions
form the core of the design of an actor. CAL provides a
number of constructs for describing action selection, which
include guards (conditions on the values of input tokens
and/or the values of actor state variables), a Finite State
Machine and priorities (actions may be related to each other
by a partial priority order). The order of execution of the
actors is in general not known a priori. CAL provides a
great flexibility to schedule action execution according to the
particular requirements and constraints of the targeted device
chosen for the final implementation.

CAL language very naturally allows also hierarchical sys-
tem design. Each actor can be specified as a network of
actors. This approach facilitates modularity, where the internal
specification of any actor can be modified without impacting
other actors.

B. Goals and features of CAL language
Ease of use CAL is a true programming language and not

an intermediate format to automatically generate code. The
notation is convenient to write, with consistent syntax rules,
keywords, and structures.

Minimal semantic core CAL language is built on a very
small set of semantic concepts. It simplifies compiler con-
struction when transforming any program into an equivalent
program in the core language. Thus for the compilation to any
given platform, a code generator is needed for the specific
implementation language.

Implementation independence and retargetability The
first target for CAL actors was the Ptolemy II platform [8].
A complete framework (Open DataFlow) is currently being
developed for simulating CAL networks and for generating
hardware and software code [9]. OpenDF is built under the
Eclipse environment. It makes these tools available for a large
set of operating systems. CAL models are technology and
architecture agnostic. Thus, it makes possible to design and
simulate models very quickly using [9]. Designers do not need
special hardware or libraries to design their own system in
CAL. The implementation of CAL models is done by means of
appropriate hardware and software code generators described
in more details in the following sections..

C. Framework infrastructure

Figure 2 presents the general framework infrastructure.
Once the CAL model is defined, the user can simulate it using
the OpenDF simulator [9]. The user can generate software
code and hardware code from the CAL model. These code
generators are detailed in section IV and V respectively.

IV. SOFTWARE SYNTHESIS

A. Semantics of CAL dataflow

The system behavior of a dataflow program is determined by
the interactions between actors (i.e. exchange of data tokens).
Such interactions are governed by a Model of Computation
(MoC) that defines which scheduling policies can be used
to fire actors. The CAL language is not related to any
particular dataflow MoCs. Indeed, several forms of dataflow
exist to interpret the network from the general dataflow process
network (PN) [10] model with multiple firing rules to the more
restrictive synchronous dataflow (SDF) one [11], [12]. CAL
extends the model in [10] by :

1) state within actors,
2) multiple overlapping (non-joinable in the parlance of

[10]) firing rules, and
3) priorities among firing rules.

CAL actors often contain multiple actions and priorities, FSM
or guards that lead to state-dependent or conditional execution.
Therefore most of the CAL actors in the library are closer to
the PN model which is then chosen (as a first milestone) for
developing the tool described in this paper.

CAL PARSER

H
CPP

CCODE
GENERATION

TRANSFOR-
MATIONS

NL HELABORATION CODE
GENERATIONPARSER

CIL

NL
AST

CAL
AST

NL
AST

PARAMETERS

Fig. 3. Cal2C compilation process

When the PN model is chosen to interpret CAL net-
works, any environment which supports multithreading may
be chosen for implementation. For instance, it can be done
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Fig. 2. The framework infrastructure

using POSIX threads by translating CAL actors into threads
and by replacing connections with FIFOs. However, it is
necessary to develop a scheduler and low-level considerations
such as communication or actual scheduler implementation,
make this solution time-consuming and error prone. Another
approach for PN implementation is provided by the Sys-
temC1 standard whose simulation environment permits high-
level programming, well-adapted to functional verifications.
A PN-oriented SystemC model is expressed as a network of
modules communicating with each other via blocking FIFOs
(with an additional way to support token availability). Note
that Cal2C does not intend to use SystemC as an hardware
description language, but only as a convenient PN modeling
and simulation environment. Moreover, this work is a first step
to an efficient ”pure C” code generation (closer to an SDF
model than a PN one). In short, the software synthesis from a
network of CAL actors produces several files as illustrated
in Figure 3. Each NL network is translated into a header
file where FIFOs, modules and sub-networks are instantiated
and connected. CAL actor translation is done in 2 different
parts: the actor code (actions, functions, procedures) to express
the functionality and the action scheduler (priorities, FSMs,
guards) to control the execution. Finally an additional file is
created to instantiate the top network and to launch SystemC
simulation.

B. C code generation: Actors

Actor code translation: Translating the CAL actor code
produces a single C file wherein functions, procedures and
actions are translated. however, C language and compilers
impose limitations on the translated code. For example, (1)
distinct functions should have different names to avoid linking
problems, even if they are originally placed in different ac-
tors. Another challenge is (2) the difference of programming
paradigm between the source and the target language: CAL
allows functional constructs that have no direct equivalent
in C. The action translation process starts with an Abstract
Syntax Tree (AST) issued from the CAL source code, and
modifies it as needed to satisfy the previous requirements.
Function names are prefixed with the actor name to prevent
any potential name clashes; actor parameters are replaced by
their values (when constant) or transformed to local variables
otherwise; actions are converted to functions where input and

1http://www.systemc.org

ac: action AC:[i]⇒ OUT:[ saturate( o )]
var

int(size=SAMPLE_SZ) v =
( quant * ( lshift( abs(i), 1) + 1) ) - round,

int(size=SAMPLE_SZ) o =
if i = 0 then 0 else if i < 0 then -v else v end end

do
count := count + 1;

end

(a) CAL “ac” action in the “Inversequant” actor

void Inversequant_ac(
struct Inversequant_variables *_actor_variables ,
int i , int *out )

{ int v, o ;
int _call_6, _call_9;
int _if_7, _if_8 ;
_call_6 = Inversequant_fun_abs(_actor_variables, i);
v = _actor_variables->quant * ((_call_6 << 1) + 1)

- _actor_variables->round;
if (i == 0) {
_if_8 = 0;

} else {
if (i < 0) {
_if_7 = - v;

} else {
_if_7 = v;

}
_if_8 = _if_7;

}
o = _if_8;
(_actor_variables->count) ++;
_call_9 = Inversequant_fun_saturate(_actor_variables, o);

*out = _call_9;
}

(b) C translation of the “ac” action in the “Inversequant” actor

Fig. 4. C translation of a CAL action

output patterns become parameters. Finally, actor declarations
are ordered by dependencies between locals, so that a variable
or a function is defined before being used. At this point,
the Cal2C generator converts the AST to λ-calculus, applies
Damas-Milner W-algorithm [13] to it, and augments the AST
with the type information returned. Types are necessary for
correct C code generation, and type-dependent transforma-
tions. Functions that return lists are ”in-lined”, and list sizes
are computed. The transformed CAL AST is expressed in the
C Intermediate Language (CIL) [14], where CAL functional
constructs are replaced by imperative ones. C code is generated
by calling the pretty-printer module included in the framework.

An example of the CAL actor code translation process
is illustrated on figure 4. Figure 4(a) reports an ”action”
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extracted from the Inversequant actor of the RVC reference
MPEG4-SP decoder, and figure 4(b) reports the corresponding
generated C code. The resulting code presents a function
whose name is composed of the actor name and the action
name (requirement (1)). Its parameters are the same of the
action’s, with an additional pointer to a structure containing
the actor variables. The if expression has been transformed to
assignments of temporary variables ( if 7, if 8) (requirement
(2)). As a matter of fact, function calls have also become
assignments of temporary variables ( call 6, call 9) because
CIL semantics requires it. The action output expression is
translated as a pointer parameter whose value is written at
the end of the C function. The synthesized C code shown in
figure 4(b) is quite close to the original CAL code and results
also reasonably readable by ”humans”.

Action scheduling: An action scheduler is created to con-
trol the action selection during execution. Priorities, guards,
token consumption rates and FSM have to be translated to
this end. Determining the overall order of action execution is
required to have a consistent evaluation of actions that can be
fired. Priorities are resolved by sorting actions in a total order
and by adding a if-then-else statement around actions wherein
the condition is given by the availability of input tokens and
the guards conditions. FSMs are resolved using switch-case
statement. Finally, the generated file consists of a thread with
an infinite loop wherein its body consists of the result of the
previous transformations and actions are replaced with their
corresponding C functions.

For instance, a downsampler by N is illustrated figure 5(a).
It could be written in different and also simpler forms, but
in this form the actor enables to highlight key features of the
action scheduling translation. The synthesized C++ code is
illustrated in figure 5(b).

C. SystemC code generation: Networks

Expressing a network of actors specified by NL in SystemC
is relatively straightforward: actor or network instantiations
are transformed into module instantiations. There are two
semantic differences however: FIFO channels, while implicit
in NL, must be explicitly created in SystemC. Broadcast of
data from a source to several sinks is transparent in NL,
but requires additional logic in SystemC, namely a generic
broadcast module.

D. Generation of C code from a CAL description: IDCT and
MPEG-4 Simple Profile decoder

So as to validate the correctness of the Cal2C code genera-
tion, the first case study is a two-dimensional inverse DCT. The
IDCT is a component of all MPEG standard video decoders
and is fully specified by the new Finite Precision IDCT
Specification [15] based on [16]. The algorithm consists of
applying one-dimensional IDCT along the row and column
axis of an 8×8 pixel block. The network is composed of 2
input ports, 1 output port and 5 different actors; one actor can
be instantiated several times in NL. Incoming tokens from
IN port are inverse-quantized coefficint and a token from

actor downsampler (N) In⇒ Out :
count := 1;
pass: action In: [x]⇒ Out: [x] end
done: action⇒ guard count = N do count := 1; end
skip: action In: [x]⇒ do count := count + 1; end

schedule fsm pass:
copy ( pass ) --> discard;
discard ( done ) --> copy;
discard ( skip ) --> discard;

end
priority
done > skip;

end
end

(a) CAL downsampler

struct downsampler_vars {
int count;
int N;

};
void downsampler::process() {

int fsm_state, _call_6, _call_7,_out_1;
struct downsamplerN_vars _actor_vars;
_actor_variables.count = 1;
fsm_state = 1;
while (1) {
switch (fsm_state) {
case 1:
_call_6 = In->get();
downsampler_pass(&_actor_vars, _call_6, &_out_1);
Out->put(_out_1);
fsm_state = 2;
break;

case 2:
if (_actor_vars.count == _actor_vars.N) {
downsampler_done(&_actor_vars);
fsm_state = 1;

} else {
_call_7 = In->get();
downsampler_skip(&_actor_vars, _call_7);
fsm_state = 2;

}
break;

}
}

}

(b) Synthesized action scheduler

Fig. 5. Action scheduling (FSM) of CAL actor

SIGNED enables to specify to the “clip” actor if incoming
coefficient are signed or not. The first row of Table I shows
the number of files of the respective programs. In the code
generation process, an actor first is converted into a C file,
then into a C++ and finally into a header file. A network
of actors simply is translated into a header file while the
corresponding C++ file becomes the ”main” file. The second
row exhibits the corresponding source lines of code (SLOC).
The testbed consists of applying a stimulus (streamed by a
C-code reference software of MPEG-4 SP decoder) to the top
network and verifying the response against an expected result
(from the CAL description simulated compared to a “golden
reference” streamed by the C-code reference software).

Another synthesized model of a more complex CAL
dataflow network simulated with the Open Dataflow envi-
ronment has also been used to validate the Cal2C tool. The
compilation process has been successfully applied to the full
MPEG-4 Simple Profile dataflow model written by the MPEG
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IDCT CAL NL C C++ H
Number of files 5 1 5 6 6

Code Size (SLOC) 131 25 324 386 107

TABLE I
CODE SIZE AND NUMBER OF FILES AUTOMATICALLY GENERATED FOR

THE IDCT

RVC working group. Table II shows that the synthesized C-
software is faster than the simulated CAL dataflow program
(20 frames/s instead of 0.15 frames/s), and close to real-time
for a QCIF format (25 frames/s) on a standard PC platform.
It is interesting to note that the model is scalable: the number
of macro-blocks decoded per second remains constant when
dealing with larger image sizes.

MPEG4 SP Speed Code size
decoder kMB/S kSLOC

CAL simulator 0.015 3.4
Cal2C 2 10.4

TABLE II
MPEG4SP DECODER SPEED AND SLOC

The MPEG4 SP dataflow program is composed of 27 actors.
An actor composing a network of actors can be instantiated
several times. For instance there are 42 actor instantiations
in the MPEG-4 SP dataflow model. The number of SLOC
generated is shown in Table III. All of the generated files
are successfully compiled by gcc. For instance, the “Parser-
Header” actor inside the “Parser” network is the most complex
actor with multiple actions. The translated C-file (with actions
and state variables) includes 1043 SLOC for actions and 1895
for action scheduling. The original CAL file contains only 962
lines of code as a comparison.

MPEG4 SP decoder CAL NL C C++ H
Number of files 27 9 27 28 36

Code Size (kSLOC) 2.9 0.5 5.8 3,7 0.9

TABLE III
CODE SIZE AND NUMBER OF FILES AUTOMATICALLY GENERATED FOR

MPEG4 SP DECODER

V. HARDWARE SYNTHESIS FROM CAL DATAFLOW
MODELS

In the current version of the HDL generator, each actor is
translated separately into HDL and is connected with FIFO
buffers in the resulting RTL descriptions. Consequently, no
cross-actor optimizations are employed at the current level of
development of the tool.

If two actors connected in this manner are specified to
belong to different clock domains, an asynchronous FIFO
implementation is selected, otherwise a synchronous FIFO is
used for compactness of the implementation. Actors interact
with FIFOs using a handshake protocol, which allows them to
detect when a data token is available or when a FIFO is full.

The translation of each CAL actor into a hardware de-
scription follows a three-step process: (a) Instantiation, (b)
Precompilation and (c) RTL code generation.

A. Instantiation

The elaboration of the network structure yields a number of
actor instances, which are references to CAL actor descriptions
along with actual values for its formal parameters. From this,
instantiation computes a closed actor description, i.e. one
without parameters, by moving the parameters along with the
corresponding actual values into the actor as local (constant)
declarations. It then performs constant propagation on the
result.

B. Precompilation

After some simple actor canonicalization, in which several
features of the language are translated into simpler forms, pre-
compilation performs some basic source code transformations
to make the actor more amenable to hardware implementation,
such as e.g. inlining procedures and function calls. Then the
canonical, closed actors are translated into a collection of
communicating threads.

In the current implementation, an actor with N actions
is translated into N + 1 threads, one for each action and
another one for the action scheduler. The action scheduler
is the mechanism that determines which action to fire next,
based on the availability of tokens, the guard expression of
each action (if present), the finite state machine schedule, and
action priorities.

To facilitate backend processing, for both hardware and
software code generation, the threads are represented in static
single-assignment (SSA) form. They interact with the en-
vironment of the actor through asynchronous token-based
FIFO channels. Their internal communication happens through
synchronous unbuffered signals (this is, for instance, how
the scheduler triggers actions to fire, and how actions report
completion), and they also have shared access to the state
variables of the actor.

C. RTL code generation

The final phase of the translation process generates an RTL
implementation (in Verilog) from a set of threads in SSA form.
The first step simply substitutes operators in expressions for
hardware operators, creates the hardware structures required to
implement the control flow elements (loops, if-then-else state-
ments), and also generates the appropriate muxing/demuxing
logic for variable accesses, including the Φ elements in the
SSA form.

The resulting basic circuit is then optimized in a sequence
of steps.

(a) Bit-accurate constant propagation. This step elim-
inates constant or redundant bits throughout the circuit,
along with all wires transmitting them. Any part of the
circuit that does not contribute to the result will also
be removed, which roughly corresponds to dead code
elimination in traditional software compilation.
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(b) Static scheduling of operators. By default, operators
and control elements interact using a protocol of explicit
activation—e.g., a multiplier will get triggered by explicit
signals signifying that both its operands are available, and
will in turn emit such a signal to downstream operators
once it has completed multiplication. In many cases,
operators with known execution times can be scheduled
statically, thus removing the need for explicit activation
and the associated control logic. In case operands arrive
with constant time difference, a fixed small number of
registers can be inserted into the path of the operand that
arrives earlier.

(c) Memory access optimizations. Arrays are mapped
to Block RAMs (BRAM) for FPGA implementation.
These usually small RAM blocks (typically 18 kBits)
are distributed across the FPGA, and can be ganged up
to form larger memories, or a number of small arrays
may be placed into one BRAM. Furthermore, BRAMs
usually provide two or more ports, which allows for
concurrent accesses to the same memory region. Based on
an analysis of the sizes of arrays and the access patterns,
the backend maps array variables to Block RAMs, and
accesses to specific ports.

(d) Pipelining, retiming. In order to achieve a desired
clock rate, it may be necessary to add registers to the
generated circuit in order to break combinatorial paths,
and to give synthesis backends more opportunity for
retiming.

Size Speed Code size Dev. time
slices, BRAM kMB/S kLOC MM

CAL 3872, 22 290 4 3
VHDL 4637, 26 180 15 12
Improv. 1.2 1.6 3.75 4
factor

Fig. 6. Hardware synthesis results for an MPEG-4 Simple Profile decoder.
The numbers are compared with a reference hand written design in VHDL.

Figure 6 shows the quality of result produced by the RTL
synthesis engine for a real-world application, in this case an
MPEG-4 Simple Profile video decoder. Note that the code
generated from the high-level dataflow description actually
outperforms the VHDL design in terms of both throughput
and silicon area for a FPGA implementation.

VI. DISCUSSION

In this paper it has been shown that CAL, at the same
abstraction level, can yield system specifications for direct SW
and HW generation. This is made possible by several inter-
esting properties which not only provide appropriate answers
at the problem of finding a language that specify systems at
high level, but that can also be extremely useful for facing the
challenges of next generation digital systems.

Expressing concurrency The intrinsic cability of CAL
operators and construct to describe and easily fit concurrent
problems make CAL actor-modeling an excellent fit for system

design of parallel algorithms and streaming or data dominated
applications.

Compactness The MPEG-4 Simple Profile decoder has
been manually implemented in different languages such as
C/C++, VHDL and CAL. The full implementation is com-
posed of approximately 4000 lines for CAL, 15000 lines for
VHDL, 4100 for an optimized version in C/C++. It shows how
concise CAL is, but at the same time concurrency and data
dependencies are clearly exposed and by raising the level of
abstraction of constructs and operators, CAL needs less lines
of code to fully describe a given algorithm. Conversely CAL
is not overloaded with implementation details and such feature
is a clear advantage. CAL focuses only on the description of
the algorithm itself and how data is generated and consumed
by the different components. Implementation details such as
scheduling of the operations are let to code generators.

Analysis CAL language allows the analysis of an actor
and networks of actors. For the definition of the actors, CAL
provides statically analyzable information about their behavior,
such as the number of tokens it produces and consumes in
each firing, the necessary conditions for their firing, on what
depend those conditions. . . These information are very useful
for effectively schedule, compose, and implement those actors
in the final implementations.

Portability CAL specifies algorithms and defines their
associated data flow models in a concise and clear way. CAL
models are completely independent from final implementation.
Thanks to this independency, it eases the integration, exchange
and the development of actors. Different implementation for
several targets can be built easily from these models. The
encapsulation property of the actors is very convenient: global
variables do not exist, making the integration of external actors
(not written by the designer himself) in the design much easier.

Simplicity of actor design CAL offers a compact, clear
and precise semantics, which is tailored to the constraints of
actor design and thus facilitates readability and maintainability
of the actors. The ease of programming is also necessary to
make the language accepted in the scientific community.

Hardware and Software code generation The CAL lan-
guage is a good starting point for both hardware and software
code generation.

The results presented in this paper and in [17] show that
efficient hardware code can be generated directly from CAL
models. The results show the quality of results produced by
the RTL synthesis engine for a real-world application (MPEG-
4 Simple Profile video decoder). The code generated from
the high-level dataflow description actually outperforms the
VHDL design in terms of both throughput and silicon area.

C code can also be generated from CAL models. The
results presented in this paper and in [18] show significant
improvements compared to CAL dataflow simulation with
the Open Dataflow environment [9]. The compilation process
has been successfully applied to the same MPEG-4 Simple
Profile video decoder. The synthesized software (10600 lines
of code) is faster than the CAL dataflow simulated (about 20
frames/s instead of 0.15 frames/s), and close to real-time for
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a QCIF format (25 frames/s) on a standard PC platform. It
is interesting to notice that the model is scalable: the number
of macro-blocks decoded per second remains constant when
dealing with larger image sizes.

CAL is particularly well suited for describing signal pro-
cessing systems which are intrinsically data-driven. It is not
by chance that CAL language has been chosen by the ISO/IEC
standardization organization in the new MPEG standard called
”Reconfigurable Video Coding (RVC)” (ISO/IEC 23001-4 and
23002-4). RVC is a framework allowing users to define a
multitude of different codecs, by combining together actors
(called coding tools in RVC) from the MPEG standard library
that contains video technology from all past standards (i.e.
MPEG-2, MPEG-4 etc, etc ) . The reader can refer to [19]
for more information about RVC. CAL is used to provide the
reference software for all coding tools of the entire library.
The essential elements of the RVC framework, besides the
tool library, include a Decoder Description expressed in an
XML dialect which describes in the architecture of the decoder
by specifying the connections between the different actors,
a Bitstream Schema (BS) which describes the structure, the
organization of the data in the bitstream and implicitly defines
the parser needed for the specific decoder reconfiguration.

VII. CONCLUSION AND FUTURE WORK

This paper describes a framework based on CAL data
flow language that includes a simulator and SW and HW
code generators. CAL data flow models results particularly
efficient for specifying signal processing systems in a very
synthetic form compared to classical imperative languages.
Moreover CAL models can be developed to describe archi-
tectural features of the desired implementation, thus enabling
the designer to work for both algorithm and architecture
specification at the same level of abstraction. Hardware and
software code generators then provide the implementation of
the actors and associated network of actors on different targets
(processors or FPGA). CAL succeeds in unifying different
levels of abstraction in a single layer at which specification,
design space exploration and efficient implementation can be
developed. CAL is very expressive and concise. It exposes
clearly the intrinsic parallelism of the algorithm by means
of the notion of encapsulated actor processing and explicit
data dependencies in the actor network. The first promising
results obtained by this framework for modelling systems and
generating software/hardware implementations, and the recent
adoption by ISO/IEC MPEG of CAL as a the new specification
formalism for the library that covers in modular form all video
algorithms from the different MPEG video coding standards,
shows that CAL is an appropriate language for supporting de-
sign flows aiming at building complex heterogeneous systems
from high level system specifications. Concerning future works
and extension of the framework they include the evolution
of the software and hardware code generators in terms the
extension of the subset of CAL language supported by the two
code generators, the development of scheduling tools beyond

the SystemC scheduler for mapping on multicore platforms
and the evolution of the current Open DataFlow environment
with more accurate and extended profiling and debug tools.
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Abstract

Redundant operators such as adders and multipliers
increase performance (timing and area) of high compu-
tational digital circuits. Mixing redundant operators with
classical ones is nevertheless complex for circuit designers
who might not have necessarily the required arithmetic
knowledge. In this context, Computer Aided Design tools
considering redundant arithmetic are of interest.

In this paper, several algorithms based on graph theory
are described. They replace some classical operators of a
design with redundant ones to minimize the overall timing.
Several real life experiments are presented.

I. Introduction

Redundant operators such as adders and multipliers
have very good performances considering time and area
[7], [10], [14]. Using those operators in VLSI circuit design
can thus appear advantageous, enabling architecture opti-
mizations and consequently further improvements as for
circuits performances. Several hand-made implementations
have been done using those architectures, leading to good
results [5], [6], [9], [16]: improvement up to 35% for the
frequency with an area overhead bounded by 11% for a
Discrete Cosine Transform Operator for example.

Mixing classical and redundant arithmetics in an ex-
plicit way can nevertheless appear quite tedious to non
initiated designers, for whom, furthermore, the rapid pace
of technological evolution puts a great ”time to market”
pressure. Such a pressure on design cycle combined with
strict performance contraints make the automation of the
introduction of redundant arithmetic in circuit design more
and more useful, bringing it more accessible. There has

therefore been an extensive research work on the introduc-
tion of redundant arithmetic in logical synthesis [11], [12],
[15]. However, they focus mainly on using only Carry-
Save adders, and choose to transform substractions and
multiplications into additions. They do not address the
possibility of using redundant multipliers as well as the
Borrow-Save representation.

We have already proposed an approach based on pattern
matching techniques in [2]. We also have demonstrated
the interest of using the Borrow-Save representation in
[3]. However, the pattern matching approach is not the
most appropriate one for handling circuits which have
operators with multiple fanouts. Algorithms have been
developped for it to be handled, but increase a lot the
time to perform the optimisation.

In this paper, we present a new approach based on
graph theory. The two criteria considered are again the
timing and the area minimization. Two heuristics solving
this optimization problem are developped. The first one
modifies classical operators into redundant ones as much
as possible like the pattern matching approach. The second
one uses a cost function in order to choose the best allo-
cation possible for each operator. Furthermore, these two
algorithms consider Borrow-Save architectures to handle
substractions.

Several designs, such as a FIR filter, a Distance Com-
putation Unit (DCU), a Fast Fourier Transform (FFT)
butterfly and a Discrete Cosine Transform (DCT) are
optimised, using our two algorithms.

The remainder of this paper is organized as follows:
Section 2 contains a global description of the redundant
arithmetic and the associated architectures. In Section 3,
we describe our redundant optimization algorithms. Our
experimental results are presented in Section 4. Section 5
is our conclusion.
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2II. Redundant arithmetic

A. Mixed arithmetic

Redundant arithmetic involves two number representa-
tions [1]:
• Carry-Save representation: a digit is defined by csi =
cs0
i + cs1

i with csi ∈ {0, 1, 2} so that a number is
considered as the sum of two terms: CS = CS0 +
CS1.

• Borrow-Save representation: a digit is defined by
bsi = bs0

i − bs1
i with bsi ∈ {−1, 0, 1} so that a

number is considered as the substraction of two terms:
BS = BS0 −BS1.

The abbreviations CS and BS are commonly used for
Carry-Save and Borrow-Save representations, as well as
NR and R for respectively Non Redundant and Redundant
representations.

The sole use of redundant arithmetic in data path de-
scription is not conceivable for several reasons. Firstly, we
must preserve the NR representation of the inputs/outputs
of the circuits. Secondly, we have to deal with non-
arithmetic operators such as multiplexors, boolean opera-
tors, etc... Classical and redundant arithmetics have there-
fore to be compatible. A new arithmetic is presented, called
mixed arithmetic, defined as the combination between
classical and redundant representations. This involves:

1) having at disposal every arithmetic operator accept-
ing both R and NR inputs/outputs: the three repre-
sentations of classical, redundant and mixed adders
are presented in Figure 1 for example.

2) being able to convert one representation to the other:
for example, the conversion CS→NR is the addition
between the two terms composing the CS number.

a. Classical
adder b. Redundant adder c. Mixed adder

Fig. 1. Adders representation

B. Carry-Save architectures

1) Adders: The architecture of a redundant adder,
adding two CS numbers, is presented in Figure 2. A similar
architecture exists for a mixed adder, adding a CS number
and a NR number, such as shown in Figure 3. Both adders

provide a CS output made of the effective sum and the
carries (Output = S + C).

These architectures show the main benefit of redundant
arithmetic: it allows to suppress the carry propagation in
the computation of an addition. The time to perform an
addition of two numbers is thus constant, independent of
the number of digits. Addition being an essential operator,
the potential benefit of using redundant/mixed adders is
significant.

Fig. 2. Implementation of a redundant adder

Fig. 3. Implementation of a mixed adder

2) Multipliers: The multiplier architecture frame (Fig-
ure 4) is divided into four parts [7]: (1) recoding (for inputs
in R form), (2-3) partial products + sum, (4) conversion (to
obtain the output in NR form). The second and third parts
are mandatory; they represent the effective computation of
the multiplication. The first and last parts are optionnal,
depending on the representations of the inputs/output. The
computations made are then Output = (CS0+CS1)∗NR
for mixed multipliers and Output = (CS0

0 + CS1
0) ∗

(CS0
1 + CS1

1 ) for redundant ones.

Since the output of the Wallace tree [14] (part 3) is in
CS form, allowing the output of the multiplier to be in
CS form generates the supression of the final conversion.
CS multipliers are therefore bound to have a better critical
time than classical ones, but a bigger area because of the
input recoders (especially with two R inputs).
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3

Fig. 4. Multiplier

C. Borrow-Save architectures

1) Adders: BS architectures allow to perform substrac-
tions. They have the same frame as the CS ones (cf.
the mixed adder architecture in Figure 5). Using the BS
representation, a mixed adder (adding a BS number and a
NR number) consists in computing Output = C + S =
BS+ − BS− + NR. A redundant adder (adding two BS
numbers) consists in Output = C + S = BS+

0 −BS
−
0 +

BS+
1 −BS

−
1 .

Fig. 5. Borrow Save mixed adder

The three different ways to implement the computation
(a−b)+(c−d) are shown in Figure 6: the NR architecture
(Sklansky adders [14]: substractions transformed into ad-
ditions using the two’s complement) in Figure 6.a, the CS
architecture (same treatment as for substractions) in Figure
6.b and the BS one in Figure 6.c. We have compared in [3]
the use of those architectures, in terms of time and area
1. The results presented show that the BS architectures
performances are in the same order of magnitude as the
CS ones.

2) Multipliers: BS architectures have the same frame
as the CS ones [7]. The difference is in the recoding part.
The computations made are then Output = S + C =
(BS+−BS−)∗NR for mixed multipliers and Output =
S + C = (BS+

0 − BS
−
0 ) ∗ (BS+

1 − BS
−
1 ) for redundant

ones.
We have compared in [3] the use of the different archi-

tectures to perform a computation involving substractions

1Note that for all the tests presented, we used the place and route tools
of the Cadence CAD System using the Alliance [8] CMOS Standard Cell
Library in 0.35µm

a. NR
architecture

b. CS
architecture

c. BS
architecture

Fig. 6. Computation of (a− b) + (c− d)

and multiplications: (a − b) ∗ (c − d). As before, three
architectures habe been compared: the NR architecture
(Sklansky adders and a classical multiplier), the CS one
and the BS one. The results show that the BS architecture
is faster and smaller than the CS one.

D. Advantage of the Borrow-Save representation

It has been shown in [3] that the interest of using the BS
representation is better emphasized when substractions are
inside arithmetical chains. Let us consider the computation
(a + b) − (c + d). The three possible architectures to
implement this computation are presented in Figure 7. We
can see in Figure 7.b that, when using the CS architectures,
the introduction of an inverter in the arithmetical chain
prevents from using a redundant operator, leading to a non
optimal design. Using the BS architecture avoids that issue,
such as shown in Figure 7.c.

a. NR
architecture

b. CS
architecture

c. BS
architecture

Fig. 7. Computation of (a+ b)− (c+ d)

The timing and area performances of these implemen-
tations are presented in [3]: using CS architectures results
in 25.7% area improvement and 6.7% timing deterioration
whereas using BS architectures result in 53.6% area im-
provement and 27.5% timing improvement, compared to
the classical implementation (Figure 7.a). The BS imple-
mentation is therefore 94% smaller and 32% faster than
the CS one.
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4III. Automatic optimization

Our aim is to take advantage of redundant arithmetic in
order to improve circuits timing. Our CAD tools are part
of a classical VLSI design flow and take place just before
logical synthesis. We have developped two algorithms
which, from a functional specification of a circuit described
with the Stratus language [4], modify the specifications of
the different operators and interconnections of the circuit,
while preserving its behavior and inputs/outputs. After this
process, the VLSI design flow remains unchanged.

This Section is organized as follows. First, some def-
initions are introduced. Secondly, our algorithms are de-
scribed. Last but not least, the implementation of the final
circuit is presented.

A. Definitions

Our optimization algorithms are based on graph the-
ory. We therefore consider our circuits as graphs to use
algorithmic tools to optimize them.

1) Arithmetic computation graph: An arithmetic data-
path can be modelled using a directed acyclic graph G =
(V,A) such that:

1) the set of operators (arithmetic or not), inputs and
outputs of the circuit represents the set of vertices
V of the graph G,

2) all signals of the circuit represent the set of arc
(x, y) ∈ A.

For any vertex x ∈ V , Γ−(x) denotes the set of direct
predecessors of x,

Γ−(x) = {y ∈ V, (y, x) ∈ A}.

2) Allocation function: An allocation function is de-
fined in order to distinguish the signals in redundant rep-
resentation from the others. The reasons a signal can not be
put in redundant representation are if it is an input/output
of the circuit, or if it is an input/output of a non arithmetical
operator. Let Vo ⊂ V be the set of vertices from V
corresponding to binary arithmetic operators. Elements
from Vo may be implemented using classical, mixed or
redundant operators. Elements from V − Vo correspond
then to inputs, outputs or non arithmetic operators. The
set of arcs that may be implemented using a redundant
representation is then Ao = {(x, y) ∈ A, x ∈ Vo, y ∈ Vo}.

An allocation is a function a : A → {0, 1} such that,
1) ∀(x, y) ∈ A−Ao, a(x, y) = 0;
2) ∀(x, y) ∈ Ao, a(x, y) = 1 if (x, y) is in redundant

representation, a(x, y) = 0 otherwise.
For any feasible allocation a, the set of arcs im-

plemented using a redundant representation is R(a) =
{(x, y) ∈ Ao, a(x, y) = 1}.

B. All in redundant algorithm

The all in redundant algorithm moves all arcs from Ao
into redundant representation, i.e. for any arc e = (x, y) ∈
Ao, a(e) = 1 so that R(a) = Ao.

In other words, this algorithm can be stated as follows:
Given a graph G of arithmetic computations, classical
arithmetic operators are transformed, when possible, into
their mixed or redundant form, with the preservation of
the functionnality of the design.

C. Optimal allocation algorithm

1) Motivations: Transforming systematically each
arithmetical operator into its redundant form leads to good
results but is not necessarily the optimal approach to obtain
the best timing. The computation in Figure 8 emphasises
this issue:

a. Cell b. All in
redundant

c. Optimal
allocation

Fig. 8. Timing optimal allocation

• the critical path of the classical implementation con-
tains two classical adders and one classical multiplier
(cf. Figure 8.a),

• the all in redundant algorithm reduces the critical path
to one redundant multiplier, one redundant adder and
one classical adder (cf. Figure 8.b),

• since a classical adder is faster than a redundant
multiplier, the addition between E and F can be
performed in parallel with the multiplication without
altering the critical path. Not transforming the adder
results in changing the redundant adder in the critical
path into a mixed adder. The critical path is therefore
smaller (cf. Figure 8.c).

Table I presents the performances of the different ar-
chitectures of Figure 8. They show an increase of the area
and an improvement od the timing. The improvement of
the timing being our main objective, those result confirm
that, with an optimal allocation, the optimization of the
timing is better than with the all in redundant allocation,
with an area overhead.
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5width Area Time
(mm2) (ns)

a b c a b c
8 0.24 0.21 0.24 60.5 54.7 50.6

ref -9.8% 0% ref -9.6% -16.4%
16 0.66 0.61 0.68 81.64 65.71 61.71

ref -8% +1.9% ref -19.5% -24.4%

TABLE I. Computation of (a+b)∗(c+d)+(e+f)

2) Cost of an allocation function: In order to find the
best allocation choice for the operators, a cost function
which evaluates each operator is defined, such as follows.

Let a be an allocation function such as defined in III-
A.2. The cost of any arc e = (x, y) ∈ A represents the
cost of its input vertex and therefore depends on a(x, y)
considering the 8 possibilities presented by Figure 9. This
cost, noted C(a, (x, y)), is computed as follows:

1) if a(x, y) = 1, then the arc (x, y) is implemented
using a redundant representation. Its cost depends
on the representation of the two inputs arcs of x
following the cases (a), (b1), (b2) and (c) in Figure
9.

2) if a(x, y) = 0, then the arc (x, y) is implemented
using a classical representation,

a) if x ∈ V − V0, the cost of (x, y) is a constant
independent from a,

b) if x ∈ Vo, the cost of (x, y) depends on
the representation of the two input arcs of x
following the cases (d), (e1), (e2) and (f) in
Figure 9.

In case of arithmetical operators (cases 1 and 2.b),
the cost is based on the complexity of the correponding
architecture, for example: 1 for a mixed adder, 2 for a
redundant adder, log2(n) for a slansky adder, ...

Let P(G) denotes the paths of G. The cost of any path
ν ∈ P(G) is

∑
e∈ν C(a, e). The cost C(a) of an allocation

is the maximum cost of a path from G, so

C(a) = max
ν∈P(G)

∑
e∈ν
C(a, e).

(a) (b1) (b2) (c)

(d) (e1) (e2) (f)

Fig. 9. All cases of connections

3) Allocation functions for in-trees: We suppose here
that the arithmetic data-path graph is an in-tree denoted by
τ . So, every vertex x ∈ V has one successor in G.

4) Algorithm: The optimal allocation algorithm mini-
mizes the cost function using dynamic programming. Let
the arc e = (x, y) ∈ A and let τ(x) be the sub-tree of τ
rooted in x. Let also O(e, 1) be a set of arcs from τ(x) in
a redundant representation for an optimal solution for the
graph τ(x) with the constraint that a(e) = 1. On the same
way, let O(e, 0) be a set of arcs from τ(x) in a redundant
representation for an optimal solution for the graph τ(x)
with the constraint that a(e) = 0.

SetsO(e, 0) andO(e, 1) are built recursively as follows:

1) If x ∈ V −Vo, then every allocation function verifies
a(e) = 0 and thus O(e, 1) is not defined. If x is an
input vertex, we set O(e, 0) = ∅. Otherwise, all the
elements from Γ−(x) must be classical operators and
O(e, 0) =

⋃
y∈Γ−(x)O((y, x), 0).

2) Otherwise, x ∈ Vo is a binary arithmetic operator
and has exactly two inputs vertices denoted by y1

and y2.
• For O(e, 0), we fix a(e) = 0 and the output of x

is implemented using a classical representation.
Then, O(e, 0) is the minimum cost solution
between the four following alternatives:
a) the arcs (y1, x) and (y2, x) are implemented

using a redundant representation, so the first
alternative is O((y1, x), 1) ∪O((y2, x), 1) ∪
{(y1, x), (y2, x)} (case (d) of Figure 9);

b) the arc (y1, x) is implemented using a classi-
cal representation, and the arc (y2, x) is im-
plemented using a redundant representation,
so the second alternative is O((y1, x), 0) ∪
O((y2, x), 1)∪{(y2, x)} (case (e1) of Figure
9);

c) the arc (y1, x) is implemented using a re-
dundant representation, and the arc (y2, x) is
implemented using a classical representation,
so the third alternative is O((y1, x), 1) ∪
O((y2, x), 0)∪{(y1, x)} (case (e2) of Figure
9);

d) lastly, arcs (y1, x) and (y2, x) are im-
plemented using a classical representation
and the fourth alternative is O((y1, x), 0) ∪
O((y2, x), 0) (case (f) of Figure 9).

• O(e, 1) is evaluated on the same way by consid-
ering that the output of x is implemented using
a redundant representation. Four alternatives are
investigated following cases (a), (b1), (b2) and
(c) of Figure 9.

The optimum solution is O((x, y), 0) with y, the root
of τ (since y ∈ V − Vo).
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6
D. Implementation

Once the used algorithm has determined the best repre-
sentation of each arc, the corresponding optimized circuit
has to be created. It can be feasible only if, for each opera-
tion (addition, substraction, multiplication), an architecture
exists for every possible case of connection.

Table II presents all possible cases and the corre-
sponding architectures. Three architectures exist for each
operation (the classical one, the mixed one and the re-
dundant one), which is sufficient to handle all the cases
(a conversion CS → NR is done if the output of a
R operator has to be NR). Comments can nevertheless
be done upon the two cases marqued with a ”*”. In
these cases, a null value has to be added in order to
use redundant operators. The operation wanted is indeed
NR− (CS0 +CS1) which is equal to NR−CS0−CS1.
This operation can be implemented only by transforming
it into (NR− CS0) + (′0′ − CS1).

IV. Experimental results

The tests performed are meant to show the usefulness
of the redundant arithmetic. We have therefore made, for
each benchmark, an implementation using classical arith-
metic only, and one or several implementations using our
algorithms. We present the performances of the circuits, in
terms of timing and area, with and without optimizations.

The first two benchmarks presented (FIR and DCU)
have been optimized with the two different optimization
algorithms. They can be modelled using trees and are
therefore supported by the optimal allocation algorithm.
The other two benchmarks (FTT butterfly and DCT) can
not be modelled using trees, the optimizations presented
result then from the all in redundant algorithm.

1) FIR Filter operator: The filter architecture is shown
in Figure 10. Three implementations are done: the classical
one, the one resulting from the all in redudant algorithm,
and the one resulting from the optimal allocation algo-
rithm. Since this design contains no substraction, both
algorithms use the CS representation.

The results (from a filter with 8 registers and 16 bits
datas) are summarized in Table III. Thoses results show
that both algorithms optimize timing and area. They also
show that the optimal allocation algorithm optimizes better
the timing, but less the area.

Architectures obtained with the different algorithms are
shown in Figure 11 (exemple with 4 registers):
• Figure 11.a presents the result of the all in redundant

algorithm, in which all arithmetical operators are
transformed into their redundant form.

*

*

TABLE II. Architectures
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7

Fig. 10. FIR filter operator

Classical All redundant Optimal
Area 3.97 2.94 3.34

(mm2) ref -25.92% -15.83%
Time 134.39 109.58 87.95
(ns) ref -18.47% -34.56%

TABLE III. Results of the FIR filter

• Figure 11.b presents the result of the optimal alloca-
tion algorithm, in which the instanciation of several
classical multipliers leads to mixed adders in the
critical path instead of redundant adders. This choice
can be made because redundant representations are
not nessessary in this case to improve the timing: the
classical multipliers remain faster than the computa-
tion made on the other input of the adders in the
critical path.

a. All in redundant

b. Optimimal allocation

Fig. 11. FIR filter optimizations

2) DCU operator: The DCU architecture [5] is com-
posed of two parts, such as shown in Figure 12: the first
one computes the distances (Ai − Bi)2, the second one
performs the sum of these distances.

The results, summarized in Table IV, present the op-
timizations of both algorithms. This operator containing
subtractions, each algorithm is used twice, once using the
CS architectures, once using the BS ones. Those results
show that the optimal allocation algorithm results in the
same architecture as the all in redundant one: in this case
the optimal allocation is indeed to transform all the arcs
into redundant representation. They also show that the BS
architectures produce a better timing and a better area than
the CS ones.

3) FFT butterfly: The butterfly is the elementary cell
composing the Fast Fourier Transform [16]. Its architecture

Fig. 12. DCU operator

Classical All Redundant Optimal
CS BS CS BS

Area 0.24 0.29 0.24 0.29 0.24
(mm2) ref +24.27% 0% +24.27% 0%

Time 65.87 56.72 54.44 56.72 54.44
(ns) ref -13.89% -17.36% -13.89% -17.36%

TABLE IV. Results of the DCU operator

is shown in Figure 13. In this Figure, complex numbers
are used, and we have:X = A+w.B Y = A−w.B where
w = Cos+ i.Sin.

The results, from the all in redundant algorithm with
CS architectures and BS ones, are summarized in Table
V. Once again, the BS architectures result in better perfor-
mances than the CS ones.

Fig. 13. FFT butterfly operator

Classical All Redundant
CS BS

Area 0.77 0.68 0.62
(mm2) ref -10.91% -19.54%

Time 63.68 66.24 56.42
(ns) ref +4.02% -11.39%

TABLE V. Results of the Butterfly operator

4) 1-D DCT operator: The architecture of the DCT
is shown in Figure 14. It represents the the Loeffer Signal
Flow Graph [13] which computes the 1-D DCT of 8 pixels
in only one cycle.

The results are summarized in Table VI, resulting again
in better performances for the BS architectures. Let us
compare those implementations with the ones resulting
from our previous approach in [2] and [3]: the optimal al-
gorithm produces better area (up to -4.6%) and timing (up
to -1.7%). In addition, the optimal algorithm is performed
up to 84% faster than the pattern matching technique.
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8

Fig. 14. 1-D DCT operator

Classical All redundant Pattern Matching
CS BS CS in [2] BS in [3]

Area 3.96 3.91 3.73 4.1 3.85
(mm2) ref -1.23% -5.82% +3.5% -2.8%

Time 115.7 100.25 95.99 100.53 97.65
(ns) ref -13.35% -17.04% -13.1% -15.6%

TABLE VI. Results of the DCT operator

V. Conclusion

In this paper, two algorithms have been presented,
which use automatically redundant arithmetic in order to
optimize high computationnal digital circuits. The first
algorithm does a systematic transformation of arithmetical
operators into their redundant form. The second one does
an optimal allocation for the timing. In addition, those
algorithms use the Carry-Save architectures only or the
Borrow-Save architectures also in order to optimize sub-
stractions. We aimed at introducing the different solutions
and outlining their prons and cons.

Our experimental results can be summarized as follows.
First of all, a systematic transformation of arithmetical
operators into their redundant form is not the optimal
approach to obtain the best timing. An algorithm finding
the best allocation for each operator (classical, mixed or
redundant) seems like the best alternative. Second of all,
this new approach based on graph theory seems better
adapted to DAGs than the previous one.

We aim at testing our algorithms on other benchmarks
in order to strengthen our conclusion that the optimal
allocation algorithm leads to better results. Since this

algorithm is currently limited to trees, we also aim at
extending its use to DAGs in order to be able to use it
on more benchmarks.
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Abstract—The richness of wavelet transformation is known in
many fields. There exist different classes of wavelet filters that
can be used depending on the application. In this paper, we
propose a high-precision lifting-based wavelet processor that can
perform various forward and inverse DWTs. Our architecture is
based on NxM PEs that can perform either prediction or update
on a continuous data stream in every two clock cycles. Contrary
to other lifting-based processors, which focus on JPEG2000, our
design is based on the fact that the wavelet transformations are
not used only in the area of image processing and the wavelet
filters cannot be represented as integer numbers. Therefore their
computations cannot be satisfied by using integer arithmetics.
For this purpose, IEEE 754-compliant floating-point arithmetics
are used to compute the transformation. We also consider the
normalization step that takes place at the end of the forward
DWT or at the beginning of the inverse DWT. To cope with
different wavelet filters, we feature a multi-context configuration
to select among various DWTs. For the 32-bit implementation,
the estimated area of the proposed wavelet processor with 2x8
PEs configuration in a 0.18-µm technology is 3.7 mm square and
the estimated operating frequency is 361 MHz.

I. INTRODUCTION

The breakthrough in wavelet theory, which has been stud-

ied in the last two decades by many researchers [1], [2],

[3], has delivered a solid background and has drawn much

attention due to its attractive properties, especially regarding

its time-frequency localization feature [4], [5]. Wavelets have

been known in many fields such as mathematics, physics,

and electrical engineering. Due to numerous interchanging

fields, wavelets have been used in many applications such as

image compression, feature detection, seismic geology, human

vision, etc. Because different applications require different

treatments, researchers have tried to cope with their own

issues and implemented only a subset of wavelets suitable

for their own needs such as one that can be found in image

compression [6], [7], [8] and speech processing [9], [10],

[11]. The power of wavelet tools is then limited due to these

approaches.

In this paper, we propose a novel architecture to compute

forward and inverse transforms of numerous DWTs (Discrete

Wavelet Transforms) based on their lifting scheme representa-

tions. Most lifting-based wavelet processors are dedicated to

compute biorthogonal (5,3) and (9,7) wavelet filters used in

JPEG2000, where the coefficients can be represented as inte-

gers. Andra in [12] described a VLSI architecture to compute

(5,3) and (9,7) wavelet filters which required two adders, one

multiplier, and one shifter in each row and column processor.

The condition was as such that the prediction or the update

constants of the actual and the delayed samples are equal (i.e.

c(1+z−1)), which is one of the properties of this class of filter.

Dillen in [13] described the combined architecture of the same

filters for FPGAs. Seo detailed the arithmetic rescheduling of

these biorthogonal wavelet filters with the aim to minimize

the number of registers in [14]. Our new proposed architecture

takes into account that the wavelet coefficients of an arbitrary

wavelet filter and the corresponding wavelet transforms cannot

be satisfied by using integer computation. Additionally, the

lifting step representation of an arbitrary wavelet filter may

have two different predict/update constants as the result of the

polyphase decomposition. Their corresponding Laurent poly-

nomials may have higher-order factors (i.e. c1z
−p + c2z

−q),

which are common in various classes of wavelet filters such as

Daubechies, Symlet, and Coiflet wavelet filters. The proposed

architecture also considers the normalization step which takes

place at the end of the forward DWT or at the beginning

of the inverse DWT. In order to be flexible, the proposed

architecture provides a multi-context configuration to choose

between various forward and inverse DWTs.

The rest of the paper is organized as follows. Section II

describes the second generation of wavelets. The proposed ar-

chitecture, including the processing element, the floating-point

multiplier and adder, the normalization, the configuration, and

the context switch, are explained in Section III. Section IV

discusses the performance of the proposed architecture and

Section V summarizes our conclusions.

II. LIFTING SCHEME

Contrary to the filter approach, which separates the signal

into low and high frequency parts and performs the decimation

on both signals afterwards, the second generation of wavelets

reduces the computation by performing the decimation in ad-

vance. The second generation of wavelets, more popular under

the name lifting scheme, was introduced by Sweldens [15].

The basic principle of the lifting scheme is to factorize the

wavelet filter into alternating upper and lower triangular 2×2
matrix. Let H(z) and G(z) be a pair of low-pass and high-pass

wavelet filters:

H(z) =
∑kh

n=kl
hnz−n G(z) =

∑kh

n=kl
gnz−n
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where hn and gn are the corresponding filter coefficients.

N = |kh − kl| + 1 is the filter length and the corresponding

Laurent polynomial degree is given by h = N−1. By splitting

the filter coefficients into even and odd parts, the filters can

be rewritten as:

H(z) = He(z
2) + z−1Ho(z

2)

G(z) = Ge(z
2) + z−1Go(z

2)

and the corresponding polyphase representation is:

P (z) =

[

He(z) Ge(z)
Ho(z) Go(z)

]

Daubechies and Sweldens in [15], [16] have shown that the

polyphase representation can always be factored into lifting

steps by using the Euclidean algorithm to find the greatest

common divisors. Thus the polyphase representation becomes:

P (z) =

[

K 0
0 1/K

] 1
∏

i=n

[

1 ai(z)
0 1

] [

1 0
bi(z) 1

]

where K is the normalization factor and ai(z) and bi(z) are

the Laurent polynomials which correspond to the updaters and

the predictors of the lifting steps. Fig. 1 shows the arrangement

of the lifting scheme representation. The Laurent polynomials

bi(z) and ai(z) are expressed as predictor Pi(z) and updater

Ui(z). The signal Sj is split into even and odd parts. Prediction

and update steps occur alternately. The predictor Pi(z) predicts

the odd part from the even part. The difference between the

odd part and the predicted part is computed and used by the

updater Ui(z) to update the even part. At the end, the low-pass

and the high-pass signals are normalized with a factor of K
and 1/K respectively.

By factoring the wavelet filters into lifting steps, it is

expected that the computation performed on each stage (either

a prediction or an update) will be much less complex. As an

example, the famous Daub-4 wavelet filter with the low-pass

filter response:

H(z) =
1 +

√
3

4
√

2
+

3 +
√

3

4
√

2
z−1 +

3 −
√

3

4
√

2
z−2 +

1 −
√

3

4
√

2
z−3

can be factored into lifting steps:

P (z) =

[
√

3−1
√

2
0

0
√

3+1
√

2

]

[

1 −z
0 1

]

[

1 0

−
√

3

4
+ 2−

√

3

4
z−1 1

] [

1
√

3
0 1

]

Since the finding of the greatest common divisors is not

necessarily unique, the result of the Laurent polynomials

may also differ. The Daub-4 and the biorthogonal (5,3) and

(9,7) wavelet filters can be factored into lifting steps with a

maximum degree of ±1 [16] whereas Symlet-6 and Coiflet-2

(the lifting computations are not detailed here due to a page

limitation) may have a z±5 factor on its Laurent polynomials.

III. PROPOSED ARCHITECTURE

The lifting-based forward DWT splits the signal into even

and odd parts at the first stage. The split signals are processed

by an alternating series of predictors and updaters (on some

wavelet filters an updater may come before a predictor). On

the final stage, the multiplication with the normalization factor

takes place. The inverse DWT performs exactly everything

backwards. It starts with the multiplication with normalization

factor, continues with a series of updaters and predictors, and

finishes with the merging of the outputs.

As the lifting scheme breaks a wavelet filter into smaller

predictions and updates, the resulting predictor and updater can

be limited to have a maximum Laurent polynomial degree of

one. Nevertheless, the predictor or the updater of higher-order

wavelet filters may have higher factors as well. Without loss

of generality, we can formulate the predictor or the updater

polynomial as:

l(z) = c1z
−p + c2z

−q

with polynomial constants c0 and c1, and |p − q| = 1. This

implies that on each stage (either as a predictor or an updater),

two multiplications and two additions are performed. As an

example, the first predict and update steps of Daub-4 can be

written as:
[

s′

d

]

=

[

1
√

3
0 1

] [

s
d

]

=

[

s + d ·
√

3
d

]

[

s′

d′

]

=

[

1 0

−
√

3

4
+ 2−

√

3

4
z−1 1

] [

s′

d

]

=

[

s′

d + s′ · −

√

3

4
+ s′ · 2−

√

3

4
z−1

]

which perform one multiplication and one addition in order to

solve s′ and two multiplications and two additions to solve d′.
Taking into account that a predictor and an updater perform

a similar computation, we propose a new wavelet processor

which is based on NxM processing elements to cope with

N-dimensional wavelet computations and M lifting steps.

The N dimensions of our proposed wavelet processor can

be interpreted in various ways. For example, the proposed

wavelet processor with 2xM processing elements can per-

form two concurrent DWTs on a 2D image to compute the

transformation on both row and column data at the same

time. In case of a 1D signal, it can be used to double the

performance by splitting the signal in half. Additionally, in

case of wavelet packets, the proposed NxM architecture can

perform N different transformations in a simultaneous manner.

A. Architecture of the Processing Element

The core behind our proposed architecture is the processing

element (PE), which performs the prediction or the update in

every two clock cycles. Taking into account that floating-point

multipliers are expensive, in term of logic counts, and the

PE receives two samples (s and d) at once, we have decided

to lower the input rate by half. From the performance point

of view, the processing rate of the PE will be equal to the

processor speed and no longer twice as fast. This also implies
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Fig. 1. Forward lifting steps.

that the bottleneck issues on the input and output ports with

the memory will not occur. From the hardware implementation

point of view, the PE requires only one multiplier. This

optimization, as detailed later, is accomplished by multiplexing

the operands of the multiplier inputs (the multiplier and the

multiplicand).

The PE is a pipeline-based architecture in order to maximize

the performance. Fig. 2 depicts the proposed PE. The PE has

two selectors S1 and S2 to choose the prediction or the update

samples that correspond to the factors p and q from the Laurent

polynomial. Two constants C1 and C2 that represent the filter

coefficients are defined and configured by the controller. By

delaying the actual samples, selector S3 controls the prediction

or the update that requires future samples. Selector S4 is a

bypass selector. Because lifting steps of higher-order wavelet

filters may require distance prediction or update samples, the

maximum depth of the unit delay z−m, which determines the

maximum delay level, can be freely chosen during the design.

Two unit delays are implemented on both input ports A and

B. In order to reduce the number of registers needed for the

unit delay, the unit delay on port A has two input selectors

(i.e. S3 and the multiplexer output) and two outputs.

The PE is divided into 3 blocks. The first block organizes

the input samples from both channels. The second block

performs the floating-point multiplications on the samples that

are selected by S1 and S2 with the constants C1 and C2.

Two 2-level FIFOs on both input samples are implemented

to compensate the multiplier delay. The last block performs

the addition of three floating-point values. One 4-level FIFO

is implemented to compensate the delay introduced by the

adder.

B. Floating-Point Multiplier

As mentioned earlier, the PE utilizes only one floating-

point multiplier which is time-shared in order to perform

two multiplications. The first clock cycle performs the first

multiplication (i.e. C1 × M1) and the second cycle performs

the second multiplication (i.e. C2 × M2). M1 and M2 are the

time-multiplexed output samples of the unit delay determined

by the output of the multiplexer.

The floating-point multiplication follows the IEEE 754

standard [17]. Given are two floating-point numbers A and B:

A = (−1)Sa × Ma × 2Ea B = (−1)Sb × Mb × 2Eb

C1

C2

S2

S1

S3

S4

N

A’

C
O

N
T

R
O

L
L

E
R 2M

M

M

N

N

NN

A B

N

B’

MUX

MUX

2−level

FIFO

MUX

2−level

FIFO

MUX

FIFO

4−level

z−mz−m

Fig. 2. Block diagram of the processing element.

To multiply two floating-point numbers, we need to multiply

the mantissas Ma and Mb and add the exponents Ea and Eb.

Thus, we have:

O = (−1)Sa⊕Sb × (Ma · Mb) × 2Ea+Eb

Several floating-point multiplier architectures are detailed

in [18], [19]. Both architectures support only 32-bit single

precision and 64-bit double precision formats. Our floating-

point multiplier is a 2-level pipeline architecture and can be

customized for other floating-point formats beside the standard

single and double precision formats. Fig. 3 depicts the block

diagram of the floating-point multiplier.

1) Stage 1: At the first stage, the resulting sign is resolved

by the sign block (i.e. Sa ⊕ Sb). The multiplier block inserts

the hidden bit to both mantissas Ma and Mb and performs the

unsigned multiplication. By taking into account the amount of

the guard bits, the result of the multiplication will be truncated,

resulting the fraction F . The amount of the guard bits that

will be used by the rounding block is configurable. The zero

logic block detects if one/both of the operands is/are zero.

The exponent add block adds both exponents Ea and Eb.
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Fig. 3. Block diagram of the floating-point multiplier.

This block outputs two values to minimize the effort at stage

2. Because the exponents are in the biased-format, we can

directly treat the operation as the normal unsigned addition.

One guard bit is appended to the most significant bit of both

exponents before the addition.

2) Stage 2: By examining the most significant bit (MSB)

of the resulting fraction F , the normalization block normalizes

the resulting fraction. The normalization is basically a shift-

left by one operation. The same technique is applied to select

the correct exponent Er.

• FMSB = 0 ⇒ Er = Ea + Eb

• FMSB = 1 ⇒ Er = Ea + Eb + 1

To convert the resulting exponent Er back to the biased-

format, we only need to invert the exponent (i.e. Er[MSB−1:0]).

The zero, underflow, and overflow block checks if the result

lays on the valid floating-point range.

• Z = 1 ∨ Er[MSB:MSB−1] = 00 ⇒ ZeroF lag = 1
• Er[MSB:MSB−1] = 11 ⇒ OverflowF lag = 1

The round and pack block rounds the normalized fraction.

Two rounding mechanisms are available: rounding to zero and

rounding to nearest. The resulting sign, the rounded fraction,

and the exponent are packed together. If the zero flag is set,

the output will be cleared, and if the overflow flag is set, the

output will be saturated.

C. 3-Input Floating-Point Adder

Contrary to the floating-point multiplier, the floating point

adder requires more steps due to the algorithm complexity and

the data dependency. As depicted in Fig. 4, to perform addition

between two floating-point numbers, the following steps are

performed:

1) Calculate the exponent difference.

2) Align the mantissa by shifting the mantissa with the

lower exponent to the right.

3) Add/subtract both mantissas depending on the sign bits.

MAN. SHIFTEXP. DIFF

ADD/SUB

LOD

NORM. & ROUND.

R

Ea Eb Ma Mb

Fig. 4. Two-Input Floating-Point Adder with Leading-One Detector (LOD).

NORM. & ROUND.

LOP ADD/SUB

MAN. SHIFTEXP. DIFF

R

Ea Eb Ma Mb

Fig. 5. Two-Input Floating-Point Adder with Leading-One Predictor (LOP).

4) Perform the Leading-One Detection (LOD1) to deter-

mine the location of the first logic one.

5) Normalize and round the result.

In order to decrease critical paths, Leading-One Prediction

(LOP2) was proposed in [20], [21], [22], [23] as a replacement

of LOD, predicting the first occurrence of the logic one di-

rectly from the operands. Fig. 5 depicts the addition algorithm

with LOP. The LOP works in parallel with the adder and it is

based on the encoding tree which examines both inputs from

left to right. The LOP ignores the possible carry or borrow

that might occur on the addition/subtraction result. Thus, it

leads to one-bit inaccuracy, which will be corrected during

the normalization step. This is why it is more popular with

the name inexact LOP. With additional complexity, papers

in [24], [25] detailed the design of the exact LOP that

predicts correctly the position of the leading-one. Therefore,

it minimizes the effort on the normalization stage.

References [26], [27], [28] discussed the architectures of

a floating-point adder. Kowaleski [26] described a 4-level

floating-point adder that can be operated at 433 MHz in a

0.35-µm technology and Beaumont-Smith [28] detailed how

to reduce the number of pipeline stages into three. In order

to add three floating-point numbers, two inputs will be added

first and the temporary result will then be added to the third

input. This introduces a longer pipeline structure with the

1LOD is also known as LZD (Leading Zero Detector).
2LOP is also known as LZA (Leading Zero Anticipator).
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Fig. 6. 3-Input Floating-Point Adder.

normal approach (i.e. chaining two floating-point adders) and

consumes more area.

To minimize the number of pipeline stages, we have devel-

oped a dedicated 4-stage 3-input floating-point adder. Fig. 6

depicts the block diagram of the adder.

1) Stage 1: At the first stage, the two inputs A and B
are unpacked. The mantissa comparator block compares both

mantissas Ma and Mb and outputs one decision bit (i.e.

Ma ≥ Mb) which will be used by the shift, swap, and add

guard block. The zero logic block detects if the corresponding

input is zero. The exponent difference AB block compares

both exponents Ea and Eb. This block outputs four different

values. The first three values (the shift count |Ea − Eb| and

the comparator results Ea = Eb and Ea > Eb) will be used

by the shift, swap, and add guard block. The fourth value (the

temporary dominant exponent Ed = max(Ea, Eb)) will be

used by the exponent difference CD block.

Since the addition or subtraction is performed in a normal

binary representation (i.e. unsigned number), it is necessary

to sort/swap the operands (i.e. Ma ↔ Mb). We choose not to

convert the numbers into signed, because LOP requires both

inputs to be unsigned. Additionally, we do not need to convert

the final result back to unsigned during the normalization step,

which would require one extra stage before the normalization.

As the name implies, the shift, swap, and add guard block

aligns the mantissa Ma and Mb to have the same exponent

degree by shifting the mantissa with the smaller exponent to

the right. The hidden bit and the guard bits are appended to

the most significant bit and the least significant bit of both

mantissas respectively. The number of bits used as guard bits

can be freely chosen. Based on the exponent difference, three

different cases are examined here:

• Ea = Eb: Depending on the output of the mantissa

comparator block, both mantissa Ma and Mb will be

swapped directly (i.e. Ma ↔ Mb) without performing any

shifting.

• Ea > Eb: The mantissa Mb will be shifted to the right

with the amount determined by the exponent difference

AB block (i.e. |Ea − Eb|).
• Ea < Eb: The mantissa Ma will be shifted to the right

with the amount determined by the exponent difference

AB block (i.e. |Ea−Eb|). Both mantissas will be swapped

afterwards.

In all of the cases, if a zero number is detected, the corre-

sponding mantissa(s) will be set to zero. The outputs of the

shift, swap, and add guard block are the sorted and extracted

fractions Fa and Fb with their corresponding signs.

At this stage, the input C is not processed, thus two

values that correspond to the prediction/update sample and

the first multiplication result can be added first. The second

multiplication result that comes on the next clock cycle will

be unpacked at the second stage.

2) Stage 2: At this stage, the fractions Fa and Fb are

added/subtracted depending on the sign difference (i.e. Sa ⊕
Sb), resulting in the fraction Fab. If the exponent Ec is greater

than Ed, the result will be shifted to the right. These steps

are performed by the add/sub and shift block with the shift

parameter determined by the exponent difference CD block.

Three different cases as at the first stage are also examined

here.

The shift and add guard block prepares the mantissa Mc.

If the exponent Ec is less than Ed, Mc will be shifted

instead. The hidden bit and the guard bits are appended to

Mc, resulting in fraction Fc. Finally if the zero logic block

detects a zero number, Fc will be set to zero.

3) Stage 3: At stage 3, the operand swap and add/sub block

swaps the operands Fab and Fc if necessary (note that both

operands have the same exponent). Afterwards, it performs

the addition or subtraction. To minimize the logic counts and

the logic levels on this stage, we have utilized the inexact

LOP. The LOP block works parallel with the operand swap

and add/sub block to predict the first occurrence of the logic

one directly from the operands. Taking into account that one-

bit inaccuracy might occur on the prediction, the LOP block

prepares two values at the output to minimize the critical paths

on the normalization stage.
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Because three addition/subtraction arithmetic operations are

involved, the final result might have an increase of exponent

by two. The exponent adjustment block prepares the dominant

exponent by simply adding two to the largest exponent (i.e.

Er = max(Ea, Eb, Ec) + 2).

4) Stage 4: Because the LOP block may deliver an error

within one-bit degree, the error has to be corrected. The error

can easily be detected by looking at the LOP-index bit of

the resulting fraction Fr . This step is performed by the LOP

correction block. Additionally, this block also performs the

pre-normalization by shifting the resulting fraction Fr to the

left with the shift amount determined by the inexact LOP

value. We have examined that correcting the LOP result in

real time (by adding with one) will increase the critical path

on the stage 4. This is why the LOP block on the stage 3

outputs two values. Therefore, we only need to choose the

right value at the end.

Should the inexact LOP predicts the leading-one position

falsely, the normalizer block corrects the pre-normalized frac-

tion by shifting it to the left. Here we only need to perform

one bit shifting. The rounding logic implements two rounding

mechanisms: rounding to zero and rounding to nearest. Based

on the corrected LOP value, the exponent update block updates

the resulting exponent. The underflow and overflow detector

block checks if the resulting exponent lays on the valid

floating-point range. Finally, the sign, the normalized fraction,

and the corrected exponent are packed together by the pack

block.

D. Normalization

As normalization can take place at the end of the trans-

formation in case of forward DWT or at the beginning of the

transformation in case of inverse DWT, two special processing

elements to handle this function are required. Neglecting

the prediction/update process (addition between the actual

sample and the predictor/updater values), normalization can be

performed on the PE. We extend the functionality of the PEs

that are located at the top and at the bottom of the proposed

wavelet processor. Three additional multiplexers are needed

to add the normalization factor unit into the PE. Fig. 7 shows

the PE used at the top and at the bottom of the proposed

architecture. By enabling S5 and setting S1 and S3 to zero,

two inputs of the multiplexer before the multiplier correspond

to the actual samples s and d (with the normalization factors

K = C1 and 1/K = C2). The first multiplication product

passes through the multiplexer and the 1-level FIFO resulting

in s′ = Ks (left side). The second multiplication product

passes through the multiplexer resulting d′ = d/K (right side).

The 4-level FIFO is split into 3-level and 1-level FIFOs, with

the latter used to make the both outputs synchronized.

E. Controller

To cope with various lifting-based forward and inverse

DWTs, we have separated the configuration-dependent param-

eters from the PE. Figs. 2 and 7 show how the inputs of the

selectors and the multiplier constants are separately drawn on
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Fig. 7. Block diagram of the processing element which is located at the top
and at the bottom.

the left side of the figures. To support different classes of

wavelet filters, which require different types of configurations,

we have implemented a multi-context configuration on each

PE as depicted in Fig. 8. Each PE is assigned a row index as

a unique ID for the configuration. Multiplier constants use

the signal data paths to save the wiring cost whereas the

selector configuration requires an additional controller path.

The context switch is implemented as a memory module,

where the address is controlled by the context selector, and

the write enable signal is controlled by the output comparator.

The active configuration can easily be selected by using this

context-based controller to cope with various wavelet filters.

Benefits of a multi-context configuration are: (1) the pro-

posed wavelet processor can be configured to perform the cor-

responding inverse DWTs in a very simple manner, (2) wavelet

transformations that use longer wavelet filters can be computed

by splitting the lifting steps, and (3) the issues regarding

the boundary condition can be relaxed by utilizing special

wavelet filters on the signal boundaries, which require less

or no delayed/future samples (e.g. Haar wavelet), instead of

exploiting the periodicity or mirroring of the signal.

IV. RESULTS AND PERFORMANCES

The proposed wavelet processor is based on modular and

parametric approaches and is written in VHDL. Wavelet

processors with 2x8 PEs to process two concurrent for-

ward/inverse DWTs and eight lifting steps (including normal-

ization), 8-level unit delays to support higher-order wavelet

filters, and 16 available contexts to configure the transforma-
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TABLE I
EST. AREA AND FREQUENCY OF A WAVELET PROCESSOR WITH 2X8 PES.

Data Width Est. Area (in mm2) Est. Freq. (in MHz)

16-bit (10p) 1.723 471.70

20-bit (14p) 2.195 425.53

24-bit (18p) 2.704 392.16

28-bit (21p) 3.206 371.75

32-bit (23p) 3.667 361.01

tions, are implemented and synthesized. Rounding to nearest

with three guard bits is used on all floating-point arithmetics.

Note that wavelet filters that require longer lifting steps can

be split into several large steps with a maximum number of

eight. The design is synthesized using 0.18-µm technology.

The estimated area and frequency of various data width

implementations are reported in Table I. The value inside the

bracket indicates the number of bits used for the precision.

For the 32-bit configuration, the proposed wavelet processor

consumes 3.7 mm2 chip area and has a maximum operating

speed of 361 MHz. As a comparison, Andra [12] with 16-bit

integer architecture can only compute (5,3) and (9,7) filters

and requires 2.8 mm2 area with 200 MHz operating frequency.

Table II summarizes the comparison. The other architectures,

except ours, are integer-based with 16-bit data width.

To measure the level of correctness and to show the flexibil-

ity of our design, we perform three different DWTs on some

predefined signals. Four different input signals ranged [–1;+1]

with 1024 samples are used as references. These signals are

forward and inverse transformed with Daub-6, Symlet-6, and

Coiflet-2 wavelet filters, which do not have integer coefficients.

The random signal has a uniform distribution. The lifting step

coefficient of these wavelet filters are summarized in Table III.

The SNR is computed using:

SNR(dB) = 20 × log10

( ∑ |signal|
∑ |signal − result|

)

where signal corresponds the input vector and result corre-

sponds the output of the forward and inverse transform. The

SNR values of the different data width implementations are

reported in Table IV and the corresponding maximum errors

are reported in Table V. Depending on the data widths, SNR

values vary between 46 dB and 144 dB, which are sufficient

for most applications.

TABLE II

COMPARISON WITH OTHER LIFTING-BASED ARCHITECTURES.

Architecture Operating Speed Area Filter

Andra [12] 200 MHz (0.18-µm) 2.8 mm2 (5,3) & (9,7)

Dillen [13] 110 MHz (FPGA) – (5,3) & (9,7)

Seo [14] 150 MHz (0.35-µm) – (5,3) & (9,7)

Ours 361 MHz (0.18-µm) 3.7 mm2 Arbitrary

TABLE IV
SNR VALUES OF DIFFERENT DATA WIDTH IMPLEMENTATIONS (IN DB).

Daub-6

Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 56.38 78.27 100.68 118.41 134.81

Sawtooth 56.35 78.61 104.09 119.41 133.74

Step 72.01 86.77 110.81 119.41 128.29

Random 55.34 79.51 103.80 119.61 133.77

Symlet-6

Sinusoid 56.24 80.67 102.19 121.00 135.41

Sawtooth 55.46 81.76 103.02 120.26 135.61

Step 65.61 76.40 113.82 119.20 144.25

Random 45.95 70.10 93.47 112.06 123.43

Coiflet-2

Sinusoid 47.83 72.20 96.45 113.60 124.66

Sawtooth 47.53 71.84 94.83 112.96 125.31

Step 47.67 82.05 93.50 116.12 128.15

Random 47.63 71.49 94.93 113.47 124.44

The total latency on each PE is 7 clock cycles. One clock

cycle is used by the input registers, 2+1 by the multipliers

(two multiplications take place), and 3+0 by the adders (one

cycle is stolen from the multiplier). Additional sample latency

(two clock cycles per future sample) will add-up to the total

latency on the PEs, which require this feature. The PE that

is configured as a normalizer has a latency of 4 clock cycles

only.

For the NxM wavelet processor, the total time needed to

compute an L-stage forward/inverse DWT is:

T = TdL +
2S

N
(1 − 0.5L)

where S is the signal length and Td = M ×TPE is the circuit

delay with TPE as the PE latency delay.

V. CONCLUSIONS

We have proposed a novel architecture to compute floating-

point arithmetic-based forward/inverse DWTs. The proposed

wavelet processor is based on NxM PEs and can accept

continuous data streams. It can also be configured easily to

support higher-order lifting polynomials as a result of the fac-

torization of higher-order wavelet filters. To cope with different

wavelet filters, the proposed architecture includes a multi-

context configuration so that users can easily switch between

transformations (including their inverses). Additionally, the

proposed architecture takes into account the normalization step

that occurs at the end of the forward DWT or at the begin-

ning of the inverse DWT. The proposed wavelet processor

is capable to receive continuous data streams and compute
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TABLE III

LIFTING COEFFICIENTS OF DAUB-6, SYMLET-6, AND COIFLET-2 WAVELET FILTERS.

Type Daub-6 Symlet-6 Coiflet-2

Updater 2.425 z0 -0.227 z0 -2.530 z0

Predictor 0.079 z−1 -0.352 z0 -1.267 z−1 0.216 z0 -0.240 z−1 0.342 z0

Updater -2.895 z1 0.561 z2 0.505 z1 -4.255 z2 3.163 z1 15.268 z2

Predictor -0.020 z−2 0.045 z−3 0.233 z−2 0.006 z−3 -0.065 z−2

Updater -18.389 z3 6.624 z4 -63.951 z3 13.591 z4

Predictor 0.144 z−5 -0.057 z−4 0.001 z−5 0.002 z−4

Updater -5.512 z5 -3.793 z5

Normalizer 0.432 2.315 -0.599 -1.671 0.108 9.288

TABLE V

MAXIMUM ERROR OF DIFFERENT DATA WIDTH IMPLEMENTATIONS.

Daub-6

Source
16-bit 20-bit 24-bit 28-bit 32-bit

(×10−2) (×10−3) (×10−5) (×10−6) (×10−6)

Sinusoid 0.5371 0.3357 1.7166 4.5299 0.6556

Sawtooth 0.7324 0.5798 2.0981 3.5763 0.8941

Step 0.1953 0.0916 0.7629 1.9074 0.4768

Random 0.4883 0.3052 1.9073 3.3379 0.7152

Symlet-6

Sinusoid 0.4883 0.2441 2.2888 2.3842 0.3576

Sawtooth 0.4883 0.4578 4.9591 2.8610 1.3113

Step 0.3906 0.2747 1.3351 4.0531 0.2980

Random 2.5513 1.4343 8.2016 9.0003 2.7269

Coiflet-2

Sinusoid 1.1231 0.8240 4.0054 5.9605 2.5630

Sawtooth 1.8066 0.9460 7.4387 7.3910 2.2053

Step 0.9766 0.3662 6.6757 3.5085 1.1921

Random 1.8555 1.1597 7.5340 9.5367 2.2650

the transformation in every two clock cycles. Using 0.18-µm

technology, the estimated area of the proposed wavelet pro-

cessor with 32-bit configuration is 3.7 mm2 and the estimated

operating speed is 361 MHz.
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Abstract—On-board image data compression is an important 
feature of satellite remote sensing payloads. This paper proposes 
a new image compression system for Earth observation satellites. 
A lossless image compression scheme is developed, which is based 
on the CCSDS lossless data compression recommendation for 
space applications. The scheme features novel techniques such as 
a multidimensional predication methods enabled by a new scan-
ning scheme and an embedded radiometric calibration technique, 
which result in highly efficient compression of panchromatic and 
multispectral satellite images. A configurable model for hardware 
implementation of the proposed algorithm in the form of a soft IP 
core is developed, which gives users high degree of flexibility. 
Three typical configurations are implemented and evaluated in 
terms of implementation resources. The IP core is tested on a 
FPGA prototyping board featuring low-power consumption. The 
compression core is integrated into a reconfigurable System-on-
Chip platform for payload data processing and control, enabling 
real-time image compression on board satellites. 
 

I. INTRODUCTION 
Earth observation (EO) satellites require transmission to 

ground of an extensive amount of imaging data. The data 
transmission capability of the onboard equipment these days is 
reaching several times that of the downlink circuit capacity 
provided by present satellites. Data compression is believed to 
be a solution to the “Bandwidth Versus Data Volume” di-
lemma of modern spacecraft. Therefore compression is becom-
ing a very important feature in payload image processing units 
of EO satellites [1].  

There are several types of redundancy in an image, such as 
spatial redundancy, statistical redundancy, and human vision 
redundancy. Removing these types of redundancy is how the 
process of compression is achieved. Spatial decorrelation 
methods, like prediction or transformation, are usually em-
ployed to remove the spatial redundancy. Spectral redundancy, 
which is specific for multispectral satellite images, can be re-
moved via inter-band spectral correlation. Prediction based [2] 
and Discrete Cosine Transform (DCT) based [3] compression 
techniques have dominated the field of on-board image com-
pression. However, in recent years, the usage of Discrete 
Wavelet Transform (DWT) based techniques [4] is increasing 

for their outstanding compression performance at a low bit-
rate. Prediction based techniques are still very popular, for 
they provide the most effective way to achieve lossless data 
compression, which is a necessary requirement for most re-
mote sensing missions.  

The Consultative Committee for Space Data Systems 
(CCSDS) has recommended the CCSDS - Lossless Data Com-
pression (CCSDS-LDC) algorithm [5] for use on board space-
craft. CCSDS-LDC is a low complexity algorithm which fea-
tures low memory and power usage. Its error-resilience func-
tionality is important for the hostile space environment. To 
stop error propagation, a sample is periodically kept uncom-
pressed as a reference. So data before and after a reference 
sample are compressed independently. Therefore error is con-
strained in a small region, called Independent Compression 
Region (ICR). Being a 2-D type of data, an image can be com-
pressed further, by using a 2-D prediction scheme, instead of 
the default 1-D scheme. However, compression of a current 
pixel will depend on neighbour pixels of previous lines, which 
is contrary to the featured coding independency, assuming one 
line of data is fairly larger than one ICR, which is true for most 
Earth observation remote sensing tasks.  

Recent fast advances in Field Programmable Gate Arrays 
(FPGA), such as high clock frequencies and parallel process-
ing capabilities, have made them a preferred platform for digi-
tal signal processing (DSP). FPGAs have been widely used in 
space missions, ranging from control and data processing tasks 
in satellites to Mars rovers [6]. Reconfigurable hardware like 
FPGAs crosses the boundary between software and hardware 
applying hardware description languages (HDL) such as 
VHDL or Verilog to program and redefine the hardware archi-
tecture. A wide variety of soft Intellectual Property (IP) cores 
are distributed in synthesisable HDL format. However, the 
alteration of these HDL codes to suit different application sce-
narios, is extremely difficult even to experienced hardware 
engineers. Nowadays, high level languages (HLL) like C or 
Matlab are used to capture the data processing model. A class 
of EDA tools is emerging, which can be employed to convert 
automatically from HLL to Register-Transfer Level (RTL) 
HDL, or straightaway to FPGA configuration bit stream. This 
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additional procedure is developed to speed up the design cycle, 
and to let designers concentrate on the algorithmic optimiza-
tion and architectural exploration.  

This paper proposes a real-time on-board compression sys-
tem for satellite remote sensing imagery targeted at FPGA 
implementation. The paper is structured as follows. Section II 
introduces a new on-board image compression system. Section 
III discusses a novel lossless image compression algorithmic 
scheme based on CCSDS-LDC. Section IV presents perform-
ance evaluation results. Section V and VI detail the design of a 
lossless image compression hardware accelerator and its in-
corporation as a peripheral IP core in a system-on-a-chip 
(SoC). 

II. ON-BOARD IMAGE COMPRESSION SYSTEM OVERVIEW 
Future satellite missions will be capable of carrying out in-

telligent on-board image processing such as image classifica-
tion and change detection, which are important for remote 
sensing applications. Image classification is used primarily for 
cloud detection. Clouds are a common problem in Earth ob-
servation using optical imagery, being effectively unwanted 
“application noise”. The performance of compression can be 
improved as a result of cloud editing. Change detection analy-
sis can help to improve the transmission bandwidth by sending 
to ground only the part of the image, which contains the identi-
fied changes. The incorporation of a fine-grained tiling scheme 
in the compression process, has proved to increase the resil-
ience of image compression algorithms to single-bit errors [7]. 

Automatic band-to-band registration is the most critical pre-
processing requirement for imaging tasks performed on board 
satellites, such as data fusion, inter-band coding, change detec-
tion, spectral signature based classification, etc.. The perform-
ance of these tasks depends on the robustness and accuracy of 
band registration. The a priori information of band misalign-
ment is not accurate enough, due to spacecraft shaking or atti-
tude changes. 

In current on-board compression systems, bands of multis-
pectral images are processed independently, which is called 
intra-band coding. In this case, the intrinsic spectral redun-
dancy of multispectral images, which can be removed via 
spectral decorrelation, still exists in the compressed file. Al-
though spectral decorrelation has been actively investigated in 
the literature, it has not been applied to on-board applications 
yet. Two methods are used to achieve spectral decorrelation - 
Inter-band Prediction or (Kahunen-Loeve Transform) KLT 
[8]. KLT, which is considered the optimum method to spec-
trally decorrelate MS data, is a topic of active research at the 
moment; however KLT cannot so effectively decorrelate im-
ages with a number of bands lower than four. The KLT trans-
form will have a role to play on board future disaster monitor-
ing missions, as they are expected to have an increased number 
of MS bands.  

Fig.1 shows the functional block diagram of the proposed 
system for compression of panchromatic and multispectral 

images. The image data provided by the cameras are processed 
serially, tile-by-tile. First the data are subjected to pre-
processing routines, which improve the compression or enable 
the systems to make intelligent decisions about the compres-
sion process. The envisaged pre-processing tasks are radiomet-
ric calibration, registration, change detection and image classi-
fication. Radiometric calibration processing is applied to the 
raw data in order to take into account the sensor radiance qual-
ity. As the parameters of the radiometric calibration are chang-
ing with time, this functional block should be made recon-
figurable. 

The image compression block consists of a spectral decorre-
lation unit and a 2-D image compression unit, which provides 
both lossless and lossy compression. An encryption block is 
included too in case the compressed image data need to be 
transferred in encrypted format. The processed data could be 
stored in the on-board mass memory or sent to the downlink 
module, from where they are downloaded to the ground sta-
tion. All of the processing units can be bypassed, so raw im-
ages could be transferred to ground, which is required in some 
cases. It is envisioned that a radiation-tolerant high density 
SRAM-based FPGA will be used as the central processing 
component. This is due to the advantages of SRAM-based 
FPGAs such as high processing performance and reconfigura-
bility.  

In the rest of the paper we discuss the design of a lossless 
compression intellectual property core for the implementation 
of the imaging system in Fig.1 as an FPGA-based system-on-
a-chip.  

III. LOSSLESS COMPRESSION ALGORITHM 
This section presents a new lossless compression scheme 

for satellite images based on CCSDS-LDC. First the proposed 
scanning scheme and multidimensional prediction methods are 
introduced and then the CCSDS-LDC mapper and encoder are 
described. The scanning method achieves coherence between 
the regional independence coding and multidimensional pre-
dictions. An embedded Brightness Difference Compensation 
(BDC) technique increases the efficiency of the proposed sys-
tem further for push-broom type of sensors. 

A.  Vertical Scanning Technique  
Normally image data are read in a raster scan (RS) order, in 

which the first pixel of each line is taken as the reference sam-
ple. Hence ICR is just one horizontal line of data. The scan 
method, named Peanno-Hilbert (PH) scan, is believed to be the 
optimal scanning technique reducing 2-D spatial correlation to 
1-D correlation [9].  

To enable a 2-D prediction without affecting the ICR cod-
ing independency, a new vertical scan (VS) is proposed, which 
has a “V” shape. This scan goes down vertically, and turns 
from the start again after N pixels. N is 16, as it is the number 
of samples in the smallest compression unit. Therefore a 2-D 
prediction can be carried out using previous vertical line(s), 
while residing within one ICR [12]. 
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Fig. 1  Block diagram of the proposed on-board image compression system 

 

B. Multidimensional Prediction Methods 
The 2-D Gradient-Adjusted Prediction (GAP) technique 

uses the context gradient information to predict the intensity of 
the current pixel [10]. The GAP pixel neighbourhood pattern is 
rotated by 90 degrees in the vertical mode so that the value of 
the current pixel is predicted by using two pixels above and 
five pixels in two previous vertical lines of the image. Some-
times the spatial correlation is much more significant than the 
spectral one, while in other cases the spectral correlation will 
dominate, which can be established by comparison of the spec-
tral and spatial gradients. To take into account both of these 
correlations, a 3-D extension to GAP is proposed. 

Linear CCD image sensors used in push-broom imaging 
payloads, have different offset and shift registers, and hence 
difference in brightness for the even and odd column pixels. 
Thus the lesser correlation between odd and even column pix-
els will suppress the compression performance. In [7,11] a 
method called Brightness Difference Compensation (BDC) is 
reported, which is able to bring 5.5% further data reduction on 
JPEG-LS. BDC is applied to images on a tile-by-tile basis with 
a tile size of 512 by 512 pixels. The proposed VS scan needs 
to buffer only 16 lines of image data, while BDC needs 512 
lines. Here by adapting BDC to the proposed scanning scheme, 
we apply an embedded BDC, which means that it is inserted 
into the GAP technique. So in order to get a better prediction, 
the WN, W, and WS pixel values are compensated through the 
embedded BDC method. To predict a pixel Pi,j  in horizontal 
line i and vertical line j using neighbour pixels in vertical lines 
j-1 and j-2 the embedded BDC is applied to all the pixels Pi,j-1 
in vertical line j-1 using the equation below: 

 
)(2/))()(( 3,2,4,1,1, −−−−− −++= jijijijiji PmeanPmeanPmeanPP      (1) 

 
where Pi,j-1 , Pi,j-2 , Pi,j-3 and Pi,j-4 are pixels in the previous four 
vertical lines and “mean” is the mean of all the 16 pixels in 
the line, as defined in the proposed scanning scheme.  

C. CCSDS Lossless Compression Standard 
In May 1997, the consultative committee for space data sys-

tems (CCSDS) published a recommendation for a lossless data 
compression standard, which is an extended Rice algorithm 

with added two low-entropy coding options [5]. The architec-
ture of the CCSDS-LDC is shown in Fig.5. The pre-processor 
block consists of the proposed scanning and multidimensional 
prediction techniques described in sections III.A and III.B 
above and the CCSDS-LDC mapper, which is introduced be-
low. 

The purpose of the CCSDS-LDC mapper is to map the pre-
diction residual to a non-negative integer, in an effective way 
based on the shape of its Probability Distribution Function 
(pdf). Assuming the current pixel value is ix , and the pre-
dicted value is ix̂ , then the difference between them is the 
prediction error iΔ . After the prediction stage a mapper takes 
the residuals and maps them into non-negative integers, 
through the following equation:  
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where )ˆ,ˆmin( maxmin ii xxxx −−=θ ; minx is the minimum pos-
sible value and maxx is the maximum possible value. 

The extended Rice encoder converts the mapped prediction 
residual into an encoded bit sequence y. The entropy coder is a 
collection of variable-length codes operating in parallel. The 
coding option achieving the highest compression is selected, 
and the option ID bit pattern is enclosed and forwarded [12]. 

IV. COMPRESSION PERFORMANCE EVALUATION 
For the purpose of evaluating the performance of the pro-

posed CCSDS-LDC lossless compression scheme different 
versions of the algorithm are modelled in Matlab. The 
CCSDS-LDC based algorithms are compared with the state-of-
the-art lossless compression algorithm, JPEG-LS [13]. The 
size of ICR is set to 128 x 16 pixels, which applies to JPEG-
LS as well. Compression results in terms of compression ratio 
(CR) are derived using natural and satellite test images. 

Table 1 shows performance results on four popular natural 
images for JPEG-LS and different combinations of 
CCSDS-LDC with the three scanning methods RS, PH, VS 
and the 2-D GAP technique. The results show that the differ-
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ent scanning schemes have similar performance, but an extra 
2-D GAP processing step brings significantly better perform-
ance, which exceeds that of JPEG-LS. 

TABLE 1  
COMPRESSION RATIO BASED ON STANDARD TEST IMAGES 

 
Five panchromatic images, captured from the Surrey Satel-

lite Technology Ltd. (SSTL) Beijing-1 small satellite, are se-
lected as test images. The images, which represent different 
geographical areas with varied terrain, have 4 m ground sam-
ple distance (GSD) and a size of 6144 by 6144 pixels. The 
Beijing-1 panchromatic imager is of a push-broom type, so we 
could compare the performance of the proposed embedded 
BDC with that of its complex rival BDC. JPEG-LS with and 
without BDC and different combinations of CCSDS-LDC with 
BDC, EmbeddedBDC, RS, VS, and GAP are evaluated. Ta-
ble 2 shows that the performance results of CCSDS with VS, 
BDC and GAP in column 6 are comparable to the results of 
JPEG-LS with BDC in column 2, which are much better than 
JPEG-LS (column 1). By comparing the results in columns 6 
and 7 it can be seen that the embedded BDC technique only 
slightly underperforms BDC, however it reduces the buffer 
memory size 32 times. Table 2 also shows that the results of 
the proposed solution (column 7) are much better than the re-
sults achieved by CCSDS-LS with RS (column 3), nearly dou-
bling the compression ratio only with an extra memory buffer 
of 16 lines of image data and a combination of a simple scan-
ning scheme and 2-D GAP prediction. It can be concluded 
from Table 2 that the proposed approach is the most efficient 

scheme for lossless data compression with constrained error 
propagation functionality. 

For evaluation of the compression performance of multis-
pectral images, a MS image from the NASA Landsat7 satellite 
is used, which features varied terrain as shown in Fig.2. Six 
out of eight available spectral bands are used (B1, B2, B3, B4, 
B5, B7), as they are sharing the same GSD of 30 m. Usually 
the individual band images are not aligned accurately and 
therefore inter-band image co-registration [14] is required be-
fore the compression could be performed. Before the compres-
sion of the current band, the previous band is already com-
pressed and taken as the reference band, while the first band is 
compressed using the intra-band mode. Then according to the 
derived displacement between these two band images, the ref-
erence one is translated and re-sampled with a bilinear model.  

 

 
Fig.2. The multispectral test image (Copyright NASA) 

Compression results based on the multispectral test images 
in terms of CR are shown in Table 3, where different combina-
tions of methods are evaluated. The results in columns 1, 2 and 
4 are derived band by band, without any inter-band coding 
technique. They are included here for comparison purposes. 
The results in columns 3 and 5 are based on the difference of 
the current band with the reference one, which is referred to as 
“BandDiff” [15]. It can be seen from Table 3 that the results in 
the last column, derived with the proposed 3D-GAP technique, 
give the best performance out of all. 

 
TABLE 2 

COMPRESSION RATIO BASED ON PANCHROMATIC TEST IMAGES 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

JPEG-LS  CCSDS-LS Methods 
Images  RS PH VS VS+GAP 
Goldhill 1.57 1.53 1.52 1.5 1.64 
Lena 1.74 1.6 1.67 1.71 1.77 
Mandrill 1.17 1.26 1.24 1.21 1.3 
Peppers 1.62 1.56 1.6 1.59 1.67 
AVE 1.53 1.49 1.51 1.5 1.6 

Methods JPEG-LS CCSDS-LDC 
 

VS  
 
 

Images 

 
none 

 
BDC 

 

RS 

 

RS+BDC BDC BDC+GAP EeddedBDC+
GAP 

 1 2 3 4 5 6 7 

D001 3.48 3.64 1.93 3.2 3.13 3.68 3.63 

D002 4.49 5.32 1.73 4.69 4.87 5.07 4.94 

D003 2.84 2.94 1.87 2.6 2.52 2.98 2.96 

D004 3.47 3.68 1.88 3.2 3.29 3.63 3.61 

D005 2.71 2.78 1.83 2.39 2.29 2.73 2.74 

AVE 3.4 3.67 1.85 3.21 3.22 3.62 3.58 
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TABLE 3 
COMPRESSION RATIO BASED ON MULTISPECTRAL IMAGES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. LOSSLESS IMAGE COMPRESSION HARDWARE ACCELERATOR 
The lossless compression IP core is developed using a 

clearly defined algorithmic data flow taking into account how 
it will be translated into HDL and how it will operate on the 
FPGA. After the floating-point simulation is successfully car-
ried out in Matlab, AccelDSP is used to analyze the design, 
and translate it into a fixed-point design. The AccelDSP soft-
ware is a Matlab based tool from Xilinx, which allows DSP 
engineers to transform a Matlab model into a hardware design 
that can be implemented using a Xilinx FPGA or other tech-
nologies. Its most interesting feature is that a synthesizable 
RTL design can be generated automatically from a floating-
point m-code model. The automatic testbench generation is 
another valuable feature. The tool also could invoke HDL 
simulation tools, synthesis tools, and implementation tools.  

The architecture of the IP core design is shown in Fig.3. 
Image data are scanned from the buffer using the scanning 
method proposed in section III.A. The Scan module is basi-
cally a memory address generator, which reads the image data 
from RAM using a sequence of generated addresses. The Em-
bedded BDC and GAP techniques, described in section III.B, 
are in one module, eBDC+GAP. GAP requires pixel values 
from two previous vertical lines. And only pixels in the first 
line need embedded BDC, which will smooth out this GAP 
related region. For multispectral images in Band Interleaved 
by Line (BIL) format or Band Interleaved by Pixel (BIP) for-
mat the extra effort to implement 3-D GAP requires only the 
spectral prediction and a controlled selection between the 
spectral and spatial prediction. Afterwards, the prediction re-
siduals are mapped to non-negative integers. The coding 
length of each option is computed and the shortest one is 
found. Subsequently the entropy coder sends out the com-
pressed bit stream using the chosen coding option along with 
the option ID. The compressed code is given at the output in 

bytes with enable signals. There is a dedicated control logic 
module (Control Unit), which generates control signals to each 
block to ensure seamless operation. The byte formatter con-
verts the variable-length code into byte output, with output 
enable signal. 

Achieving maximum efficiency for a particular application 
is a relatively simple task as it can be accomplished via con-
figuring the model at the algorithmic level. The configurable 
parameters of the IP core include: the number of bits per pixel, 
N, the block size, J, the number of blocks of each reference 
sample interval, R, and the number of blocks of each segment, 
S [5]. As R depends on the actual application very much, it can 
also be configured after the implementation with the dedicated 
‘load’ and ‘RefIntevalValue’ interfaces. These parameters are 
adjusted according to different imaging scenarios and custom 
requirements. 

Typical configurations of the compression IP core design 
outlined above have been evaluated. An example is presented 
here in which the pixel bit-length parameter, N, is varied con-
figuring three designs, labelled A, B, and C, to operate on 
8-bit, 12-bit, and 16-bit pixel samples, respectively. The con-
verted RTL designs are synthesized and implemented targeting 
three different devices from the Spartan-3, Virtex-4 and 
Virtex-5 series of Xilinx FPGAs. Table 4 summarises the im-
plementation resources of the three designs and of an 8-bit 
reference JPEG-LS implementation [16] in terms of number of 
slices at the maximal operating frequency. The results are ob-
tained after place and route, but with normal optimization ef-
fort for designs A, B and C. It can be observed from Table 4 
that the proposed design is more economical than the reference 
design and a high throughput of more than 
150 Msamples/second could easily be achieved with the 
Virtex-4 and Virtex-5 chips.  

 

 
 

 

Methods  CCSDC-LDC 

VS  

 

Images 

 

JPEG-LS 

 

RS 

 

RS+BandDiff 2D-GAP BandDiff+ 

2D-GAP 

3D-GAP 

 1 2 3 4 5 6 

B1 2.04 2.25 2.25 2.39 2.39 2.39 

B2 2.07 2.41 2.39 2.55 2.47 2.68 

B3 1.90 2.17 2.34 2.32 2.43 2.46 

B4 2.23 2.74 2.38 2.70 2.49 3.02 

B5 1.94 2.42 2.42 2.59 2.54 2.65 

B7 1.84 2.19 2.36 2.31 2.46 2.46 

AVE 2.002 2.362 2.355 2.477 2.461 2.609 
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Fig. 3 Lossless image compression IP core design architecture 

 
TABLE  4 

IMPLEMENTATION RESOURCES 

 
The implementation of Design A was tested on the ZestSC2 

FPGA prototyping board [17]. In this prototyping system, the 
host personal computer (PC) communicates with the FPGA 
and the data memory on the board through a USB interface. 
First the host PC writes the image data to the data memory, 
then it downloads the compression IP core to the FPGA and 
initiates the reading and compressing of the image data, which 
is followed by transmission of the compressed data back to the 
PC through the USB interface.  

The power consumption of the compression core is esti-
mated using the Xilinx XPower tool. Table 5 summarises the 
results, which are obtained for idle operation and compression 
of the Lena image with VCD data generated from Modelsim 
simulations. As it can be seen from Table 5 the static power is 
dominating while the dynamic power is only 20-30 mW at 
48 MHz. The 3rd and 4th columns in Table 5 contain values 
obtained after optimization of the design for low power using a 
gated clock technique. This has achieved reduction of the dy-
namic power consumption by 28% and 21% in idle state and 
compressing the Lena image, respectively. As a result of that, 
the total power consumption over 1 million pixel (Mpixel) 
throughput is estimated to be 4.5 mW/Mpixels/second, which 
is more than three times lower than the power consumption of 
the 3.3 V ASIC implementation of CCSDS-LDC in [18], the 
value of which is reported as 15 mW/Mpixels/second. The 
maximal throughput of 80 Msamples/second of this ASIC is 
also much lower than the results shown in Table 4.  
 

TABLE 5 
ESTIMATED POWER CONSUMPTION 

IP Core Power 
3SP2000@48MHz 

( mW ) 

 

Idle 

 

Lena 

 

Idle 

(Opt.) 

 

Lena 
(Opt.) 

Dynamic 20.5 29.8 14.6 24.54 

Quiescent 188.2 188.3 188.1 188.24 

Total 208.7 218.8 202.7 212.77 

 
The power consumption measured on the ZestSC2 proto-

typing system when compressing the Lena image is around 
500 mW, which is in agreement with the power results esti-
mated via XPower as the board has a number of other compo-
nents in addition to the FPGA. 

VI. SYSTEM-ON-CHIP DESIGN FOR PAYLOAD DATA PROCESSING 
AND CONTROL 

The image compression accelerator described in section V 
is integrated as a peripheral module in a system-on-a-chip de-
sign [12, 19,20], which is implemented in an FPGA chip. The 
SoC is intended to be used as a payload controller on board a 
small satellite. 

A. SoC Architecture for Real-Time Image Compression 
The SoC design is targeted at the Xilinx Virtex series of 

FPGAs. The central processing unit (CPU) is the LEON3 mi-
croprocessor, which is a SPARC V8 soft intellectual property 
core written in VHDL [21]. The SPARC V8 is a RISC archi-
tecture with typical features like large number of registers and 
few and simple instruction formats. However, the LEON3 IP 
core is more than a SPARC compatible CPU. It is also 
equipped with various peripherals that interconnect through 
two types of the AMBA bus (AHB and APB), e.g. Ethernet, 
SpaceWire, PCI, UART etc. The SoC is an AMBA centric 
design and subsystems of the OBC can be added to the 
LEON3 processor providing that they are AMBA interfaced. 
The AHB is a high-performance system bus and provides 
high-bandwidth operations. On the other hand, APB is a sim-
ple and low-power extension to the AHB bus.  

Designs 

 

FPGA    

Design A 

8 bits/pixel 

Design B 

12 bits/pixel 

Design C 

16 bits/pixel 

CAST 

JPEG-LS 

8 bits/pixel 

Spartan-3e  

1200e-5 

3,610 Slices 

@ 113 MHz 

5,503 Slices 

@ 75 MHz 

7,129 Slices 

@ 75 MHz 

5,636 Slices  

@ 64 MHz 

Virtex-4  

LX25-12 

3,454 Slices 

@ 224 MHz 

5,465 Slices 

@ 188 MHz 

7,059 Slices 

@ 166 MHz 

5,591 Slices 

 @ 112 MHz 

Virtex-5  

LX30-3 

1,760 Slices 

@ 282 MHz 

2,571 Slices 

@ 250 MHz 

3,386 Slices 

@ 210 MHz 

2,182 Slices 

@ 166 MHz 
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Fig.4 shows the diagram of the SoC architecture, including 
the LEON3 central processing unit, configuration access port 
(ICAP) related modules, imaging related modules, memory 
controllers, and other peripherals. The imaging sub-system 
handles the raw image date generated by an optical camera and 
consists of a camera controller, an image compression module 
and a Direct Memory Access (DMA)/Mass Memory control-
ler. Inside the imaging sub-system, the camera controller also 
acts as a data router, which could distribute image data to 
downlink, Mass Memory or the image compression module as 
follows: 

• The first route is to the downlink for real-time capture 
and download.  

• The second route is to the compression IP core for real-
time image compression, where the compressed data 
can be transferred through DMA to downlink for 
download or Mass Memory for storage.  

• The third route is to the Mass Memory for storage of 
raw images. Through DMA, the image compression 
core could also compress the stored raw data from the 
Mass Memory and then transfer the compressed data 
back to the Mass Memory or directly to the downlink. 

 

 
 

Fig.4 SoC architecture of the payload data processing & control unit 

B. SoC Demonstration System 
The SoC is implemented in Virtex-4 LX60 on the Avnet 

evaluation board [22]. The SoC architecture employed by the 
demonstration system is presented in Fig.5. The image data are 
downloaded from a PC through an UART and the AHB bus to 
the DDR memory on the board as this board has no camera 
input. A dedicated image bus allows the compression core to 
be clocked with frequency of 100 MHz which is higher than 
the LEON3 processor frequency of 70 MHz. The DDR con-
troller switch is under the control of the LEON3 processor. 
The interactions among the LEON3 processor, the compres-
sion core and the memory during one compression round are 
described as follows: 

Step (a): LEON3 supplies the compression core with three 
pieces of data: the starting address of the image data (SADD), 

the number of the image pixels (LIMG), and the starting mem-
ory address where the compression core will write back the 
compression codes (DADD).  

Step (b): Then LEON3 hands the memory control over to 
the compression core. The memory can be accessed by both 
LEON3 (AMBA Bus) and the compression core (Image Bus), 
but not at the same time. The switch is controlled by LEON3.  

Step (c): LEON3 sends the "start compression (SC)" com-
mand to the compression core. The compression core starts to 
read from memory, carries out the compression and finally 
writes back the compression codes.  

Step (d): When the compression core completes the com-
pression, it will write into registers to let LEON3 know the end 
of the compression (EOC) and the length of the compression 
codes (LCC).  

Step (e): LEON3 takes over the memory control again, if 
desired, for example to check the compression results.  

 

 
Fig.5 SoC demonstration system architecture 

In this demonstration system, the LEON3 debug support 
monitor GRMON [21] is used to write/read registers or mem-
ory data. The actual compressed data stored in the DDR mem-
ory after writing the compressed code back to GRMON are 
compared with the simulated compressed data in Matlab. It is 
found that the compressed data generated from Matlab and the 
hardware implementation are exactly the same, as expected. 

VII. CONCLUSIONS 
Based on analysis of developing trends in current on-board 

compression systems, a new architecture of an on-board image 
compression system for future remote sensing missions is pro-
posed. The architecture features intelligent pre-processing and 
spectral decorrelation to account for future needs of remote 
sensing. 

A new efficient real-time on-board lossless image compres-
sion scheme is also proposed, which is suitable for remote 
sensing panchromatic and multispectral satellite images. A 
new lossless image compression design is introduced, which is 
a combination of 2-D prediction and independency coding by 
using a scanning scheme beforehand. This new design could 
increase the compression ratio by around 93%, with being only 
slightly more complex. Its performance is better than the state-
of-the-art JPEG-LS, under the same conditions. The system is 
based on the recommended by CCSDS lossless compression 
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algorithm for space applications, which features low complex-
ity. The pre-processing stage consists of a new scanning 
scheme, a modified 2-D prediction method, and a novel 3-D 
extension prediction technique for multispectral images.  

A high-level configurable IP core design is developed 
which is able to generate the most efficient hardware imple-
mentation for a particular application scenario. The FPGA 
implementation of the IP core consumes low power and its 
compression ratio is higher than that of the state-of-the-art 
lossless compression algorithm JPEG-LS. To the best of the 
authors’ knowledge this is the first FPGA based CCSDS-LDC 
implementation reported in the literature so far.  

The compression core is integrated into a SoC platform for 
satellite payload processing and control. It is attached as a pe-
ripheral to the LEON3 processor via the AMBA bus. Demon-
stration work based on a Virtex-4 FPGA has provided a proof 
of correctness for the compression core operation and the real-
time compression capability of the SoC.  

ACKNOWLEDGMENTS 
The authors gratefully acknowledge the provision of satel-

lite images from SSTL and DMC International Imaging for the 
experimental results in this paper.  

This research is sponsored by the University of Surrey, an 
ORS PhD award and EPSRC grant EP/C546318/01. 

REFERENCES 
[1] T. Vladimirova, M. Meerman, and A. Curiel, “On-board compression of 

multispectral images for small satellites”, in Proc. IEEE International 
Geoscience and Remote Sensing Symposium, IGARSS 2006, 2006, 
pp. 3533-3536. 

[2] C. Lambert-Nebout and G. Moury, “A survey of on-board image com-
pression for CNES space missions,” in Proc. IEEE International Geo-
science and Remote Sensing Symposium, IGARSS 1999. 

[3] H. Hihara, M. Sato, K. Fukasawa, H. Sase, Y. Osawa, and N. Ito, “High 
speed image data compression processor for advanced land observing 
satellite (ALOS),” in Proc. 2002 IEEE Region 10 Conference on Com-
puters, Communications, Control and Power Engineering, TENCON '02, 
2002. 

[4] N. Ismailoglu, O. Benderli, S. Yesil, R. Sever, B. Okcan, O. Sengul, and 
R. Oktem, “GEZGIN & GEZGIN-2: Adaptive real-time image process-
ing subsystems for earth observing small satellites,” in Proc. 1st 
NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2006, 
2006.   

[5] CCSDS Lossless Data Compression, Recommendation for space data 
system standards, vol. 121.0-B-1: CCSDS, 1997. 

[6] S. J. Visser, A. S. Dawood, and J. A. Williams, “FPGA based satellite 
adaptive image compression system,” Journal of Aerospace Engineering, 
2003, vol. 16, pp. 129-137.  

[7] T.Vladimirova, A.Steffens. “Compression of multispectral images on-
board observation satellites”, Proc. International Conference “Space, 
Ecology, Safety” (SES’05), 2005, vol.1, pp. 105-110.  

[8] J. A. Saghri, A. G. Tescher, and J. T. Reagan, "Practical transform coding 
of multispectral imagery," Signal Processing Magazine, IEEE, vol. 12, 
pp. 32-43, 1995. 

[9] S. Atek and T. Vladimirova, “A new lossless compression method for 
small satellite on-board imaging”, WSEAS Transactions on Mathematics, 
2002, vol. 1, no. 1-4, pp. 171-176. 

[10] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” 
IEEE Transactions on Communications, 1997, vol. 45, pp. 437-444,. 

[11] G. Yu, T. Vladimirova, and M. Sweeting, “A new automatic on-board 
multispectral image compression system for LEO Earth observation satel-
lites,” in Proc. 15th IEEE International Conference on Digital Signal 
Processing, 2007, pp. 395-398. 

[12] G. Yu, T. Vladimirova, X. Wu, M. N. Sweeting. “A new high-level re-
configurable lossless image compression IP core for space applications”, 
Proc. 3rd NASA/ESA Conference on Adaptive Hardware and Systems 
AHS-2008, 2008, pp. 183-190. 

[13] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless 
image compression algorithm: principles and standardization,” IEEE 
Transactions on Image Processing, vol. vol. 9, August 2000. 

[14] G. Yu, T. Vladimirova, and M. Sweeting, "Autonomous band registration 
for on-board applications," in Proc. IEEE International Conference on 
Signal Processing and Communications, 2007, pp. 1327-1330. 

[15] P.-S. Yeh, "Multispectral Prediction: a two-step predictor," Personal 
Communication, 2007. 

[16] CAST (2007) JPEG-LS Encoder Core — XILINX FPGA Implementa-
tion Results. [Online]. Available: http://www.cast-inc.com/cores/jpegls-
e/jpegls_e-xilinx.htm. 

[17] Orange Tree Technologies (2007) FPGA USB Boards - ZestSC2. 
[Online]. Available: 
http://www.orangetreetech.com/fpga_board_zestsc2.html. 

[18] P.-S. Yeh, “Implementation of CCSDS lossless data compression for 
space and data archival applications,” in Proc. Space Operations Confer-
ence, 2002. 

[19] T. Vladimirova and M. N. Sweeting, “System-on-a-chip development for 
small satellite on-board data handling,” Journal of Aerospace Comput-
ing, Information, and Communication, AIAA, vol. 01, pp. 36-43, January 
2004. 

[20] T. Vladimirova and X. Wu, “On-board partial run-time reconfiguration 
for pico-satellite constellations,” in Proc. 1st NASA/ESA Conference on 
Adaptive Hardware and Systems, AHS 2006, 2006, pp. 262-269. 

[21]  J. Gaisler, "GRLIB IP Library User’s Manual (Version 1.0.4)," Gaisler 
Research, 2005. 

[22] Avnet Electronics (2007) 20 Xilinx Virtex-4 LX Evaluation Kit. 
[Online]. Available: http://www.avnet.com/ 

 

 

DASIP 2008 November 2008

- 199 - 



A Design Space Exploration Flow for FPGA Implementation
of Intensive Signal Processing Applications
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Abstract—Manipulating configurable resources like FPGAs in a co-
design framework has become essential: especially since FPGAs may
efficiently implement parallel systematic signal processing tasks. Nev-
ertheless, such implementations are usually manually implemented at
low level. Our proposition is to provide, on one side, a high level
modeling of an application and, on other side, tools to automatically
generate tuned VHDL code from these high level models. This paper
then introduces a flow able to fit a parallel application onto aFPGA
according to the FPGA characteristics, and to map this application
onto the FPGA. Each step of the flow requires specific details ofthe
FPGA that realize the implementation, several views of the same FPGA
are therefore introduced: BLACK BOX , QUANTITATIVE and PHYSICAL .
From the modeling of the application and a view of the FPGA, theflow
automatically generates the VHDL code of the initial application and a
constraint file that guides the synthesis tools.

I. I NTRODUCTION

Current Systems on Chip (SoCs) are heterogeneous and integrate
computing, storage, communication and interface resources. The
latest generation SoCs often include reconfigurable resources, such
as FPGAs, providing flexibility. A FPGA allows the realization of a
computing, storage or a communication resource. Manipulating these
reconfigurable resources in a SoC design framework has become es-
sential and specific methodologies are proposed (see [2] for example).

The Gaspard co-design framework [6] is more specifically oriented
towards the co-design of parallel software and hardware. It identifies
the parallelism included in regular constructions such as application
loops or repetitive constructions of hardware elements. Gaspard, in
its first version, is able to program processor based architectures,
but does not allow configuration of reconfigurable resources. In this
paper, we propose a Gaspard extension targeting FPGA configuration.

The main challenge of this extension is to use the same description
when targeting a processor or a FPGA based architecture. For a
processor based architecture, tasks are scheduled and executed on
the processor. However, for a FPGA based architecture, a hardware
implementation of the application onto the FPGA is realized. The
required knowledge of the FPGA characteristics depends on the
precision of the required implementation: few details for a first rough
design, more details for a tuned RTL design and even more details
for a tuned FPGA mapping. Therefore, we identify three different
views for the same FPGA, that are associated to the desired precision:
BLACK BOX , QUANTITATIVE and PHYSICAL. This paper presents
our design space exploration flow and the associated FPGA views.

The paper is organized as follows. The way our modeling of appli-
cations allows a factorized expression of parallelism is introduced in
Section II. Section III presents our design space exploration flow that
manipulates FPGA according to different views. Section IV presents
significant results concerning utilization of our flow for intensive
signal processing applications. Section V presents related works for
high level synthesis and loop transformation methodologies that target
a hardware execution. Finally, Section VI concludes this work and
gives perspectives.

II. CURRENT GASPARD FRAMEWORK

The Gaspard co-design framework and its main concepts are
introduced. We first describe the expression of repetitions in Gaspard.
Then we provide an example.

A. ARRAY-OL: Expression of Repetitions

ARRAY-OL [10], [3] (Array-Oriented Language) is a language
specialized in the description of systematic signal processing ap-
plications. These kind of applications are characterized by a huge
number of data manipulated by a set of regular tasks. ARRAY-OL
allows the description of thetask parallelismand thedata paral-
lelism that compose an application. Thetask parallelismexpresses
dependencies between tasks contained in the application, providing
a structural aspect of the application. Each task is described using
data parallelismin the form of a set of inputs and outputspatterns
consumed and produced by repeated iterations of the task. These
sets of patterns tile the input and output arrays of the task. The
patternsare defined through anorigin vector, apavingand afitting
matrix. Theorigin defines the address in the array of a firstpattern.
The fitting defines the shape of thepatterns. The pavingdefines the
iteration of the patterns on the arrays. A formal description of the
tilers and some examples are provided in [3]. Elementary tasks are
black boxes, such as IP, consuming inputpatternsto produce output
patterns. Elementary tasks represent atomic computations executed
in ARRAY-OL.

Gaspard uses the ARRAY-OL concepts in order to express paral-
lelism. Moreover, some ARRAY-OL extensions have been proposed
and are also managed in the Gaspard framework. From the ARRAY-
OL concepts and its extensions, Gaspard generates different program-
ming languages that allow simulation, execution or synthesis of an
application mapped onto an architecture. By generating synchronous
languages (Lustre [5] or Signal [26]), it is possible to validate
a design application and to detect, for example, dead locks. The
automatic generation of procedural languages (e.g. Fortran and C
languages) makes possible the execution of concurrent processes
onto multiprocessor architectures. The SystemC language allows
simulations at different abstraction levels of both application and
architecture. The VHDL language makes the synthesis possible, this
part of Gaspard environment is presented in this paper.

B. Application Description in UML

UML (Unified Modeling Language) is commonly used in model
driven engineering community. Aprofile is a UML extension and is a
set ofstereotypes(used to specialize UML classes) andtagged values
(used to add attributes to these classes). One of the main interests
for using UML is that many tools support this language and the
extension mechanism (i.e. profile). These tools offer opportunity to
model a design in a quick and flexible manner. Numerous standard
profiles aid to model design in specific fields like the MARTE [29]
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profile which is dedicated for Modeling and Analysis of Real-Time
and Embedded systems. MARTE provides mechanisms to represent
intensive signal processing applications and to express parallelism
in a factorized way. Data dependencies expression in MARTE are
based on ARRAY-OL, this is a result of the contribution of Gaspard
developers to the development of MARTE profile. Moreover, MARTE
is under finalization standardization. For all these reasons, Gaspard
applications are modeled with MARTE UML profile.

C. Motivating Example: Image Filtering

We illustrate the ARRAY-OL application design in Gaspard using
the academic image filtering example. The objective is to correlate
well known filters (Gauss, Croix, Sobel, Prewitt, etc.) with pictures.
This example is interesting and relevant because of the bi-dimensional
arrays and computations being managed.

Figure 1 represents a UML model of the picture filtering appli-
cation, all the potential parallelism of this application is expressed
in a factorized manner. ComponentPictureFiltering represents the
application, it is composed of the input portInputPicture and the
output portOutputPicture. Both ports correspond to bi-dimensional
data arrays having a shape (i.e. multiplicity) [(M, N)] (M and N

represent size of the picture in this example, we use4 × 4 pixels
in order to illustrate data dependencies later on. Component instance
taskrepresents atomic computations in this example which is repeated
2 × 2 times. Its input portInPattern (with shape[(3, 3)]) reads data
in the input picture thanks to a connector with stereotype≪Tiler≫
that expresses data dependencies according to ARRAY-OL concepts
we introduced above (origin, pavingandfitting). In the same manner,
output portOutPattern(which is a scalar because the elementary task
produces a single pixel in this application) writes data onto output
picture according to another tiler.

Figure 2 represents this application without factorization of the par-
allelism in order to illustrate the powerful expression of parallelism
available with MARTE profile. The top of the figure illustrates the
repetitive iteration of a parallel task, while the bottom side illustrates
one iteration at the data parallelism level. At this level, thepatterns
construction issued from tilers appear. Further information is provided
in caption of Figure 2. As opposed to usual sequential loops, the
repetition specification does not induce any artificial scheduling for
task execution and data transaction.

D. FPGA Integration in Gaspard

Several processor based execution models have been introduced in
Gaspard to compile an ARRAY-OL application, allowing execution on
processors. With the introduction of FPGA in the Gaspard framework,
it becomes necessary to study the feasibility for an ARRAY-OL
hardware and dedicated execution model. Especially, we have to
manage the multi-dimensional arrays and repetitions specific to
ARRAY-OL, to efficiently transform this model into hardware, and
to define a VHDL code generation from this hardware model.

Our flow performs two efficient transformations: FOLDING and
UNFOLDING, which modify loops and repetitive structures in order
to optimize a hardware implementation according to an FPGA.
Transformation does not introduce control in the datapath computing
resource. Control is introduced in the interface with the sensors.
Therefore, the static task scheduling is still expressed in the ARRAY-
OL language, keeping all the parallelism expression provided by this
language.

III. D ESIGN SPACE EXPLORATION FLOW

The ARRAY-OL application modeling detailed in the previous
section is not directly executable on a FPGA since the repetition ex-

4

2

Input picture

2

2

(graphically simplified)
Filter elementary tasks

pattern
3x3 input

Output picture

Filter elementary tasks

Fig. 2. Image filtering application. The top of the figure illustrates a repetitive
iteration for the image filtering application. This application consumes an 4×4
input picture, on the left hand side, and produces an 2×2 picture, on the
right hand side. Parallel iterations of the task are illustrated in the top center.
The color of each task iteration identifies the corresponding data consumed
and produced in the input and output image. The bottom side of the figure
represents one task, a 3×3 consumed pattern (read in the input image) and
the output pattern is composed of a single pixel, which is written in the output
image. Both consumed and produced patterns result from the utilization of a
tiler.

pression is factorized, furthermore the target FPGA characteristics are
not considered. We present a flow that transforms the initial ARRAY-
OL application into hardware, allowing a FPGA implementation.
By introducing the FPGA characteristics in the flow, we enhance
the application hardware implementation. The flow is illustrated in
Figure 3 and is composed of the four following steps:

• the connection step analyzes the data dependencies expressed
with the tilers and generates the appropriate hardware connec-
tions;

• the computation step adjusts the application implementation
with the FPGA, and maximizes its computation power;

• the routing resources step adds routing elements on IO when
necessary;

• the code generationsteps generates the VHDL code, which is
synthesizable onto a FPGA.

Our design space exploration flow automatically produces a hard-
ware design according to an initial application model. The first step
directly produces a hardware design, with no FPGA characteristics
consideration. The second and third steps compare the computing
resources and the IOs required for a hardware implementation with
respect to the resources offered by the FPGA. According to these
results, application refactorings are triggered, providing the most
efficient hardware implementation that fits onto the target FPGA.
For this purpose, two different views of a FPGA are introduced: a
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<<ApplicationComponent>>
PictureFiltering

<<ApplicationComponent>>
<<ElementaryComponent>>

task : ET [(2,2)]

OutPatternInPattern [(3,3)]

OutputPicture [(2,2)]
InputPicture [(4,4)]

<<Tiler>>
{fitting = "((1,0),(0,1))" ,
paving = "((1,0),(0,1))" ,
origin = "(0,0)" }

<<Tiler>>
{fitting = "((1,0),(0,1))" ,
paving = "((1,0),(0,1))" ,
origin = "(0,0)" }

Fig. 1. UML model of the picture filtering application. In thisapplication, Data parallelism is expressed with shape[(2, 2)] abovetaskcomponent instance
and with connectors stereotyped as≪Tiler≫.
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Fig. 3. Our automatic design space exploration flow with the corresponding
BLACK BOX , QUANTITATIVE and PHYSICAL views. It is integrated in the
Gaspard framework and is composed of four steps. It aims to transform the
initial application model into hardware, to optimize this hardware implemen-
tation and to generate the corresponding VHDL code. From thegenerated
code, we use external tools to realize the RTL simulation, thesynthesis effort
and the FPGA implementation.

BLACK BOX view and a QUANTITATIVE view. Our design space
exploration flow also generates VHDL code and a user file that
constraint mapping of generated hardware design onto FPGA.For this
purpose, the FPGA PHYSICAL view is introduced.

A. Connection Step

In ARRAY-OL, exact data dependencies are expressed by thetilers,
providing synchronizations between tasks. Technically,tilers define
the way data are read into an array to produce apattern, through
origin, pavingandfitting matrix. We refer the reader to [3] for details
on the analytical formulation. For a dedicated hardware execution,
that does not support dynamic data transaction,tilers are compiled
before the execution in order to create a static connections topology.
The aim of this step flow is to provide such hardware connection
topology for data dependencies expressed in the initial application.

Tiler

Output data
Tasks

Elementary

Point to point connector

Input data

Elementary
Task

port
Output

port
Input

repetition

Temporal
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Hardware

Tiler

Connector with memory

Fig. 4. From the application input model to its hardware implementation
usingtiler connector. According to the top left-hand side of the figure,data are
read two times on the temporal dimension. Thus, a “connector with memory”
is necessary, and a shift register is automatically created.Looking at the
output, we observe that each produced data is written only one time, allowing
us to not store the data and to use “point to point connectors”. The temporal
dimension around the task is compiled as a single hardware task.

In the connection flow, the data flow described in ARRAY-OL
with tilers is transformed into hardware elements and blocks. These
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Fig. 5. Transformation that enables application refactoring. The UNFOLDING

transformation increases the number of computing resources exploited for a
hardware implementation, while the FOLDING one reduces this number.

hardware elements provide a precise quantification of the hardware
resources required for an implementation. However, the resulting
implementation does not take the FPGA characteristics into account.

The BLACK BOX view provides the simplest view of a FPGA.
While implementing a design onto FPGA, no regards to the FPGA
details are considered. This view allows to model complex and hetero-
geneous architectures that includes reconfigurable components [27],
provides a fast and direct mapping of a design and allows to ma-
nipulate FPGAs with unknown characteristics. However, while some
FPGAs are powerful enough to implement a given design, others
could fail during the synthesis effort: it introduces an important lost
of time. On the same way, a given design could not be implemented
in the most efficient manner. The BLACK BOX view is used in the
first step of our flow.

B. Computation Step

The computation step evaluates the computing resources required
for a particular implementation. If this evaluation is not compatible
with hardware resources, a transformation (refactoring) of the ap-
plication model is required. Both synthesis and estimation provide
the computing resources required for an implementation. In order
to perform a fast design space exploration, we use estimation results
proposed in [24] for each elementary task contained in the application
model. This estimator provides an atomic estimation, not a global
one, since transformed tilers and the repetition mechanism, which
introduces multiple instances of one task, are not managed. Exploring
the application model, we perform this global estimation and compare
this result with the target FPGA characteristics. Therefore, we obtain
a percentage of FPGA area required for an implementation. Two
transformations allow to “refactor” the application at the model level.
The UNFOLDING transformation increases the implementation size,
while the FOLDING one reduces it. Therefore, it is feasible to fit the
number of used resources in order to implement the most powerful
executable solution on a particular FPGA. Figure 5 illustrates the
FOLDING and the UNFOLDING transformations.

ARRAY-OL transformations and estimation tools have been de-
veloped by the team, and we are currently working on linking our
design flow with those tools. We refer the reader to [9] and [3] for
the ARRAY-OL transformation description and the way they may be
driven from the Gaspard environment.

The QUANTITATIVE view provides a list of each resource included
in a FPGA. Each kind of resource (i,e RAM-512, RAM-1k, DSP
blocks, IOs), that composes a FPGA cell appears in this view.
However, configurable wires are not considered because of their
high complexity, heterogeneity and density. Not considering such
wires may introduce a failure during synthesis effort because of the
potentially high connection congestion. However, current FPGAs pro-
vide enough configurable wires to support a high density connection
design. The QUANTITATIVE view makes possible the application
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Fig. 6. Data multiplexing toward routing resources. The top of the figure
illustrates the data that are read on the spacial and temporaldimensions, and
written on only the temporal dimension. For each data input clock cycle, three
data are produced on the spacial dimension. They are stored and cyclically
sent to the output through a multiplexer. The data output clock cycle is three
times higher than the data input one.

tuning, by performing an implementation that corresponds to the
available FPGA resources. The QUANTITATIVE view is used in the
2nd and 3rd steps of our flow in order to perform refactoring.

The computation step of the flow compares the area required for an
hardware implementation with the one offered by the target FPGA.
This step performs application refactoring if necessary. However,
it does not compare the inputs and outputs ports required by the
implementation with the number of ports provided by the FPGA.

C. Routing Resources Step

Recent FPGAs contain hundreds of inputs and outputs (IOs) ports
dedicated to user manipulation. For most part of the application, there
are enough IOs. In systematic signal processing applications, where
data can be produced by multiple identical sensors, like in multi-
dimensional detection applications, the numbers of IOs is a restrictive
parameter. A way to consume less IOs is to multiplex the data streams
before entering data into FPGA. Inside FPGA, the data streams are
de-multiplexed, offering possibilities to realize all computation in a
parallel way. This data multiplexing/de-multiplexing is called routing
elements in this study, and is illustrated in the Figure 6.

According to the modification introduced by the routing resources,
the consumed computing resources are necessarily modified. The
design flow then iterates to the second step to take this modification
into account (Figure 3).

D. Code Generation Step

When the third step is successfully completed, the VHDL code
generation is launched. The generated code allows to simulate and
synthesize the resulting application. With a synthesis tool, a FPGA
can be configured. This code generation has been successfully
validated with several relevant applications inspired from industrial
situations, such as the correlation algorithm detailed in [24], ma-
trix multiplications, and the image filtering application taken as
an illustrative example in this paper. The automatically generated
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VHDL code keeps the parallelism expression provided at a high
level description. Moreover, multidimensional arrays manipulation
are managed.

Our flow also considers the file constraint code generation. While
the generated VHDL code can be used in either synthesis tool, the
constraint file does not. To constraint a mapping, the component
instances and the number of required specific cells and the position
in the grid are manipulated. Manipulating the component instances
in the VHDL generated code is possible thanks to the hierarchy
kept from the initial application. The mapping of a design onto
a FPGA physical view provides an intermediate virtual view, very
similar to Lagadecet al. [22]. We gather the FPGA cell to provide a
virtual architecture that matches the application grain. Therefore, each
module contained in the initial application that is clearly identified
in the VHDL code is also now clearly identified on the FPGA as a
gathering of cells. The generated placement constraint file is provided
to the synthesis tool with the VHDL code.

The PHYSICAL view is the most precise view manipulated in this
study. BLACK BOX and QUANTITATIVE views are constructed from
the PHYSICAL one. PHYSICAL view considers a FPGA like a bi-
dimensional grid of cells. Each cell functionality is known (like in
the QUANTITATIVE view), and is linked to its position in the grid.
With whole individual cells, a very precise view of a FPGA topology
is constructed. Current heterogeneous FPGA architectures can be
modeled, and mapping heuristics described in [16], [32], [31] can be
used. According to the data dependencies constraints, the PHYSICAL

view makes possible the design mapping onto a FPGA. The aim
of this mapping, constructed from high level evaluation of data
dependencies, is to provide a more efficient placement than the one
provided by the FPGA mapping tool, which does not consider data
dependencies issued from hierarchy, like demonstrated by Moeller
in [19]. For this purpose we integrate in our flow, a mapping
constraint file that guide the mapping issued by the synthesis tools.

E. Outcomes

In this section, we have shown the different steps necessary to
generate an efficient hardware implementation of an application
according to a FPGA. Thanks to VHDL code generation, we are
able to synthesize and implement the resulting hardware design onto
FPGA. The next section illustrates our approach with application
example.

IV. CASE STUDY

This section illustrates correctness and efficiency of our flow ded-
icated to intensive signal processing applications. For this purpose, a
correlation algorithm is studied, followed by another application that
use dual correlation algorithms.

A. Correlation Algorithm

Correlation is a well known and frequently used algorithm in
intensive signal processing. Eq. 1 provides the detailed formulation of
the studied algorithm. This algorithm is composed of multiplications
and additions that can be executed in a parallel manner, therefore,
all potential parallelism is extracted in a UML model detailed in the
following. The overall UML model of the correlation algorithm is
not fully presented, instead we focus on the interesting part of the
model.

Ccy(j) =

1023
∑

i=0

c(i) · y(i + j) (1)

1) High Level Model: Top of Figure 7 illustrates component
AdditionTreethat realizes sum in correlation algorithm. Input port
inAdditionTreeis composed of 1024 data (the data to sum), output
port is a scalar value (result of the sum). The 10 component instance
represent the 10 pipeline stage of tree topology used to realize the
sum. The bottom of the Figure 7 represents the8th component in-
stantiated in the pipeline stage. This component,AddStep8, expresses
data parallelism. Input portinA8 is composed of 8 data, output port
outA8 is composed of 4 data and elementary taska8 is repeated 4
times to realize all the necessary computation.

2) Synthesis Results of the Generated VHDL Code:This section
illustrates the synthesis results of the automatically generated VHDL
code under Quartus tool from Altera. The top of Figure 8 illustrates
the 6 last stages of the sum and clearly illustrates the behavior of
the tree topology and reduction of data arrays from a pipeline stage
to another. Bottom of Figure represents synthesis results for the8th

pipeline stage. Marks1 and5 correspond to input and output ports,
marks 2x and 4 identify generated components that resolve data
dependencies initially expressed with tilers. Mark3x represent the
four elementary tasks that realize additions in a parallel manner.

3a

3b

3c

3d

2a

2b

4

1 5

Input ports
Input Tilers
Repeated tasks
Ouput Tiler
Output Ports

3x:
2x:

4:
5:

1:

Fig. 8. Synthesis results: top illustrates task parallelism in sum, bottom
illustrates data parallelism.

3) On-line Demos:The overall algorithm has been modeled in
UML and the automatically generated VHDL code has been validated
by simulation and synthesis. Three on-line videos are provided
in [18], the first video1 illustrates the complete UML model of the
correlation algorithm, the second2 illustrates compilation within our
design space exploration flow and the third one3 represents simulation
and synthesis results of the generated VHDL code.

B. Dual Correlation Algorithm

The aim of this case study is to illustrate the interest of the FPGA
PHYSICAL view. Our approach is illustrated with an application that
shares data, like described in Eq. 2: datay(i + j) are shared to
compute bothCcy(j) andCdy(j) correlation. Similarly to the single
correlation described above, a UML model was developed.

1http://www2.lifl.fr/west/DaRTShortPresentations/correlation-magicdraw.
avi

2http://www2.lifl.fr/west/DaRTShortPresentations/correlation-eclipse.avi
3http://www2.lifl.fr/west/DaRTShortPresentations/correlation-vhdl.avi
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<<ApplicationComponent>>
ra8 : AddStep8

inA8 outA8

<<ApplicationComponent>>
ra9 : AddStep9

inA9 outA9

<<ApplicationComponent>>
ra10 : AddStep10

inA10 outA10

<<ApplicationComponent>>
AdditionTree

Result : Integer range −8192 to 8191

inAdditionTree : Integer range −8192 to 8191 [(1024)]

<<ApplicationComponent>>
AddStep8

<<ElementaryComponent>>
<<ApplicationComponent>>

a8 : Addition [(4)]

inData1

inData2

outData
inA8 [(8)]

outA8 [(4)]

<<Tiler>>
{origin = "(0)" ,
modulo = false ,
paving = "((1))" ,
fitting = "((0))" }

<<Tiler>>

{origin = "(0)" ,
modulo = false ,
paving = "((2))" ,
fitting = "((0))" }

<<Tiler>>
{origin = "(1)" ,
modulo = false ,
paving = "((2))" ,
fitting = "((0))" }

Fig. 7. UML model: the top of the figure illustrates sum in correlation algorithm at task parallelism level, the bottom of the figure illustrates one pipeline
stage at data parallelism level.

Ccy(j) =

1023
∑

i=0

c(i) · y(i + j)

Cdy(j) =
1023
∑

i=0

d(i) · y(i + j)

(2)

1) Temporal Data dependencies:Expressing the overall appli-
cation in UML, our design space exploration flow finds that data
dependencies issued byy(i + j) are efficiently implemented in
hardware with shift register. Figure 9 represents partial synthesis
result of the produced design that manages these data dependencies.
The left side represents the entry in the shift register and the right
side represents the several outputs that are connected to shifted data.
As opposed to space dependency, such temporal data dependencies
management is costly in term of FPGA resources because it consumes
CLBs.

Fig. 9. Synthesis results for the generated shift register.

2) Placement:While providing to the synthesis tool the VHDL
code generated for the overall application, we observe that the
application is mapped in the center of the FPGA, with no regards

to the shared data and the module decomposition that appears in the
VHDL code, as shown in Figure 10. The unconstrained solution does
not provide a structural implementation, disabling the opportunity to
exchange a module functionality. Using a file constraint, we gather
shared data in high density FPGA columns, with the computation
units around them. In the case study, shared data are issued from
generated shift register as described above. Computation of the both
correlation are placed around shift region dedicated to shift register.

The structure contained in the VHDL code perfectly matches
the structure expressed for this constrained implementation. The
synthesis results have demonstrated the equivalent performance for
both implementations, with a decrease of the area consumed by the
constrained one. This area consumption decrease is linked to the high
density implementation required by the constraint mapping. The main
advantage of the constraint implementation is the module decompo-
sition that provides an opportunity to enhance the implementation
efficiency in some cases, to modify the module functionality and,
therefore, to introduce partial reconfiguration in our flow.

C. Outcomes

This section illustrates the interest of the several FPGA views in
our design space exploration flow. The BLACK BOX view offers an
opportunity to generate a first hardware implementation of a correla-
tion algorithm. Details on optimization thanks to the QUANTITATIVE

view can be found in [25]. We illustrate the PHYSICAL view with
an intelligent placement of hardware resources that produce shared
data by two different algorithms. The generated user file allows to
constraint floorplaning during synthesis with Quartus tool.

The PHYSICAL view allows to identify the functionality of each
FPGA cell and its associated configuration at a given mapping. Until
now, Gaspard applications are expressed using the ARRAY-OL model,
which is purely data-flow. Using an extension that introduces a control
flow in the data flow [21], [12], we identify, in a design, the activity
of an application (i,e active, inactive). Therefore, according to the
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INPUT

without mapping constraints with mapping constraints

Fig. 10. Synthesis results with and without mapping constraints. Without
constraints, the synthesis tool provides a design placed inthe middle of
the FPGA, with no regards to the application data dependencies. Using
constraints, we are able to gather shared data in a single high density FPGA
column with the computations units around them.

PHYSICAL view and the control flow, we believe that it is possible
to dynamically and partially reconfigure an FPGA [17].

V. RELATED WORKS

Several related works which aim at optimizing a hardware imple-
mentation of loop based applications have been proposed.

In [8], Diaset al. transform a factorized graph, which expresses the
repetition of a task in a compact way. An implementation is obtained
by successive defactorizations of the factorized specifications. A
heuristic based on a cost function that depends on the consuming
resources, the data-rate and the latency, automatically chooses the
most efficient defactorized solution. In [20], Kaouaneet al. extend
this work and automatically generate a hardware implementation.
Delocalized control units, placed close to the controlled data-path,
schedule the execution according to synchronization frontiers. How-
ever, while the defactorization transformation is available, the factor-
ization is not.

Guillou et al. manage multi-dimensional scheduled uniform recur-
rence equations with a dedicated controller [13], in the context of
the MMAlpha environment [28]. The controller, generated from a
polyhedron scanning method, performs data transactions from local
memories and generates enable signals that control the computa-
tion. Devoset al. describe an extension of CLoog (Chunky Loop
Generator) [1], a tool that statically schedules the execution of an
application according to its polyhedral model [7]. The extension
partially generates the VHDL that describes the hardware controller
and the connection with the execution units, improving data locality.
The described extension does not take the implementation constraints
into account.

Moeller [19] demonstrates that VHDL synthesis and place and
route tools do not optimally place a systolic structure onto FPGA.
With a manually constraint placement, Moeller enhances the FPGA
implementation.

During the last few years, the trend in high level synthesis field
is to generate HDL (VHDL or Verilog) code from C or C like code
(e.g. Handel-C). Many industrial and academic tools are developed in
this topic. One can note C-TO-HARDWARE [23] from Altera, CODE-

VELOPER 4 from Impulse, DK DESIGN SUITE 5 from CELOXICA,
CATAPULT C 6 from MENTOR GRAPHICS, etc. STREAM-C [11],
ROCCC [14], [4], SA-C [30], SPARK [15], etc. are academic tools
that target HDL code generation from C language. There are many
others tools but our aim is not to introduce each one, instead, we
discuss about them in a general manner. Using C code to generate
hardware design is, for sure, an interesting idea because it offers
opportunity to work with a well known language and at higher
abstraction level than RTL. However, this is not reliable without some
major inconveniences.

• textual description is certainly adapted to “little” applications
but becomes difficult to handle for hierarchical applications
that manage both tasks and data parallelism. Hierarchy appears
like function, task parallelism like successive operation and
data parallelism like loops. The development of a complex
application requires the designer to keep in mind the overall
application in a an exact way. Modification of an application
requires to handle and move piece of code in the program which
is also one of the major problems while working at RTL level.
A graphical representation does not have these inconveniences.

• data dependencies are expressed within the index which make
multi-dimensional arrays accesses management difficult and er-
ror prone. Moreover, a program can become quickly unreadable
with such multi-dimensional access.

• C language expresses potential parallelism of an application with
sequential loops. Data parallelism extraction from “C to HDL”
tools is therefore fastidious and tedious while it could be directly
expressed by designer.

• the last point is more philosophical and concerns the claim to
use C language because “known by everyone”. In fact, tools
often require pragma annotation or extra information close to
the C program in order to express parallelism for instance.
Pragma annotation syntax depend on each tool: like for any new
language, designer has to learn these pragma syntax and the way
they are used in the program. Moreover, the overall syntax of
C is generally not managed (pointer are often prohibited for
instance). In conclusion, a designer does not handle C code but
a subset and a constrained C code.

Our proposition differs from these researches in several aspects.
Our application modeling takes into account whole applications and
not only some academic nested loops. Our application modeling,
which is based on ARRAY-OL and its extension [3], is oriented
towards the description of systematic signal processing applications.
It particularly includes powerful construction that allows to denote
all the potential parallelism of an application: data dependencies are
explicitly given by the way of high level constructions. Rough data
dependencies between arrays will lead to a task parallelism execution
while fine grain data dependencies between array elements will
lead to a data-parallel execution. Compared with others, our models
includes multi-dimensional arrays and our tools include refactoring
of arrays that are able to identify temporal and spacial dimensions
in arrays. A last key point is the use of UML as input language.
This offers the opportunity to graphically model applications and
to express, in a unified language and in standardized way, task
parallelism, data parallelism and hierarchy.

4http://www.impulsec.com/Cto fpga.htm
5http://www.celoxica.com/products/dk/default.asp
6http://www.mentor.com/products/esl/highlevel synthesis/catapult

synthesis/
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VI. CONCLUSION

This paper presents an approach to manipulate reconfigurable
resources such as FPGAs in the Gaspard co-design environment. Our
design space exploration flow is composed of four steps. The first step
identifies identifies data dependencies in the application specification.
The second and the third steps compare the computing resources
and the IOs required for a hardware implementation with respect
to the resources offered by the FPGA. According to these results,
application refactoring are triggered, providing the most efficient
hardware implementation that fits onto the target FPGA. The last
step generates the VHDL code.

In order to perform efficient FPGA implementations of parallel
applications modeled at a high level, our flow uses three views that
allow to manipulate a FPGA according to the designer requirements:
the BLACK BOX view for a first rough design, the QUANTITATIVE

view for a tuned hardware design and the PHYSICAL view for a
FPGA mapping constraints. The PHYSICAL view is the most detailed
view considered in this study. It allows to map an application onto
an FPGA in a modular way, taking into account data dependencies
and application structure. We believe that FPGA implementation
issued from such mapping constraint could benefit from high level
application modeling and data dependencies expression. Moreover,
this mapping module composition may be used to introduce partial
reconfiguration and a regular mapping.

The future works will extend the flow to the partial reconfiguration
and the regular mapping. The introduction of a control flow into our
data flow language should allow to perform partial and/or dynamic
reconfigurations.
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[12] A. Gamatíe, E. Rutten, H. Yu, P. Boulet, J.-L. Dekeyser, Synchronous
modeling of data intensive applications, Research Report 5876, INRIA
(Apr. 2006).

[13] A.-C. Guillou, P. Quinton, T. Risset, Hardware synthesis for
multi-dimensional time, in: IEEE 14th International Conference on
Application-specific Systems, Architectures and Processors (ASAP 03),
The Hague, The Netherlands, 2003.

[14] Z. Guo, B. Buyukkurt, W. Najjar, K. Vissers, Optimized generation of
data-path from c codes for fpgas, in: DATE ’05: Proceedings of the
conference on Design, Automation and Test in Europe, IEEE Computer
Society, Washington, DC, USA, 2005.

[15] S. Gupta, N. Dutt, R. Gupta, A. Nicolau, SPARK: a high-level synthesis
framework for applying parallelizing compiler transformations, in: Intl.
Conf. on VLSI Design, 2003.

[16] M. Handa, R. Vemuri, A fast algorithm for finding maximal empty
rectangles for dynamic FPGA placement, in: Design, Automationand
Test in Europe Conference and Exhibition, DATE’04, Paris, France,
2004.

[17] Imran Rafiq Quadri and Samy Meftali and Jean-Luc Dekeyser,An MDE
Approach for Implementing Partial Dynamic Reconfiguration in FPGAs,
in: 16th International Conference on IP Based System-on-chip, IP’07,
Grenoble, France, 2007.
URL IP07.pdf

[18] INRIA, DaRT short presentations and demos, http://www.lifl.fr/west/
DaRTShortPresentations/ (2007).

[19] T. J.Moeller, Field programmable gate arrays for radar front-end digital
signal processing, Ph.D. thesis, Massachusetts Instituteof Technology
(May 1999).

[20] L. Kaouane, M. Akil, Y. Sorel, T. Grandpierre, From algorithm graph
specification to automatic synthesis of FPGA circuit: a seamless flow
of graph transformations, in: 13th international conference on Field-
Programmable Logic and Applications, FPL’03, Lisbon, Portugal, 2003.

[21] O. Labbani, J.-L. Dekeyser, P. Boulet, E. Rutten, UML2 profile for
modeling controlled data parallel applications, in: FDL’06: Forum on
Specification and Design Languages, Darmstadt, Germany, 2006.

[22] L. Lagadec, D. Lavenier, E. Fabiani, B. Pottier, Placing, routing, and
editing virtual FPGAs, in: 11th International Conference on Field-
Programmable Logic and Applications, FPL’01, Belfast, Northern Ire-
land, UK, 2001.
URL http://www.springerlink.com/content/rvx89nt37g7ln6wr/

[23] D. Lau, O. Pritchard, P. Molson, Automated generation ofhardware ac-
celerators with direct memory access from ansi/iso standard cfunctions,
in: FCCM ’06: Proceedings of the 14th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’06), IEEE
Computer Society, Washington, DC, USA, 2006.

[24] S. Le Beux, V. Gagne, E. Aboulhamid, P. Marquet, J.-L. Dekeyser,
Hardware/software exploration for an anti-collision radar system, in: The
49th IEEE International Midwest Symposium on Circuits and Systems,
San Juan, Puerto Rico, 2006.

[25] S. Le Beux, P. Marquet, J.-L. Dekeyser, A design flow to mapparallel
applications onto FPGAs, in: 17th IEEE International Conference on
Field Programmable Logic and Applications, FPL, Amsterdam, Nether-
lands, 2007.

[26] P. Le Guernic, J. Talpin, J. Le Lann, Polychrony for system design, Jour-
nal for Circuits, Systems and Computers, Special Issue on Application
Specific Hardware Design.

[27] MORPHEUS project, Multi-purpose dynamically reconfigurable plat-
form for intensive heterogeneous processing, http://www.morpheus-ist.
org/.

[28] Project Inria-CNRS COSI, ALPHA home page, http://www.irisa.fr/cosi/
ALPHA/.

[29] ProMarte partners, UML Profile for MARTE, Beta 1, http://www.omg.
org/cgi-bin/doc?ptc/2007-08-04 (Aug. 2007).

[30] R. Rinker, M. Carter, A. Patel, M. Chawathe, C. Ross, J. Hammes, W. A.
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Abstract— This paper presents a novel Lossless Multi-Mode
Interband image Compression (LMMIC) scheme and its hard-
ware architecture. The approach detects the local features of
the image and uses different modes to encode regions with
different features. Run-mode is used in homogeneous regions,
while ternary-mode and regular-mode are used on edges and
other regions, respectively. In regular mode, we propose a simple
band shifting technique as inter-band prediction and a gradient-
based switching strategy to select between intra-band or inter-
band prediction. The advantage of LMMIC is to adaptively
switch among modes and predictors in different regions, to avoid
complicated calculations in traditional segmentation and inter-
band coefficients. This feature enables the hardware amenability.
Experimental results show that LMMIC achieves superior com-
pression ratios as well as high throughput. It also provides the
benefits of enabling encoding any number of bands and easy
access to any band.

I. I NTRODUCTION

The rapid advances of multimedia technology generates
huge amount of image data. Most of them are multispectral
images, which contain more than one spectral bands. For
instance, color images, often displayed as RGB, BMP, or
TIF format, have at least three bands. In remote sensing, the
LANDSAT 7 images have seven bands, and the AVIRIS hy-
perspectral images contain 224 bands. These images form the
base of the widely used web mapping service, e.g. the Google
Earth. In medical imagery, multispectral images also prevail.
These images are normally compressed for transmission and
storage. As many applications, e.g. remote sensing imaging,
medical imaging, pre-press imaging and archiving [1], demand
perfect reconstruction of images, lossless compression on
multispectral images attracts increasing interests. Alsofor
applications that need to transmit image data instantly after
acquisition, real-time compression is desirable. To this end,
we aim to design an efficient hardware amenable lossless
interband image compression scheme, with the capability of
real-time processing.

Unlike gray-scale image, multispectral image has not only
spatial but also spectral redundancy. Moreover, the existence
of multiple bands suggests two problems worth of concern
- to encode any number of bands and to access whichever
band. As spatial coding techniques have been extensively
studied [2][3][4], recently a lot of research focuses on remov-
ing the spectral redundancy. Popular interband coding tech-
niques include vector quantisation [5][6][7], Discrete Cosine

Transform [8], Discrete Wavelet Transform [9], and vector-
lifting schemes [10]. These coding techniques are efficient
in reducing spectral redundancy, but their high computational
complexity and often jointly encoding several bands (e.g. 16
bands in [9]) are obstacles for hardware implementation and
real-time processing. On the other hand, predictive codingdoes
not only perform well in removing spatial redundancy but also
spectral redundancy. Wu extended Intra-band CALIC [2] to
Inter-band CALIC [1], which offers one of the best inter-band
compression results in literature but requires complex inter-
band correlation coefficients calculation and context formation.
SICLIC [11] is a simple and efficient coder based on LOCO-I
[3], but its 3-band joint-run mode, while giving good bit rates,
constrains it from encoding any number of bands.

To relieve these problems, we propose a Lossless Multi-
Mode Interband image Compression (LMMIC) scheme. The
proposal of this scheme is inspired by the concept of segmenta-
tion. Segmentation, in a general sense, is to partition an image
into multiple regions in order to change the representation
of an image into something meaningful or easy to analyze.
However, traditional segmentation, e.g. statistical model-based
methods [12] and graph-based methods [13], is too complex
to implement in real-time compression. The novelty of our
scheme is to apply the idea of segmentation to group pixels
with similar features and use different modes to encode them.
We propose a multi-mode strategy, where a new ternary-mode
is designed to detect and encode the edges, and a run-length
coder [3] is to encode the homogeneous regions. The rest
of the image, say the texture regions, is coded by a regular-
mode which consists of intra-band and inter-band prediction.
We propose a simple band shifting technique for inter-band
prediction and adapt the Gradient-Adjusted Prediction (GAP)
from CALIC [2] for intra-band prediction. A new gradient-
based switch is also designed to select the better predictor.
This multi-mode strategy applies to all bands in an image. The
proposed scheme does not only offer excellent compression
ratios, but also the distinctive feature of the flexibility of
encoding any number of bands. The multi-mode strategy and
switching method make LMMIC hardware amenable. Note
that the proposed scheme in this paper is for general purpose
(e.g. space, medical, archiving) images with more than one
spectral bands but not specifically geared for hyperspectral
images. Since some of the techniques for hyperspectral images
make specific use of the structure of these images, for example,
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Fig. 1. Schematic of the proposed image compression system

by including a band ordering process [14] or by clustering
a number of bands [9], we do not include those highly
specialized and not necessarily hardware amenable methodsin
our comparison study. However, we acknowledge that refining
our techniques for specific use with hyperspectral images is
an interesting topic for further research, and its findings will
be reported elsewhere.

The paper is organized as follows. In Section 2 we present
an overview of the proposed scheme. In Section 3 and 4,
we explain the details of the multi-mode strategy and the
intra/inter-band switching method, followed by the hardware
architecture in Section 5. We show the performance com-
parison with other state-of-the-art schemes in Section 6 and
conclude our work in Section 7.

II. A N OVERVIEW OF LMMIC

An image contains many features, such as smooth regions,
edges, texture etc. The complexity of an image is an ob-
stacle for compression, thus segmentation (also referred to
as region-based methodology) is a viable approach to help
with distinguishing these features. The lossless image com-
pression method TMW [15], which achieves the best gray-
scale image compression ratio so far, uses segmentation to
analyze the image in the first pass. Shen [16] proposed SLIC
to combine the region-growing algorithm in segmentation
with lossless compression for medical images. Ratakonda [17]
used multiscale segmentation in encoding general images and
achieved very good compression results. However, they are
both complex and two-pass schemes so cannot well meet the
real-time processing requirement. Due to the complexity and
the nature of segmentation, we skip the conventional methods
but apply its concept, by using a simple online checking of
neighboring symbols to detect different image features and
using different modes to encode these features. This is the
idea that our scheme is based on.

Fig. 1 shows the schematic of LMMIC. Firstly, one band is
chosen as base band, for instance band G in RGB images, or
the first band received in the sequence. Then a pre-processing

NW N NE

XWWW

NN NNE

Fig. 2. Neighboring symbols of the current symbol

stage simply subtracts the base band from the current band to
get the band difference, as in

Banddiff = Bandcurr − Bandbase (1)

Thus each band is only coupled with the base band and no
multi-band joint encoding is needed. This allows the flexibility
of compressing any number of bands and easy access to any
bands. Then a three-way switch enables the system to choose
among run-mode, ternary-mode and regular-mode according
to the local feature of where the input symbol is. Among
these three modes, run-mode and ternary-mode are set to
have higher priority and are checked first. Symbols that fail
to be encoded in run-mode or ternary-mode are encoded in
regular-mode. The diagram in Fig. 1 shows that regular-mode
consists of intra-band and inter-band prediction working in
parallel, and a switch enables the adaptation. While the base
band is directly applied on these three modes, for other bands,
only the band difference is applied on run-mode and ternary-
mode but both the current band and the band difference are
applied on regular-mode, when it is activated. After prediction,
higher order redundancy of the image residue is removed by
context modeling, which is done in a similar manner with the
one in CALIC [2], with some simplification and modification
for the intraband and interband case respectively. The output
prediction errors and context information are processed bya
probability estimator and a binary arithmetic coder [18]. The
proposed scheme is a symmetric encoder, as the decoding
is just the opposite procedure of encoding. Therefore, both
encoding and decoding has the same level of complexity. In
the next section, we explain the details of each working mode.

III. M ULTI -MODE STRATEGY

Due to the inter-band correlation in images, subtracting
the base band from the current band often generates more
homogeneous region in the band difference, which is beneficial
for compression. On the other hand, many of the image
features, such as edges, tend to still remain in the band
difference. Therefore, instead of the original band, we apply
the band difference on the run-mode and the ternary-mode,
and in areas with more complex texture, we can select between
intra-band or inter-band prediction, which will be detailed in
the next section. In this section, we present how each mode
works and the conditions for entering each mode.

A. Run-mode

Run-length coding is simple and efficient in grouping identi-
cal symbols [3]. It encodes the occurrence, also calledrun, of
a symbol if it appears continuously. We use run-length coding
to encode the homogeneous regions of the image. Fig. 2 shows
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Fig. 3. Areas where ternary-mode is performed

the neighboring symbols of the current symbolX according to
their geographical positions. WhenW = N = NW = NE,
the current symbol is assumed to be in a homogeneous region
and is tried to be encoded in run-mode. IfX is identical to
W , the run-length increases by one; otherwise “run” stops and
the current run-length is encoded. The latter case means that
encoding symbol in run-mode is unsuccessful, so the symbol
is encoded in regular-mode.

B. Ternary-mode

Ternary-mode is inspired by the binary-mode in CALIC,
which works on the binary area where there are only two
different symbols in the neighborhood, e.g. black and white
texts. However, unlike CALIC, our ternary-mode is based on
the idea of edge detection. In areas where a sharp edge occurs,
shown in Fig. 3 (a), symbol values at the two sides of the edge
are usually different; also, where a less sharp edge occurs,as
in Fig. 3 (b), symbol values tend to be changing gradually.
In both cases, we assume that within a small neighborhood
of the current symbol, say the seven neighboring symbols in
Fig. 2, there are no more than three distinctive symbols and
the ternary-mode is triggered. Fig. 3 shows the areas that the
ternary-mode is performed.T indicates the symbols encoded
by ternary-mode, whileR indicates run-mode, and the color
is the gray-level of the symbols. The figure tells that edge
areas can be largely covered by this mode. In ternary-mode,
symbol W is represented ass1, while the second and third
distinctive symbols are represented ass2 ands3 respectively.
In other word, the current symbol can be denoted by their
order of appearance given the condition that the checking of
the context is always conducted in the same order. The current
symbol is encoded by

T =















0, if x = s1;
1, if x = s2;
2, if x = s3;
escape, otherwise.

(2)

“Escape” happens when encoding in this mode fails. It is a way
of switching among modes. The alphabet size for encoding in
this mode is only four so lower entropy is obtained. Ternary-
mode also works as a “backup” of the run-mode in smooth
but not exactly homogeneous regions. Fig. 4 are the residue
images of “lenagrey” after GAP and LMMIC respectively. The
zero order entropy of the residue image after GAP is 4.39bpp
while it is 4.31bpp after LMMIC. Fig. 5 (b) shows the regions

(a) entropy = 4.39bpp after GAP

(b) entropy = 4.31bpp after LMMIC
Fig. 4. Sample residue images after GAP (a) and LMMIC (b)

where different modes perform, comparing with the original
image (a). Run-mode works on the grey homogeneous regions;
ternary-mode works on the white regions, which often lie on
the edge of the homogeneous regions, some smooth regions or
clear edges; regular-mode works on the dark regions, which
are mostly texture or noisy areas.

C. Regular-mode

Regular mode is triggered, either when the entry conditions
for run-mode and ternary-mode cannot be met, or when encod-
ing in other modes fails. Regular mode consists of intra-band
and inter-band prediction, which is selected according to the
local features adaptively. Details of the inter-band prediction
and switching strategy are discussed in next section.

IV. GRADIENT BASED SWITCHED INTRA/INTER-BAND

PREDICTION AND CONTEXT MODELING

We design a simple band shifting technique for inter-band
prediction, and adapt the GAP from CALIC for intra-band
prediction. However, the performance of inter-band prediction
depends on the band correlation. In the case of strong band
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(a) original image “bike3”

(b) different modes indication on image “bike3”, where
grey area indicates run-mode; white dots indicate
ternary-mode; dark area indicates regular-mode.

Fig. 5. Original image (a) and image indicating where different modes
applied (b)

correlation, inter-band prediction is preferred, otherwise intra-
band prediction is selected. A gradient based switching method
is proposed for the selection.

A. Band shifting for inter-band prediction

In the regions where bands are strongly correlated, symbol
changes in one band often happen in another band. Fig. 6
shows the plots of one line in band G and band B in the
image “peppers”. It is clear that the dot plot from band G has
a similar trend with the dash plot from band B. We intend
to shift the reference band G to a position that is close to
the current band B so that only a small difference between
the current band and the shifted reference band needs to be
encoded. There are a lot of possible ways to predict the value
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Fig. 6. Plots of one line in band G and band B and their difference after
shifting

for band shifting. Since this band shifting is only used when
band correlation is strong, the band difference tend to be very
small. Considering the level-set preserving property of the
simple median predictor, we use it to predict the band shifting.
We denote the band difference at positionW , N , NW as
W diff , N diff , NW diff , and calculate the band shifting
by

if NW_diff >= max(N_diff, W_diff)
shift_band = min(N_diff, W_diff);

else if NW_diff <= min(N_diff, W_diff)
shift_band = max(N_diff, W_diff);

else
shift_band = N_diff + W_diff - NW_diff;

end

The solid plot in Fig. 6 shows that this prediction method
successfully generate a zero-mean band difference between
the current band and the shifted reference band.

B. Gradient-based switching

As the performance of the two predictors varies in different
regions of an image depending on the spatial and spectral
correlation, it is critical to design a suitable selecting strategy
to decide which one to use. As we aim at designing a
hardware amenable scheme, complex calculation of inter-band
correlation coefficients has to be avoided. We propose a simple
switching method according to the local horizontal and vertical
gradients, which are calculated by

dh = |W − WW | + |N − NW | + |N − NE|
dv = |W − NW | + |N − NN | + |NE − NNE| (3)

where dv is the vertical gradients anddh is the horizontal
one. When calculating the inter-band gradients,W , N , NW ,
NE, NN , WW , NNE are substituted by the inter-band
difference at the same positions. Inter-band gradients indicate
how closely the two bands change in the same way. In
addition to the gradients, the previous prediction error istaken
into account to evaluate how well the predictor performs in
the local area. Therefore, for both intra-band and inter-band
prediction, we calculate

S = dv + dh + |Ew| (4)
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where Ew means the prediction error at positionW . The
predictor that gives smallerS is selected to encode the current
symbol. Experiments on the test images used in the results
section show that this simple method makes 70% or above
right decisions.

C. Context Modeling

Context modeling is to group the prediction residue based
on local contexts in order to obtain a lower conditional entropy.
In the proposed scheme, context is formed in a similar manner
with CALIC [2] but is simplified to reduce the memory usage.
We take 6 context symbols (W,N,NW,NE,NN,WW ) to
compare with the predicted valuêX to obtain a texture pattern
t, representing the local texture feature. Also, to indicated the
activity of errors in a context, a coding context is generated
with the local gradientsdv, dh and a previous prediction
error e of W. The coding context is then quantized into 8
levels to form a coding context index. Combining the texture
pattern and the coding context, a set of 512 compound contexts
are formed with 6 bits texture patternt and 3 bits coding
context index. In the case of interband context formation,
context symbols are replaced by the band difference at the
same position. These contexts are also used to generate an bias
cancellation of the predictor, which will be discussed in the
next section. The 8 coding contexts are used to calculate the
occurrence probability of symbols in the probability estimator
presented in Section V-B.

V. HARDWARE ARCHITECTURE

Hardware amenability is one of the priorities in the design of
the proposed scheme. Therefore, as previously described, the
whole procedure, including the prediction and mode switching,
only involves a limited number of addition and shift, and
only need to buffer three lines in two bands. In this section
we propose the suitable hardware architecture to support the
proposed compression scheme, which includes the architecture
of the prediction and context modeling module, probability
estimator and binary arithmetic coder. As the binary arithmetic
coder is adopted from [18], we will not explain in detail here.

A. Prediction and Context Modeling Module

To further optimize the hardware architecture, the data flow
of the prediction and context modeling module is achieved
with two pipelines running in parallel, as shown in Fig. 7.
Line 1, indicated by the flow on the left, operates on the
current symbol and yields the symbol “runs” or symbol order
or prediction error with the selected mode for the probability
estimator; Line 2, indicated by the flow on the right, updates
the data from Line 1, calculates the prediction value and the
context index for the next symbol under the selected mode.
The advantage of dividing the procedure into two parallel
pipelines is, while not violating the sequential constraint, to
halve the execution time and hence obtain higher throughput.
As the arithmetic calculation part is introduced in previous
section, we will explain the rest, which is managing the context

Fig. 7. Data Flow of the prediction and context modeling module

memory and the error feedback technique for bias cancellation,
below in this subsection.

In the compression process, we need to store 3 lines of
image pixel values in memory as context. To avoid reading
in 3 lines every time when a line finishes, we use 3 lines’
memory to store the pixel values and 3 pointers to indicate
symbol locations in each line. At the end of processing each
line, the 3 pointers to each line rotate in a certain order so
that the oldest line is discarded and the newly formed line is
saved.

An error feedback technique is used in the prediction step to
adjust the bias in prediction in certain context. As prediction
can not be accurate, the mean of errorsē is assumed to be
the most probable prediction offset error in each context, and
hence is a good observation of the bias of the predictor. We
improve the prediction by adding on this term. It is calculated
by

ē = sum/count (5)

wheresum and count are the sum and occurrence count of
errors in the context, respectively. The calculation of mean
requires arbitrary division, which is not desirable in hardware
implementation. To solve the problem, we store thecount
with only 5 bits (25 − 1 = 31). When thecount reaches
its maximal value 31, it is halved by right-shifting one bit;
meanwhile sum is halved so as to maintain the meanē.
Thus we only need 13 bits (25 × 28 = 213, assuming the
error range is 0 to28 − 1) plus one sign bit to store the
sum of errors safely. Experimental results prove that this
rescaling technique slightly improves the compression ratio
by “aging” the observed data. However, division is always a
difficult problem in hardware, especially when the dividend
can be as large as 13 bits. To make this division practical, we
bound the dividendsum by 10 bits for two reasons: firstly,
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(a) Initialized (b) Increased

Fig. 8. Simplified tree structure of the probability estimator

experiments on our image test set show that the chance of the
sum being larger than 1023 is less than 0.001%; secondly,
extraordinary large errors tend not to reflect the true behavior
of the context because prediction errors should be moderately
small given an adequate predictor. Therefore, we use the most
significant bits of the divisorcount in the division, with the
dividend being rescaled accordingly to maintain the same
result. Consequently, we only need a lookup table of 1KByte
(2 × 512 = 1024) to complete fast division. Although the
result of division is only an approximation, it does not affect
the compression performance in our experiments.

B. Probability Estimator

As the prediction residue generated by the prediction and
context modeling module has a multiple-symbol alphabet (e.g.
for 8 bits per pixel, there are28 = 256 symbols), they
cannot be processed in a binary arithmetic coder directly.
We propose a probability estimator to adaptively calculatethe
probability of symbol occurrence in each context in a SRAM,
and to decompose the data into bit level. Thus it enables the
application of a simple and efficient binary arithmetic coder
and hence results in full pipelining and high throughput.

The main part of the probability estimator is a tree structure
model stored in a SRAM. Each context is represented by a
balanced binary tree with2n (n is the bits per pixel) nodes
associated with each symbol in the alphabet. A number of bits
are used to store the symbol frequency count in each node.
Initially, all the symbols in the alphabet are assigned an equal
probability, and the whole range of the probability is 1. When
one symbol is received, the value of the corresponding tree
node increases to reflect the probability distribution of symbol
occurrence. We demonstrate the working theory of the model
with a simplified tree structure, as shown in Fig. 8, where
n = 3. Firstly, in Fig. 8(a), each tree node is assigned to 0,
and the whole range of probability is assigned to “escape”.
“Escape” here means coding is not successful. Then in
Fig. 8(b) a symbol “2” (“010” in binary) arrives, so the counts
for symbol “2” is increased by 2, or any specified value, and
the probability of symbol “2” becomes2/3. This is reflected
by the value of the tree nodes over the total value of the tree
root. In this way, to encode the symbol “2”, we only need to

Fig. 9. Average Bit Rates under Different Probability Precision

encode the left or right decision when the symbol comes down
through the tree.

As mentioned in previous section, there are 8 coding con-
texts, corresponding to 8 “dynamic” trees and one “static”
tree for coding theescape symbols.Escape happens when
a valid probability of a symbol cannot be found, e.g. when
its probability is 0, in which case the symbol is “escaped” to
the “static” tree and is sent as it is.Escape is undesirable
as it does not achieve any compression. It takes place when
some symbol frequency counts reach the maximal frequency
count, e.g. 14 bits for (214 − 1), in which case all the symbol
frequency counts in the tree will be halved. Consequently,
the counts of symbols that have not been seen before will be
rescaled to 0, resulting inescape when those symbols occur
later for the first time. Therefore, the frequency count bits
have to be carefully chosen. Experimental results of average
compression bit rates under different frequency count bitsare
shown in Fig. 9. When the maximal frequency count is too
small, moreescapes are likely to happen; when the maximal
frequency count is too big, the “aging” effect of observed data
is less. Therefore, we choose 14 bits according to the result
of Fig. 9.

Fig. 10 shows a simplified diagram of the probability
estimator. There is a SRAM memory where the probability of
symbols in each coding context is stored, and a SRAM to store
the total root value of each context tree. The incoming symbol,
which is the prediction error, is shifted and compared with
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Fig. 10. Architecture of the probability estimator

the value “1” to get the decision bit (0 or 1, as left or right).
Meanwhile, the context index is read in the corresponding
context tree, where themiddlecount represents the current
symbol and thetotalcount represents the total value in the
context. So the probability is calculated as

p =
Middle Count

Total Count
(6)

The probability is output asCum0 and Cum1 as a binary
sequence. This module maps the probability data into a set
of binary decisions from the root to the leaves through each
context tree. The binary arithmetic coder is driven by these
decision bits and the probability data. It is multiplication-
free, resulting in an improved clock ratio of the system. One
decision bit is processed per clock cycle, and hence 8 cycles
are needed for encoding one byte.

VI. PERFORMANCECOMPARISON

The experimental result in terms of compression ratio is
presented in this section. We choose a set of standard 3-band
RGB images, a 4-band CMYK image “park” and a 7-band
LANDSAT 7 image “coastal” from CCSDC (the Consulta-
tive Committee for Space Data Systems). The RGB images
include continuous-tone images (“cats”, “water”, “lena” and
“peppers”), compound images (“cmpnd1” and “cmpnd2”) and
synthesized images (“bike3”). We compare the proposed com-
pression scheme with JPEG2000 [19], intra-band CALIC [2],
IB-CALIC [1] and SICLIC [11]. The results of IB-CALIC
and SICLIC are extracted from [11]. Some results are absent
due to the unavailability of the programs. JPEG2000 is the
current standard for image compression. The results of IB-
CALIC are one of the best in literature in terms of general
inter-band image compression, but not hyperspectral image
compression, which is not the scope of our proposed method
either. And SICLIC is a good trade-off between compression

ratio and complexity. Table. I shows that LMMIC outper-
forms JPEG2000 and intra-band CALIC by 10% and 14%,
respectively. It is superior than SICLIC on average, though
slightly inferior than IB-CALIC which has higher compu-
tational complexity. Since the inter-band coding in LMMIC
only couples two bands, it has the flexibility of compressing
images with any number of bands and easy access to any
bands. The proposed hardware architecture together with the
binary arithmetic coder enables the system to process one bit
per clock cycle, which translates into a throughput of around
123Mbits/s on a Xilinx Virtex 4 FPGA.

VII. CONCLUSIONS

An original Lossless Multi-Mode Interband image Com-
pression (LMMIC) scheme is proposed. The concept of seg-
mentation is well ingrained in this scheme to deal with
different regions in the image adaptively. The simple and
efficient band shifting technique and the switching strategy
successfully remove the inter-band redundancy. Experiments
show that LMMIC achieves highly competitive compression
ratios and provides the flexibility of compressing any number
of bands as well as easy access to any bands, which are not
offered by many other schemes. The complexity of the scheme
is strictly controlled and hardware amenability is maintained.
The proposed corresponding hardware architecture proves the
achievement of high throughput.
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Abstract—This paper presents the design considerations and
performance results from implementing clustering to accelerate
a video processing algorithm in a commercial product.
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I. I NTRODUCTION

In 2007 Snell & Wilcox brought its new Alchemist IP
product to market. The product made the company’s video
standards conversion technology available as software forthe
first time. Initial customer feedback was that the processing
was too slow (60 to 80 times run-length1), and so a dis-
tributed architecture was implemented to allow the software
to take advantage of a cluster of off-the-shelf PCs[1][2]. After
the implementation, it became apparent that the architecture
would also allow the software to take advantage of multi-core
processors. This paper presents the design decisions made to
reach the final architecture and the performance characteristics
of that architecture.

Video standards conversion is used to convert between the
different video standards used internationally (e.g. NTSCand
PAL). The primary difference between the standards is the
frame-rate of the video, which can be either 50Hz or 60Hz2.
The processing algorithm that was clustered for this work,
performs frame-rate conversion from 50Hz to 60Hz and 60Hz
to 50Hz.

The challenges of clustering the Alchemist IP product
included:

• The video processing algorithm had temporal dependen-
cies which meant that each frame of the video sequence
could not be processed separately.

• The video quality of the output was a key feature of the
application, so it had to be maintained.

• The Alchemist IP product was undergoing active devel-
opment at the time, so the changes to the application had
to be minimal.

1This means that a 10 second video clip would take 600 to 800 seconds to
process.

2For historical reasons the frame-rate of the video in the US is actually
59.94Hz.

II. U NCLUSTEREDALCHEMIST IP ARCHITECTURE

C o n v e r t
D e c E n c

Figure 1. The flow of video through the Alchemist IP product with the
main process decoding and encoding, while communicating with a frame-rate
conversion process.

The dataflow through the Alchemist IP product has the
following steps: decoding video from a compressed input file,
sending the uncompressed video to the frame-rate conversion
algorithm, encoding the resulting uncompressed video and
then writing out to a new file (see Figure 1). The frame-
rate converter runs in a separate process and communication
between the converter and the rest of the product is through
a pair of TCP/IP sockets. In the Alchemist IP software the
majority of the processing time is spent in the frame-rate
converter.

The processing algorithm in the Alchemist IP performs mo-
tion compensated frame-rate conversion[3]. The algorithmwas
originally designed for real-time processing and implemented
in hardware using FPGAs. This has led to an algorithm that
is processor intensive and contains temporal dependence.

III. C HOOSING A CLUSTER ARCHITECTURE

When designing the clustering architecture, different ar-
rangements for the data flow were considered. The system
was designed to handle multimedia content, which tends to
involve large amounts of data. The overhead of moving the
large amounts of data was considered to be the primary factor
in determining the efficiency of the system[4].

In a share-nothing cluster (see Figure 2) each node reads
a chunk of the input data, does all the processing required
and then writes a chunk of the output file. The share-nothing
cluster arrangement follows the “move the processing, not
the data” philosophy. The share-nothing cluster arrangement
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N o d e s

Figure 2. A share-nothing cluster where each processing node communicates
directly with the storage device.

has three major advantages: efficiency (the data is only
moved twice, minimising network bandwidth usage), scala-
bility (scales directly by adding nodes with no single-node
bottlenecks) and ease of deployment (each node is identical).
Unfortunately the share-nothing cluster arrangement cannot be
used in all circumstances. An example of this is when the
data store is not accessible to all the nodes, or if the data
processing requires access to the entire input file (for temporal
processing). Another disadvantage to the share-nothing cluster
is that it requires a complex control system to ensure the entire
input file is processed and that the output from each node is
in the correct place in the overall output.

N o d e N o d e N o d e

Figure 3. A cluster where each processing step is undertakenon a different
node.

In the sequential cluster arrangement (see Figure 3), each
node performs a single task on the input file and then passes its
results onto the next node. The sequential arrangement moves
the data between nodes, so it is the exact opposite to the
share-nothing cluster arrangement. The main advantage of the
sequential arrangement is that existing media processing code
can be used without change. Each processing node processes
the entire file and can perform as much temporal processing
as required (e.g. multi-pass encoding). The main problem with
the sequential arrangement is its lack of efficiency due to large
communications overheads compared to the share-nothing
arrangement. The extra overhead is due to the data copies
which have to take place between nodes in the sequential
arrangement. Also, balancing the workload across all the nodes
can be difficult, making scalability expensive, as one of the
nodes will always be the bottleneck of the system. Another
issue with the sequential arrangement is that when dealing
with failed nodes the entire file will need to be reprocessed,
whereas in a share-nothing cluster arrangement only a single
chunk of the input would need to be reprocessed.

The head-node arrangement (see Figure 4) is where a single
node is responsible for all file I/O, handles splitting the work
over the other nodes in the cluster and joining together the
results. A benefit of using the head-node arrangement is thatall
temporally dependent processing (e.g. encoding and multiplex-
ing) can be done in the head node using existing code. Also the
head-node arrangement will work in environments where only
one machine has access to the input and output file data stores.

H e a d
N o d e

N o d e s

Figure 4. A cluster where all communications with the storage device is
through a single node.

The disadvantages of using the head-node arrangement are that
the head node is vulnerable to being the single point of failure
and will eventually become the bottleneck to throughput as the
cluster grows.

Sp l i t t e r

N o d e s

Figure 5. A cluster where the data is split across multiple nodes by a splitter
node.

A g g r e g a t o r

N o d e s

Figure 6. A cluster where the output of the cluster is aggregated by a final
node.

There is a continuum of possible cluster arrangements
between the share-nothing and the sequential arrangements.
The head-node arrangement can be thought of as a midpoint
in that continuum. Examples of other points on that continuum
include the splitter and aggregate arrangements as shown in
Figures 5 and 6. Part of the challenge of designing a system
to utilise a cluster is deciding where in the continuum it
should reside. The factors to consider include the processing
being undertaken (both in terms of temporal dependency and
workload), the location of the data being accessed, the number
of machines in the cluster, whether the cluster is going to grow
in size and the effect on any existing code being utilised. It
might well be desirable to vary the arrangement of the system
as and when the processing task being undertaken changes.

For the Alchemist IP the head-node arrangement was chosen
by the author. The key factors in the decision included:

• The requirement that the clustering needed to fit into the
existing code base. Most of the application code runs on
the head node, with the processor intensive frame-rate
converter being clustered across the other nodes.
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• Only a small part of the system was being clustered, so
we can afford to rewrite that part of the system to be as
close to a share-nothing cluster as possible.

• The algorithm being clustered was very processor inten-
sive, so the head-node bottleneck was not an issue.

IV. I MPLEMENTING THE CLUSTER ARCHITECTURE

D e c o d e
E n c o d e

C o n v e r t

Figure 7. A clustered Alchemist IP with the main applicationrunning on the
head node and the frame-rate conversion running on the rest of the cluster.
This figure is a combination of the dataflow from Figure 1 and the cluster
architecture from Figure 4.

The dataflow of video through the clustered Alchemist IP
software has the decoding, splitting, joining and encodingall
on the head node and the frame-rate conversion is performed
on the rest of the nodes (see Figure 7). Uncompressed video
is carried between the head node and the rest of the cluster.
This decouples the frame-rate converter from the various I/O
formats handled by the Alchemist IP product and allows
the bulk of the application to live on the head node, while
distributing the processor intensive part.

To implement clustering in the existing code base some
new code was required to split the given video sequence into
chunks, send the chunks to multiple frame-rate converters and
join the output into the final output sequence.

I n p u t Sp l i t J o i n O u t p u t

B u f f e r B u f f e rC o n v e r t

S o c k e t
I n t e r f a c e

S o c k e t
I n t e r f a c e

C o n n e c t i o n

Q u e u e

C o n n e c t i o n

C o n n e c t i o n

C o n n e c t i o n

C o n n e c t i o n

Figure 8. Cluster data-flow diagram. This diagram shows how the splitting
and joining code utilised a shared queue of active connections to ensure the
output data was produced in the correct temporal order. A newConnection
was created for each chunk the video sequence was split up into.

The Connection class handles the connection to the frame-
rate converter and the buffering. When splitting the given video

sequence into chunks each chunk was buffered and fed to a
frame-rate converter using an instance of the Connection class.
The results were buffered so they could be correctly sequenced
into the output. Each instance of the Connection class handled
one chunk of the input sequence. Figure 8 shows how the
processing and queuing worked to keep the output data in the
correct order.

Buffering was required in the Connection class for several
reasons. The clustering code had data delivered to it and
did not have control over the source of the data (i.e. the
code was not able to seek through a file). So, in order to
allow parallel operations, the data had to be buffered (either
to memory or disk) before it was sent to the algorithm for
processing. As the clustering code had to produce a single,
temporally-contiguous, output, the output from each converter
had to be buffered until all the results were read out of the
previous Connection. The amount of buffering required caused
clustering to be a memory intensive task for the head node.
The buffering could have been reduced, but this would have
required a significant redesign of the existing system.

V. V IDEO SEQUENCESPLITTING

N o d e  1

N o d e  2

N o d e  3

Figure 9. Splitting a sequence into 4-frame chunks to send tovarious
processing nodes. Each grey line is a frame in the input videosequence.
The dotted lines show the overlapping frames sent to multiple nodes (pre-roll
and post-roll).

The input video sequence was split into chunks as shown in
Figure 9. The number of frames in each chunk could be varied
to optimise the utilisation of the cluster. In order to maintain
the quality of the output from the frame-rate converter, it
was necessary to send extra frames of video before and after
each chunk, known as pre-roll and post-roll. These overlapping
frames helped to overcome the temporal nature of the frame-
rate converter’s algorithm. The frame-rate converter’s pre-roll
and post-roll sizes were determined through algorithm analysis
and a set of tests to be two frames of pre-roll and one frame
of post-roll. The Peak Signal to Noise Ratio (PSNR) tests
described in Section VI-C checked whether the quality of the
video was being maintained when using the clustering code.
The technique described above for spreading the work among
the nodes is very different to traditional clustering techniques
for image and video processing[5], [6], [7], [8], [9]. This is
because the frame-rate conversion algorithm requires more
than one frame of data and cannot be segmented spatially.

VI. EXPERIMENTS

Several experiments were carried out on the newly clustered
Alchemist IP application. These included experiments to de-
termine the number of frames per chunk to use, to determine
how the clustered application behaved on a multi-core machine
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and to check the clustering was not affecting the output picture
quality of the application.

A. Frames per Chunk Experiment

The number of frames per chunk was a significant parameter
to the clustering of this application. Ideally the system should
be setup to use the smallest number of frames per chunk that
does not excessively impinge on performance. These tests were
designed to find the optimum number of frames per chunk.
The 60Hz to 50Hz tests were run on a 10 machine cluster
and the 50Hz to 60Hz tests were run on the same cluster
using only 7 machines. The tests used 5000 frames per input
sequence. The author tested both 50Hz to 60Hz and 60Hz to
50Hz conversions to determine whether there was any benefit
in making the number of frames per chunk equal to the input
or output frame rate.

As the graph in Figure 10 shows, beyond 30 to 40 frames
per chunk, performance is almost flat and then beyond 70
frames per second the processing time starts to rise. The rise
in processing time and variation in processing time, above
70 frames per chunk, was probably due to the increasing
memory usage on the head node. The graph shows that a 20-
30% performance improvement was achieved by choosing the
optimum number of frames per chunk. The graph also shows
that the optimum number of frames per chunk was not affected
by the input and output frame-rate.

Alchemist IP: Frames per Chunk vs. Processing Time
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Figure 10. How job time varied with frames per chunk for two common
frame-rate conversions. The results demonstrate that beyond 30 frames per
chunk the returns in increased performance diminished and above 70 frames
per chunk processing time increased significantly.

B. Multi-core Experiments

The effect of Moore’s Law on processor manufacturers
has moved from increasing clock speeds to increasing the
number of processor cores per chip. This means that the same
techniques for distributing processing across machines, can be
applied to speeding up the application on a single machine.
An experiment was undertaken to test how the clustering
code performed on a single machine with multiple cores. The
experiment used a 5000 frame sequence, varied the number of
nodes used (all nodes were run on the local machine) from 1 to

6 and varied the frames per chunk from 10 to 90 frames. Each
test run was repeated 3 times to determine the average and
variability of the results. This experiment was run on a dual-
processor, dual-core machine (giving a total of four cores).

Multi-Core Machine Tests - Number of Nodes vs. Processing Time
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Figure 11. How the number of nodes affected processing time when running
on a four-core machine. The apparent variance in the measurements is because
the frames per chunk was varied for each number of nodes (see Figure 12).
The graph shows a distinct leveling-off in processing time when the number
of nodes was one less than the number of cores in the machine. A2.2 times
speed-up was achieved, going from 0.3 frames per second to 0.8 frames per
second.

Multi-Core Machine Test - Frames per Chunk vs. Processing Time
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Figure 12. How varying the frames per chunk affected the processing time
when running the clustered Alchemist IP on a single four-core machine. The
processing time is displayed as a percentage increase from the minimum
processing time for that particular number of nodes. The graph shows that
system performance increased with frames per chunk, but that there were
diminishing returns going beyond 50 to 60 frames per chunk.

Figure 11 shows the speed-up that occurred as more nodes
were used on the multi-core machine. The graph shows that the
performance leveled out as the number of nodes was one less
than the number of cores in the machine. This result makes
sense as one of the cores was being used for IO, decoding and
encoding. Figure 12 shows how varying the frames per chunk
sent to each node affected the job time. The graph shows that
the overall trend was independent of the number of nodes and
that there were diminishing returns over 50 to 60 frames per
chunk. Looking at the results, the variation among the repeats
was under 1%, which can be regarded as insignificant.
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C. Checking output quality

To check that the clustering did not affect the quality of
the result, a test was devised to run both the clustered and
unclustered versions of the Alchemist IP and take a PSNR
measurement between the two outputs (using the unclustered
output as ground truth). PSNR was chosen as it was simple,
quick to implement and widely used. The PSNR calculation
used the following equations:

PSNR= −10log10(MSE)

MSE=

〈

(p−q)2
〉acrossthewhole picture

2552

p= 8−bit luminancevalue f or pixel f romground truth picture

q = 8−bit luminancevalue f or pixel f romcomparison picture

〈PSNR〉= −10log10〈MSE〉

Testing with a sequence of 100 frames, using 10 frames
per chunk and 3 servers the measured PSNR in the luminance
channel was 123dB over 239 output frames (100 input frames
create 239 output frames when converting from 50i to 59.94p).
Looking in more depth at the output, only one frame was
different between the clustered and unclustered outputs and
that was only a few pixels with slightly different values. The
test was repeated with a couple of longer sequences, which
were chosen as they were difficult sequences to standards
convert. The results were:

• Average PSNR for the sequence was 78dB over 359
output frames.

• Average PSNR for the sequence was 89dB over 2035
output frames.

The resulting output was inspected and only in a few cases
were the differences in the frames visible (see Figure 13). In
these cases the differences were determined to be inconsequen-
tial and were orders of magnitude below the artifacts produced
by frame-rate conversion. In conclusion the clustering had
almost no perceivable effect on the resultant pictures.

VII. F UTURE WORK

There are several follow-on investigations which may be
undertaken. These include:

• Incorporating mezzanine compression between the head-
node and the processing nodes to reduce the network
bottle-neck. This is anticipated to become important when
the system starts to be used to process high-definition
video.

• Investigating various techniques for load-balancing the
system when using heterogeneous nodes.

• Developing a cluster architecture expert system to imple-
ment all the various architectures described in Section III.
The system would choose the best achievable architecture
for the current job.

Figure 13. Worst-case difference between the unclustered and clustered
outputs of the Alchemist IP. The picture above highlights the section of the
output frame with the most visible artifact caused by clustering. The highlight
on the left is from the unclustered output, while the highlight on the right is
from the clustered output. The main visible difference is the grey vertical line
in the middle. In the unclustered version the line is straight, in the clustered
version the line is slightly staggered to the right.

VIII. C ONCLUSIONS

Different clustering architectures and how they apply to
different system configurations were investigated. A head-node
architecture was implemented. Experiments on that architec-
ture determined that significant speed-ups can be achieved
by using a simple head-node architecture. The experiments
determined that the number of frames per chunk affects the
processing time by up to 10% and on a multi-core machine
the number of nodes used should be one less than the number
of cores. Speed-ups on the multi-core machine were achieved
with no modifications to the application code. In a real-world
application, the clustered Alchemist IP was slightly more than
three times faster than the unclustered version on an eight-core
machine.

The author’s main recommendation for implementing al-
gorithms which will scale across the available cores and
machines is to make the processing occur in a single thread,
and let the system architecture deal with the variability inthe
number of cores and machines.
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ABSTRACT
This paper describes a technique for automated dynamic structural-
level pipelining of programs targeting dynamically reconfigurable
processors with very short reconfiguration times. These architec-
tures are particularly suited to streaming applications, whose pri-
mary market are low-cost, high-volume consumer products such
as the image signal processor for digital cameras in modern mo-
bile phones. These reconfigurable processors open up the ability
for vendors to differentiate their products by providing their own
algorithms. To minimise area (and thus cost), it is important that
vendors have the ability to tailor the resources of the core to their
needs. Therefore, the process of application development is that of
hardware/software co-design. As part of a high-level software tool
chain, we present an optimisation technique that can be added to the
compiler to significantly improve the throughput of applications, by
pipelining tight loops (kernels) which perform the majority of the
work in streaming applications. This allows more complex algo-
rithms to be deployed whilst still meeting the available timing bud-
get. The timing constraint is determined automatically, in a manner
which maximises throughput within a given resource budget.

1. INTRODUCTION
The choice of platform for many modern digital signal processing
tasks in embedded systems is often limited to application-specific
integrated circuits (ASICs), since off-the-shelf programmable ar-
chitectures such as DSPs and microprocessors cannot meet the th-
roughput requirements, whereas reconfigurable hardware such as
field-programmable gate arrays (FPGAs) require too much area
and power. However, for applications that demand an element
of reprogrammability, streaming processors (such as those offered
by Ambric [1] and SPI [2]) are becoming an increasingly attrac-
tive solution, which improve on throughput by providing multiple
processing elements/cores with an interconnect structure suited to
streaming. However, these processing elements—usually based on
regular DSP designs—often equate to significant silicon area. Al-
ternatively, coarse-grained dynamicaly reconfigurable architectures
(DRAs) offer a high degree of parallelism, sufficient to achieve
high throughput [3][4]. Thus fewer cores are required for a given
application, leading to a much lower area overhead. These coarse-

grained architectures, if given the ability to control their own recon-
figuration, can be reconfigured very rapidly (e.g. millions of times
per second), in order to achieve control flow similar to a regular mi-
croprocessor. This paper focuses on maximising the performance
of programs running on a single core. However, the techniques can
be directly applied to programs running on additional cores in a
complete streaming application.

Coarse-grained DRAs, such as instruction cell based processors
[5][6], provide a high degree of instruction chaining inside the core,
by allowing arbitrary connections to be made between the various
functional units via a configurable routing network. This allows
quite complex data paths to be rendered onto the fabric and ex-
ecuted in a single configuration. This makes these architectures
particularly suitable to stream processing, as fewer fetches from
program memory are required. Performance is optimised by at-
tempting to match the size of each kernel (inner loops where most
of the execution time is spent) to the available resources, allowing
them to fit into a single configuration context. This allows the con-
figuration to persist for many clock cycles, operating on new data
on each cycle. This increases throughput, since no time is spent
having to reconfigure the core between successive iterations. It
also decreases power consumption, as the configuration only needs
to be fetched from program memory (or cache) once—upon first
entering the kernel—rather than on every iteration. However, the
resulting data paths can often have a long critical path, leading to
poor temporal utilisation of the functional units, since they have to
wait until all functional units have completed before operating on
the next batch of data, which limits the throughput.

Pipelining provides a way of starting to operate on a new batch
of data before an old one has completed. Thus, this allows the
functional units of multiple stages of the kernel to be active con-
currently; each operating on a different batch of data. Others have
devised loop pipelining techniques for reconfigurable architectures
[7, 8, 9], where successive iterations of the loop are replicated in
hardware, and offset from each other to deal with any data de-
pendencies between the iterations. These are most suitable for
large reconfigurable architectures with much longer reconfigura-
tion times, where there are sufficient resources for the entire loop
body to be replicated many times. This paper elaborates on and
extends work in a previous paper where structural-level pipelin-
ing techniques were shown to be applicable via software to rapidly
reconfigurable/programmable architectures supporting operation-
chaining. The technique allows complete kernels that were mapped
to a single configuration context, to have their critical path length
decreased by the addition of pipeline stage registers. Pipeline fill-
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ing and flushing are achieved through dynamic reconfiguration.

The contribution in this work is the ability to automate the tasks of
identifying configuration contexts which could benefit from pipelin-
ing, and choice of critical path constraint. In particular, in order
to reduce power in the target architectures, the master clock fre-
quency is kept as low as possible. Configuration contexts are al-
lowed to persist for multiple clock cycles, until their critical path
has completed. Pipelining reduces the critical path, so as a result,
the quantisation introduced by the master clock frequency affects
pipelined contexts more. Therefore, it is important to minimise the
wasted time between the critical path stabilising and the next mas-
ter clock cycle. The automatic pipelining algorithm demonstrated
here attempts to do this.

Section 2 reviews existing pipelining techniques, and relevant soft-
ware optimisation techniques. Section 3.1 describes an algorithm
to perform pipeline stage allocation, and section 3.2 shows how
properties of dynamic reconfiguration can be used to fill and flush
the resulting pipeline. Section 3.3 details how the task can be com-
pletely automated. Section 4 shows the result of applying this tech-
nique to a real-life kernel used in image processing.

2. PREVIOUS WORK
For architectures that support instruction chaining, scheduling in-
volves mapping as many dependent and independent data paths into
as few configuration contexts as possible [10]. Independent data
paths run in parallel, so the time for which a configuration persists
is determined by the maximum critical path length of these data
paths. If sufficient functional unit resources are available, loops
can be optimised by loop unrolling [11]—i.e. placing multiple it-
erations as independent data paths in the same configuration. This
allows multiple iterations to begin and end at once. This does not
change the original critical path length, yet can increase the throu-
ghput. The throughput is determined by the critical path length of
a loop iteration and the number of iterations that can be performed
at once. During each execution of the loop configuration context,
data propagates through the operation chains until the final result is
ready. This means that the functional units involved in that chain
are only performing useful work for a fraction of the time. This is
where structural-level pipelining of these data paths comes in—to
artificially reduce the critical path length by allowing new iterations
to begin without waiting for the completion of previous iterations.

Various approaches of pipelining data paths have been proposed
[12]. These require that the designer specifies a throughput con-
straint, in order to allow the algorithm to best make the choice be-
tween throughput and the area overhead each pipeline stage intro-
duces. These approaches describe various algorithms for the task
of pipeline stage allocation, applied to a number of different lev-
els in a design. On reconfigurable architectures such as FPGAs,
custom pipelines can be rendered as part of the configuration, lead-
ing to significant increases in throughput [13]. The previous work
on dynamically pipelining DRAs [14] proposed a technique where
pipelining would be performed based on a critical path constraint
provided by the application developer. The work here elaborates
on this technique, and looks into more detail on the real-life perfor-
mance. Extensions are proposed to automate the choice of critical
path constraint, and to maximise the real-life throughput.

3. DYNAMIC PIPELINING
Conventional structural-level pipelining can be applied to single
configuration context kernels with long critical data paths, in or-

der to reduce the critical path, and thus increase throughput. This
is done as part of the configuration—i.e. pipelines tailored to the
particular kernel are rendered onto the core at runtime. This is done
using existing register resources in the core to delay values for a sin-
gle execution cycle, allowing values to be bridged across pipeline
stage boundaries.

Structural pipelining is applied to the kernel basic block by first as-
signing each operation in the original data flow graph to a pipeline
stage. Then, registers are introduced to store values over bound-
aries between pipeline stages. Only those values that are used in
later pipeline stages are stored. A new register is needed for each
value for each pipeline stage boundary over which it must persist.
Figure 1 shows an example kernel before and after structural-level
pipelining. The example includes only simple feedback chains con-
sisting of a simple increment of the value of a register, however
more complex feedback chains are also possible.

3.1 Pipeline stage allocation
First, constraints are defined between operations, where the order
of execution is important. Examples include ‘same stage or earlier’
constraints between operations reading from input registers and op-
erations that have those same registers marked as global output reg-
isters, and ‘same stage or earlier’ constraints between data memory
read operations and potentially aliasing data memory write oper-
ations. All operations in a feedback chain must be placed in the
same pipeline stage, since such chains require single-step total la-
tency in order to keep the pipeline full. The algorithm for assigning
pipeline stages to each operation is as follows:

• Identify the ‘jump’ operation, and all of its dependencies. Save
this in a set—the ‘jump chain’ set.

• Create the ‘remaining’ set—a record of those operations yet to
be assigned to a pipeline stage. This is initially populated with
all the operations except for those in the ‘jump chain’ set.

• Define the constraints:
– Add ‘same stage or earlier’ constraints between operations

reading from input registers, and operations that have those
same registers marked as global output registers.

– Add ‘same stage or earlier’ constraints between data memory
read operations and potentially aliasing data memory write
operations.

– Add ‘same stage or earlier’ constraints between volatile op-
erations of the same kind, to ensure that they still appear in
their original order.

• Detect feedback chains:
– Identify all the operations that are part of each feedback chain,

and record them in a set for each chain. These shall be re-
ferred to as the ‘feedback’ sets. No operation in a feedback
set may be assigned to a pipeline stage until all the operations
in that set are ready to be assigned.

• Create an ordered list of pipeline stages, initially consisting of a
single entry. Each entry contains the set of operations that have
been assigned to that pipeline stage.

• For each operation in the ‘remaining’ set:
– Create a temporary set containing this operation and any op-

erations in the same ‘feedback’ set (if one exists).
– Determine whether any of the operations in the temporary set

have any successors that are also in the ‘remaining’ set. If
they do, then the temporary set is not ready, so discard it and
move on to the next operation in the ‘remaining’ set.
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1: Example kernel data flow graph, (a) before pipelining, (b) after pipelining (kernel loop context). The inserted pipeline stage

registers are shown in red. The per-cycle critical path is shown in bold, and is shorter in (b), which allows for a higher throughput.

– Determine whether any constraints involving the operations
in the temporary set involve operations that are also in the ‘re-
maining’ set. If they do, then the temporary set is not ready,
so discard it and move on to the next operation in the ‘remain-
ing’ set.

– Identify the latest pipeline stage where all the operations in
the temporary set could be placed, according to their depen-
dencies and constraints.

– Construct a configuration context containing all the pipeline
stages constructed thus far, and calculate its critical path delay
(including the reading from and writing to pipeline registers).

– Speculatively construct a configuration context containing all
the pipeline stages constructed thus far, including the opera-
tions from the temporary set, placed in the previously identi-
fied pipeline stage. Calculate its critical path delay.

– If the critical path delay is different (i.e. increased), and the
new delay exceeds the target, then move to the preceding
pipeline stage (creating a new pipeline stage at the beginning
of the list, if the chosen stage was the first in the list).

– Transfer the operations from the temporary set to the iden-
tified pipeline stage, and remove them from the ‘remaining’
set.

– Loop whilst the ‘remaining’ set is not empty.

• Add the operations from the ‘jump chain’ set to the first pipeline
stage.

The algorithm is a form of list scheduling. Only operations whose
predecessors (in the data path) have already been assigned a pipeline
stage may be considered for insertion on each pass. In order to
minimise the register count, operations should be placed in as late
a pipeline stage as possible. Operations that must be placed in the
same stage are dealt with together. Operations are considered for
placement in the latest pipeline stage containing any of their prede-
cessors. Then, the insertion point is moved towards later pipeline
stages until all constraints have been satisfied. Once a valid inser-
tion point has been identified, the critical path is calculated for the
resulting (incomplete) configuration context with the operation in

that pipeline stage. If the critical path meets the target value, the
operation is placed in that pipeline stage. Otherwise, the operation
is added to the next pipeline stage (creating it if it does not exist).

The creation of dependencies ensures that the sequence of state
changes is maintained, thus ensuring correct results. Assigning op-
erations to a late a pipeline stage as possible aids to reduce the
number of registers required. Once the pipeline stages have been
determined, pipeline stage registers are assigned as follows:

• For each pipeline stage in sequence:
– Assign a new register storing the value produced by each op-

eration in all previous pipeline stages that needs to be stored
for use in this or any later stage.

3.2 Dynamic initialisation and clean-up
Normally, a pipelined design would require additional logic to take
care of initialising the pipeline stages, or to suppress the opera-
tions in later pipeline stages until the previous stages have filled
(predication), so that they do not operate on garbage. However,
the pipelines in a coarse-grained DRA are themselves rendered as
part of the configuration context. Provided that the configuration
time is not significantly larger than the execution time of each step,
dynamic reconfiguration can be used to render different configura-
tions before the main kernel loop configuration, to fill successive
stages of the pipeline, and similarly to flush the pipeline after ex-
iting the kernel loop. This allows the kernel loop configuration to
assume that the pipeline stages are always full. This provides a
generic, purely software alternative to predication, which can be
used as a fall-back when no hardware support exists.

Prologue: New configuration contexts are created to initially fill
each successive stage of the pipeline. For n pipeline stages,
n− 1 pipeline filling contexts are created.

Loop: A single configuration context is created for the kernel
loop, which includes all pipeline stages.
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Epilogue: New configuration contexts are created to flush suc-
cessive stages of the pipeline. For n pipeline stages, n − 1
pipeline flushing contexts are created.

The core is dynamically reconfigured to first perform pipeline ini-
tialisation, then reconfigured to execute the kernel loop, then finally
reconfigured to flush the pipeline—as demonstrated in figure 2.
This is similar to the epilogue and prologue in software pipelining
[15].

S1 S1

S2

S1

S2

S3

S2

S3 S3

Kernel
Loop

Flush
Stage 1

Flush
Stage 2

Fill
Stage 1

Fill
Stages
1 and 2

Context:

Control
Flow:

Active
Pipeline
Stages:

or

2: Control flow for a 3-stage pipelined kernel, showing which
stages are active in each context (and moment in time). Exe-
cution flows from one context to the next, except in the kernel
loop, which loops back to itself (holding the same context) until
the end condition is satisfied.

3: Expanded control flow for the pipeline shown in figure 2 for
(a) 3, and (b) 6 iterations. The point at which the loop termi-
nation condition should evaluate to true is shown by a dotted
box. It can be seen in both cases that only the first stage has
executed for the desired number of iterations by this point.

The configuration contexts generated for the kernel example from
figure 1 is shown in figure 4. The use of separate special-purpose
configurations alleviates the need for special logic for this purpose
in the kernel loop configuration context, keeping its size down, and
thus not compromising the potential parallelism in the core.

Figure 2 shows which stages of the pipeline are active during exe-
cution for a 3-stage pipeline. As the target architectures may not be
state free (e.g. memory access), it is important to not allow any op-
eration in any pipeline stage to operate on garbage, and to preserve
the execution count. With the arrangement shown in the figure, all
pipeline stages will be executed the same number of times irrespec-
tive of the number of iterations performed in the kernel loop.

4: The sequence of configuration contexts created for the ex-
ample kernel, (a) iteration 1—filling pipeline stage 1, (b) itera-
tion 2—filling pipeline stages 1 and 2, (c) iterations 3 to n−2—
pipeline full (loop), (d) iteration n− 1—flushing pipeline stage
1, (e) iteration n—flushing pipeline stage 2.

Now consider the original kernel, where the ‘jump’ operation causes
the loop to terminate after n iterations. In the pipelined kernel, we
must ensure that the kernel loop terminates after n executions of
the operations that calculate the loop termination condition; other-
wise, the operations or operands would need to be modified to yield
a different iteration count. Looking at figure 2, the minimum num-
ber of iterations possible in the pipelined design occurs when the
kernel loop context executes only once. This corresponds to an it-
eration count equal to the number of pipeline stages (in this case 3).
In order for the loop to terminate immediately, the operations that
determine the loop termination condition must have been executed
this number of times by the time the kernel loop context has been
executed. This can only be achieved by placing these operations
in the first pipeline stage. The same argument also applies for any
higher iteration count. Figure 3 shows two examples, to highlight
this point.

Placing the ‘jump’ in the first pipeline stage therefore requires that
all of its dependencies are also placed in the first pipeline stage.
Since the pipeline filling contexts (prologue) should always be ex-
ecuted in sequence (with no branching), the ‘jump’ operation is
omitted from these contexts, even though it is in a pipeline stage
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active in those contexts. Its dependencies are left in place, since
their side effects are important—e.g. they could update the itera-
tion counter whose value is used to determine the loop termination
condition.

3.3 Automating the choice of timing constraint

5: Idle time resulting from the master clock. The shorter
the critical path of the kernel, the more effect this has. This
particularly affects pipelined kernels.

The arbitrary operation chaining supported by the target architec-
tures leads to a great variation in critical path length in different
configuration contexts, as paths can be constructed involving long
chains of a varying number of cells, and each type of cell has a dif-
ferent combinatorial delay. Ideally, each iteration of the configura-
tion context should be allowed to persist for the time required for
the results to stabilise on the operation(s) that lie at the end of the
critical path. In order to avoid the overhead of asynchronous logic,
a master clock is normally used instead, and the iteration ends on
the next master clock cycle after the last results have stabilised, as
can be seen in figure 5. To minimise the resulting idle time between
these two events, it is desirable to minimise the period of the master
clock. However, high clock frequencies come at the cost of power
consumption and area. Therefore, a suitable compromise has to be
made.

Since pipelining reduces the critical path length of each iteration of
the kernel loop configuration context, the quantisation introduced
by the master clock frequency affects pipelined contexts more. There-
fore, it is important to minimise the wasted time between the crit-
ical path stabilising and the next master clock cycle. This fact is
used to aid the automatic choice of the timing constraint.

The timing constraint is initially chosen to be the minimum possi-
ble critical path length that a pipeline stage can consist of. This is
determined by the length of certain data paths that cannot be split
across pipeline stages. These include the jump condition logic de-
termining when to finish the loop, and feedback loops that update
a register or memory location (where that register or memory lo-
cation is both read from and written to in the same kernel). The
one with the longest critical path length is selected, and the value
rounded up to the next integer multiple of the master clock period.

Then, pipeline stage allocation is performed using this critical path
constraint. If a valid pipeline could be constructed, register allo-
cation is performed. If there are sufficient registers available, then
this pipeline geometry is used, since it will result in the highest pos-
sible iteration rate. Otherwise, the timing constraint is incremented

by one master clock period, and the process continues. A natural
end point exists where this value reaches the critical path of the
non-pipelined kernel. If reached, the context is left non-pipelined.

For completely automatic pipelining, feedback-directed optimisa-
tion is used. The program is first executed in a simulator prior to
pipelining, and profiling information is fed back into the compiler.
Basic blocks that loop to themselves are identified, and where suf-
ficient resources exist in the core to map the entire block into one
configuration context, these are potential candidates for pipelining.
The number of consecutive iterations of each candidate is deter-
mined through the profiling results. The minimum consecutive it-
erations for a kernel defines the maximum depth to which it can be
pipelined: the pipeline depth must not be less than the minimum
execution count. This is used as a test during each iteration of the
timing constraint selection algorithm, where a potential pipeline is
checked for its depth not exceeding the minimum iteration count. If
it does, then the geometry is considered invalid, and the algorithm
continues with a larger timing constraint. To take into account the
cost of loading the new configurations from memory, the minimum
iteration count value is artificially reduced by an arbitrary count, to
weigh the algorithm in favour of only pipelining loops with signif-
icant iteration counts.

4. APPLICATION TO STREAMING
The algorithm described in this paper was applied to two real-
life applications: a 7-line Hamilton demosaic filter [16], and a
multiplication-based iterative software division algorithm. The de-
mosaic involves interpolating missing colour components from the
Bayer output of a colour filter array sensor. Division on a per-pixel
level is used as part of many commercial noise reduction filters.
Both are high-throughput tasks normally done on-chip as part of a
custom image signal processing (ISP) pipeline, used in modern dig-
ital cameras and mobile phones. Both kernels were implemented on
a reconfigurable instruction cell-based processor [5] (180nm timing
figures), using the C language. Software optimisation techniques
were used to reduce the main kernel in each case into a basic block
small enough to fit onto the target architecture in a single configu-
ration context. Both example kernels produce a single output pixel
per iteration.

The performance of the pipelining for both cases is shown in fig-
ure 6, and some additional details are given for the Hamilton de-
mosaic in table 1.

The main trend to notice is the ability for the maximum achievable
iteration rate (after pipelining) to generally increase as the master
clock frequency is increased. Since the same underlying data path
is used in each case, the non-pipelined critical path length is con-
stant. The iteration time of the non-pipelined data paths is just the
critical path length rounded up to the next integer multiple of the
master clock period. As the master clock period is decreased, the
algorithm is able to produce a pipeline with a critical path closer to
the theoretical minimum (as dictated by the indivisible data paths
such as feedback loops, and the jump condition chain). However,
the number of pipeline stages required to do this increases in a
faster than linear fashion. This is due to quantisation: the error be-
tween the time taken for each data path fragment in each pipeline
stage to complete and the closest integer multiple of the master
clock frequency. As the pipeline stages get shorter, the relative
size of the indivisible units being pipelined (i.e. the internal delays
of each cell and section of interconnect) increases compared to the
resolution of the master clock. The algorithm does well in minimis-
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Master clock period (ns) 20.0 15.0 10.0 5.0 3.0 2.0 1.0
Pipeline stages 5 7 5 7 9 9 11
Pipeline stage registers 80 123 80 123 153 153 189

Min. possible constraint (ns) 10.95 10.95 10.95 10.95 10.95 10.95 10.95

Non-pipelined critical path (ns) 77.0 77.0 77.0 77.0 77.0 77.0 77.0
Pipelined critical path (ns) 19.8 14.65 19.8 14.65 11.55 11.55 11.00
Improvement in critical path 389% 526% 389% 526% 667% 667% 700%

Non-pipelined iteration time (ns) 80.0 90.0 80.0 80.0 78.0 78.0 77.0
Pipelined iteration time (ns) 20.0 15.0 20.0 15.0 12.0 12.0 11.0
Improvement in iteration time 400% 600% 400% 533% 650% 650% 636%
Pipelined throughput (MPixels/s) 50.0 66.6 50.0 66.6 83.3 83.3 90.9

1: Performance of the demosaic filter kernel before and after automatic pipelining, over a range of master clock periods. See
section 4 for an explanation of the results.

6: Throughput before and after automatic pipelining, over a range of master clock periods, for two pixel-level code examples:
Hamilton demosaic and iterative software division. The theoretical line shows what could be achieved if the master clock were of
infinite frequency, based on the longest indivisible critical path (the iteration control logic in both of these cases).

ing this effect, and the percentage improvements with and without
the effect of the master clock are relatively close in all cases.

The pipeline geometries contructed for each master clock frequency
setting are shown in figure 7. Both examples show identical post-
pipelining throughput (iteration rate), as both cases have the same
longest indivisible critical path—corresponding to the iteration con-
trol (jump) logic (shown by the theoretical line in figure 6). There
are no data dependencies or other constraints limiting the potential
for pipelining in either example. If data dependencies, feedback
loops, or other constraints were present, these would be reflected by
a larger indivisible critical path. The shorter the indivisible critical
path, the more important the behaviour of the automatic pipelining
algorithm.

The resource-saving effect of the algorithm can be seen to come
into effect each time the current integer multiple of the master clock
frequency drops below the indivisible critical path length. This
makes the iteration rate curve appear to wrap around each time it
tries to cross the theoretical maximum iteration rate line. By ex-
tending the length of the pipeline stages up to the next master clock
period, the number of registers is minimised, which avoids need-
less congestion on the interconnect. The reduction in the number

of pipeline stages reduces the configuration size and the latency,
since fewer filling and flushing iterations need to be performed.

5. CONCLUSIONS
This work proposed an algorithm for automatically applying dy-
namic structural-level pipelining to single configuration context ker-
nels running on dynamically reconfigurable arrays (DRAs). The
technique is a form of feedback directed optimisation, where pro-
filing information (consecutive execution counts) are used to deter-
mine which kernels will benefit from pipelining. Candidates with
very low consecutive execution counts must not be pipelined too
deeply. This is to ensure that the additional latency of pipeline
filling and flushing is more than nullified by the decrease in total
execution time for the pipelined kernel loop when the pipeline is
full. This is only possible when the minimum possible iteration
count is known. This is the case for pixel-level kernels in the ISP
application domain, as the iteration count is typically the line size
of the image.

An iterative approach is used to form an efficient pipeline, where
the timing constraint is automatically chosen to be an integer mul-
tiple of the master clock frequency. The timing constraint is incre-
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7: Pipeline geometry from automatic pipelining, over a range of master clock periods, for two pixel-level code examples: Hamilton
demosaic and iterative software division.

mented until a valid pipeline can be constructed without encoun-
tering register starvation. The range of possible pipeline geome-
tries is controlled by the availability of registers. Architectures
with distributed registers will offer the best results, otherwise the
bandwidth of the interface and/or additional combinatorial delays
introduced by routing to and from a register file would likely out-
weigh any benefit. This makes the case for registers to be made
available in the interconnect itself.

The algorithm was applied to a demosaic kernel of modest com-
plexity and to a software division algorithm, leading to the possi-
bility to pipeline to a significant depth. A performance increase
of up to 7 times can be obtained for the demosaic example, and
nearly 10 times for the division. As the pipeline gets deeper, the
cost—in terms of register requirement and storage for pipeline fill-
ing and flushing contexts—increases more than linearly. As the
critical path of the pipelined kernel gets smaller, the quantisation
of the iteration rate caused by the master clock, gets increasingly
worse. Inside the bounds of this quantisation, reducing the pipeline
critical path (by increasing the number of pipeline stages) has no ef-
fect on the iteration rate. In these situations, extra resources would
be introduced for no benefit. To avoid this, the proposed algo-
rithm relaxes the critical path to take into account this quantisation,
thus minimising the resource requirements for a given physically
achievable iteration rate.
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Abstract 
 
This paper presents the design and implementation of 
an efficient shape analysis engine on FPGAs. The 
engine implements the necessary front-end image 
processing operations for shape analysis, namely: image 
segmentation, object labelling and counting, and 
outputs the results in the form of objects with different 
labels or grey scale levels attached to each object. These 
can then be further processed to generate various shape-
specific measures such as area, perimeter, skeletons and 
moments. This is illustrated in this paper in the 
calculation of object compactness, defined as the ratio 
of an object area to the square of its perimeter length. 
The paper gives the details of the algorithms used as 
well as their efficient hardware implementation, and 
shows that the resulting implementations on Xilinx 
Virtex-II FPGAs can easily process video images in real 
time.  
 
1. Introduction 
 
2D shape analysis provides an important mean for 
object recognition and location in digital images [1]. 
Indeed, 2D shapes represent a unique characteristic of 
many kinds of objects ranging from keys to spanners 
and fingerprints to chromosomes. The aim of any shape 
analysis algorithm is thus to identify a number of 
measures, unique to a particular shape. These include 
area, perimeter, skeletons and moments [2]. However, 
before measuring such features, it is important to 
segment the input image (into foreground and 
background) and label all objects in the resulting binary 
image in order to process them separately. Figure 1 
presents a block diagram of these pre-requisite 
operations in a typical shape analysis system.  
 

 
Figure 1. Block diagram of a shape analysis system 

front-end 
 
As shown in Figure 1, the first operation on the input 
image is usually a threshold operation which separates 
the input image foreground from its background. The 
resulting image is usually binary i.e. it consists of only 

‘1’ or ‘0’ pixels, with 0’s representing pixels belonging 
to the background, and 1’s representing pixels 
belonging to image objects . After this, and in order to 
process different objects in the image separately, object 
labelling is performed [2]. The aim of this task is to 
allocate a unique pixel value (or label) to each 
connected component or object in the image. As a 
result, different objects can be processed separately 
according to their unique pixel value or label. This 
paper illustrates this back-end processing by measuring 
object compactness on the fly for all image objects. 
This is obtained by measuring each object area and 
perimeter and calculating object compactness, which is 
given by the following formula: 
 

Compactness = Area / (Perimeter)2 

 
The resulting shape analysis system is thus illustrated in 
Figure 2. The paper presents an efficient hardware 
implementation of this basic shape analysis system 
using Field Programmable Gates Arrays (FPGAs). The 
following sections will detail the design of the main 
operations involved in Figure 2, namely image 
labelling, perimeter counting and compactness 
measurement, respectively. Implementation results on a 
Xilinx Virtex-II FPGA are then given and discussed. 
Finally, future work and conclusions are drawn. 
 
2. Connected Component Labelling 
 
Connected Component Labelling (CCL) is an important 
task in intermediate image processing with a large 
number of applications [3][4]. The problem is to assign 
a unique label to each connected component in an 
image while ensuring a different label for each distinct 
object as illustrated in Figure 3.  Here, the input image 
is binary where 0 pixels refer to the background and 
non-zero pixels (1’s) represent object pixels. Assuming 
square-shaped pixels, two pixels are considered to be 
connected, and thus part of the same object, if they lie 
next to each other horizontally, vertically of diagonally. 
Each pixel thus has eight possible neighbours. Figure 
3.b presents the result of a CCL operation applied on 
the binary image of Figure 3.a. This assigns different 
labels (1, 2 and 3 in Figure 3.b) to each connected 
region or object. By assigning a unique label to each 
connected region, higher level image processing 
operations can identify, extract, and process each object 
separately.  
 

Threshold Labelling 

Object 1 

Object N 

Input 
Image 

Binary Image 
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Figure 2. Block diagram of a basic shape analysis system 

 
 

(a) Input Binary Image (16x16 pixels) (b) Labelled Image  
Figure 3. Connected Component Labelling: An example 

 
Early hardware implementations of CCL were based on 
massively parallel approaches as they allocated one PE 
for each image pixel [5][6][7], which required a great 
deal of logic. As a result, such implementations were 
limited in the size of the image which can be labelled at 
once (e.g. 32x32). More recent hardware 
implementations are based on a neighbourhood 
operation where the result pixel of each neighbourhood 
calculation is fed back to the input image in time for the 
next neighbourhood calculation [8][9]. The algorithm 
used in this paper has been proposed in [10]. It is based 
on a 5-pixel neighbourhood operation and needs two 
scans of the image data in order to generate a 
completely labelled image. The following presents the 
details of this algorithm. 
 
2.1 The CCL Algorithm 
 
The CCL algorithm used in this paper consists of three 
pipelined steps: 
• First Pass (Initial labelling): This step scans the 

original image applying a neighbourhood operation 
with the aim to assign the same label to connected 
pixels. However, this first step does not always 
succeed in assigning a single label to all object 
pixels due to possible object concavities, as will be 
illustrated below. As a result, and in order to link 
different labels which belong to the same object in 
a subsequent scan, a labels connection table is 
built in this step. The following step analyses this 
table.  

• Analysis of the Labels Connection Table (LCT): 
In this step, all label connections are analysed in 
view of generating a final label correspondence 
table, or Look-Up-Table. The latter is used in the 

final step (second pass) to assign a single label to 
each object in the image. 

• Second Pass (Final Re-labelling): This final step 
scans the intermediate image generated from the 
first pass, and uses the Look-Up-Table generated in 
the second step to assign a single label value to all 
pixels belonging to the same object in the image.  

 
The following explains these three steps in detail.  
 

2.1.1. First Pass (Initial Labelling) 
This step applies a ‘non-zero minimum’ neighbourhood 
operation on the image, using the template given in 
Figure 4.  
 

 

P1 

P2 P3 P4 

X 

 
Figure 4. First Pass neighbourhood template 

 
Scanning starts from the top left corner of the image 
and ends at the bottom right corner in a horizontal 
manner. Moreover, pixels outside the image boundaries 
are assumed to be background pixels i.e. 0’s.  During 
each neighbourhood operation, each result pixel is 
stored back in the original image in time for the next 
neighbourhood calculation. At each template position, 
the source image pixel X and its neighbourhood pixels 
P1, P2, P3, and P4 are analysed in order to generate the 
new label of the current pixel X (= LX). This analysis is 
summarised by the following pseudo-code: 
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 if (X==0)  then 
 // Here, X represents a background pixel, set result pixel to background i.e. 0 

LX=0; 
else 
 if (X!=0 and {Pi=0}i=1,2,3,4) then 

{ 
// Here, X represents a foreground pixel with background neighbours. This is a potential 
// new object: assign the next available label that is not used (Next_Label) to this pixel  
LX= Next_Label; 
Next_Label = Next_Label +1; 
// Then, save this label value in the Labels Connection Table (LCT)        
LCT(LX)=LX; 

} 
else 
   if (X!=0 and (P1!=0 or P2!=0 or P3!=0 or P4!=0)) then 

{ 
// Here, X represents a foreground pixel with at least one other foreground neighbour. In this 
// case, the result pixel should be the minimum of all non-zero pixels in the neighbourhood 
LX = NON_ZERO_MIN (P1, P2, P3, P4) 
// If P1, P2, P3 or P4 have a different label from LX (the result of the non-zero minimum 
// operation) then these pixels should be re-labelled in a subsequent step of the algorithm  
// (step 3). For this to be possible, the connection between existing labels and the new label 
// should be stored in the LCT table. It can be proven, however, that there is only one single  
// different label in {P1, P2, P3, P4} equal to Max(P1, P2, P3, P4), thus: 
LCT(MAX(P1, P2, P3, P4)) = LX 

} 
  

 

 
Figure 5 gives the result of the application of the above 
algorithm on the 16x16 binary image presented in 
Figure 3.a. Note that the first available label value (i.e. 
the initial value of Next_Label in the pseudo-code) is 
equal to 1. As can be seen, this pass does not assign a 
single label to all connected labels in an object. The 
following steps address this problem. But in order for 
this to be possible, this first step generates a Labels 
Connection Table (LCT) which captures the fact that 
some connected object pixels do not have the same 
pixel value or label, as a result of this first step. The 
latter captures this information by populating the LCT 
table with LCT[j]=i, where j is a label within the 
neighbourhood outlined in Figure 4, and i is the 
minimum value in the neighbourhood. If j>i then any 
pixel labelled as j in the intermediate image generated 
by this step will be re-labelled as i in the next step. The 
content of the LCT table generated for the image 
sample given in Figure 3.a is shown in Figure 5.   
 

 

LCT content: 
 
LCT[1] = 1 
LCT[2] = 1 
LCT[3] = 1 
LCT[4] = 4 
LCT[5] = 5 

 
Figure 5. Result image after the first pass of the CCL 

algorithm 
 

2.1.2. Analysis of the Labels Connection 
Table 

As mentioned above, in addition to an intermediate, 
often partially labelled image, the first step generates a 
Labels Connection Table where if j>i and LCT[j]=i, 
then label j should re-labelled as i. However, if label j is 
also connected to another label k (i.e. if k>j and 
LCT[k]=j) then k should not be replaced by j in the 
subsequent step, but rather by i. Such indirect 
connections can be of any length. Hence, it is necessary 
to update the content of the LCT before it can be used 
as a direct look-up table in the final step of the CCL 
algorithm. This consists in looping through the LCT 
table from i=0 to the maximum label used (Max_Label) 
and performing the following operation at each table 
position: 

i = LCT[ LCT[i] ] 
This will result in the elimination of some labels from 
the table. The remaining labels should thus be re-
labelled in order to form a monotonically increasing 
sequence. The last label value gives the number of 
objects in the image. 
The following pseudo-code summarises this second 
step:  
 

 // Initialise the next available label value to 1 
NEXT_Label = 1; 
 
for(i=0;i<=MAX_LABEL;i++) 
{ 
   If (TAB(i) != i)  
   {    
       // Here labels TAB(i) and i are connected, re-label TAB(i) 
//pixels as TAB(TAB(i)) pixels 
      TAB(i)=TAB(TAB(i)); 
   } 
  else 
  {    
     // Here labels TAB(i) = i, replace TAB(i) by the lowest available 
// label value 
     TAB(i)= NEXT_ Label;  
      NEXT_Label = NEXT_Label + 1; 
  } 
 

} 
Number_Of_Objects = NEXT_Label; 

 
Figure 6 below illustrates the results of this step on the 
LCT table given in Figure 5.  
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 LCT initial content: 
 
LCT[1] = 1 
LCT[2] = 1 
LCT[3] = 1 
LCT[4] = 4 
LCT[5] = 5 

NEXT_Label = 1 
LCT[1] == 1 => LCT[1] = 1 
NEXT_Label = NEXT_Label + 1 (=2) 
LCT[2] != 2 => LCT[2] = LCT[LCT[2]] = 1 
LCT[3] != 3 => LCT[3] = LCT[LCT[3]] = 1 
LCT[4] == 4 => LCT[4] = NEXT_Label (=2) 
NEXT_Label = NEXT_Label + 1 (=3) 
LCT[5] == 5 => LCT[5] = NEXT_Label (=3) 
 

Re-labelling algorithm 

LCT final content: 
 
LCT[1] = 1 
LCT[2] = 1 
LCT[3] = 1 
LCT[4] = 2 
LCT[5] = 3 

 
Figure 6. Illustration of the LCT re-labelling process 

 
2.1.3. Second Pass (Final Re-labelling) 

This final step consists in scanning the intermediate image 
generated from the first pass (referred to as 
INTERMEDIATE below) and using the LCT table as a 
Look-Up-Table to generate the fully labelled image i.e. for 
each pixel with coordinates (x,y) perform the following:  

Labelled_Image (x,y) = TAB( INTERMEDIATE(x,y) )  
This is illustrated in Figure 7 in the case of the partially 
labelled image of Figure 5 above.  
 
 

(a) Partially labelled intermediate image  (b) Labelled Image 

LCT content: 
LCT[1] = 1 i.e. 1 remains 1 
LCT[2] = 1 i.e. replace label 2 with 1 
LCT[3] = 1 i.e. replace label 3 with 1 
LCT[4] = 2 i.e. replace label 4 with 2 
LCT[5] = 3 i.e. replace label 5 with 3 

 
Figure 7. Connected Component Labelling: Final Phase 

 
2.2. Hardware Implementation 
 
Figure 8 presents a block diagram of a hardware 
architecture for the implementation of the above CCL 
algorithm. This hardware architecture was developed using 
a direct C-to-hardware language called Handel-C [11]. 
This ANSI C-like language is a subset of C, extended with 
CSP parallelism and communication primitives. One of the 
most fundamental constructs in Handel-C is the par 
statement which allows for separate parallel flows (the 
default being sequential flows) as illustrated in Figure 9. 
 

 

Image Buffer 
(INTERMEDIATE) 

LCT 
Table 

Re-Label 
Table 

Input Binary 
Image 

L 
I 
N 
E 
 

B 
U 
F 
F 
E 
R 

Pixel 
Buffer 

Pixel 
Buffer 

 
Non-Zero 
Minimum 

Look-Up-Table 
(Second Pass) 

Labelled 
Image 

 (First Pass) 
 

Figure 8. Hardware architecture for the CCL algorithm 
used 

 

 // 1 Clock Cycle  
  par{ 
 a=1; 
 b=2; 
 c=3; 
     } 

// 3 Clock Cycles  
    { 
 a=1; 
 b=2; 
 c=3; 
    } 

a=1 b=1 c=1 

a=1 

b=1 

c=1 

(a) (b)  
Figure 9.  Parallel (a) vs. sequential (b) statements in 

Handel-C 
 
Moreover, Handel-C has a simple synchronous timing 
model whereby each assignment takes precisely one clock 
cycle. This, alongside Handel-C’s high level control flow 
statements (if/else statement, while statement, and for loop 
statement) and simple memory access, makes it relatively 
easier to use than other FPGA design languages and tools. 
This is particularly true for capturing control-intensive 
algorithms in Hardware. Furthermore, and in order to 
allow for concise and parameterised code, Handel-C 
provides code replicating constructs in the form of 
parameterised par and seq statements (for parallel or 
sequential code replication respectively). These statements' 
syntax is similar to that of a “for loop” as illustrated below 
for the case of replicated par statement.  
 

 // Replicated par 
par (i=0; i<3; i++) 
     { 
         a[i] = b[i]; 
     }  
 

expands to: 
 

 par 
 { 
     a[0] = b[0]; 
     a[1] = b[1]; 
     a[2] = b[2]; 
 } 
  

 

Using such constructs allows for compact code listing as 
well as reuse of code through the use of macro procedures.  
Another advantage of the Handel-C language is that it is 
independent of the underlying hardware architecture as the 
same code can be used to target different FPGA 
architectures. 
The hardware architecture presented in Figure 8 has been 
described in Handel-C in a modular manner using three 
main macro procedures corresponding to the three steps 
involved in the algorithm (non-zero minimum 
neighbourhood operation or first pass, LCT table re-
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labelling, and the look-up-table or second pass phase), as 
illustrated in the code below: 
 

 par 
{ 
 // First Pass: Non-Minimum Neighbourhood Operation 
 Neighbourhood_operation(&Input_ImStream, &Intermediate_ImStream, 
non_zero_min, [[~,0,0],[0,0,0]], &LCT); 
 
 // Re-label the Labels Connection Table 
 Re_label_table(&LCT); 
 
 // Second Pass: Look-Up-Table using LCT 
 Look-Up(&Intermediate_ImStream, &Labelled_ImStream, &LCT); 
} 

 
 

The first macro procedure Neighbourhood_operation 
takes the input and output stream handles 
(&Input_ImStream and &Intermediate_ImStream) as 
parameters, as well as the type of neighbourhood operation 
(e.g. non-zero minimum), template size and template 
coefficients. It returns a handle to the LCT table, which is 
used by the second macro (Re_label_table) in order to re-
label the LCT table. Finally the Look-Up macro performs 
a second pass on the image (this time the intermediate 
image generated from the first pass) using the LCT table as 
a look-up table hence generating the fully labelled image 
(&Labelled_ImStream). 
 
3. Perimeter Counting 
 
Measurement of perimeters, areas, centroids and other 
shape related parameters of planar objects is an important 
task in industrial computerised vision systems [12] and is 
one measure used in object identification. The following 
will illustrate the problem of finding a reasonably accurate 
measure of the perimeter of an object. This will be 
addressed first in the case of a binary image with one 
single object. The case of multi-object images will then be 
deduced.  
 
3.1. An algorithm for perimeter estimation 
Consider a binary image ‘Im’ containing only one object. 
A contour of a digitised object is defined as a sequence of 
boundary pixels of the object as shown in Figure10.c. 
 

Stepwise boundary 

(b) (a) 

(c)  
Figure 10. (a) Original object shape (b) Object shape after 

digitisation (discrete form) (c) object contour with its 
stepwise boundary 

 

Another view of the object contour is the line between the 
object pixels and the background (the ‘crack’).  Encoding 
this line (a sequence of horizontal and vertical pixel edges) 
yields what is usually called the crack code of the digitised 
object boundary (identified as the bold line in Figure 10.c). 
Clearly the length of the latter contour is greater than the 
perimeter of the original object, especially for shapes with 
many corners: hence the problem of finding an efficient 
and accurate perimeter estimator. 
One way of estimating the perimeter of a digitised object is 
to measure the number of vertical and horizontal cracks, 
and perform subsequent adjustments e.g. take the number 
of corners into consideration. Another approach is to 
approximate the real object boundary more accurately, and 
perform subsequent measurements on this approximated 
contour. In particular, it is common to represent the 
contour as a line passing through the centre of boundary 
pixels – i.e. as a sequence of horizontal, vertical and 
diagonal links [2]. Area measurements must of course take 
this into account, as this approach effectively shaves off a 
little of each boundary pixel of the object. Assuming 
square pixels, the perimeter is then estimated by: 
 

Perimeter = No. of horizontal & vertical links + (No. of 

diagonal links * 2 ) 
 

Hence, the number of horizontal, vertical and diagonal 
links in the contour needs to be counted. Before that, 
however, the perimeter itself needs to be found. A simple 
method for identifying the boundary pixels is to perform 
an ‘Erode’ operation on the image. This is a minimum 
neighbourhood operation with a template of size 3x3 as 
illustrated in Figure 11 below. The boundary pixels are 
those which were eroded, and can be found by subtracting 
the result from the original image, as shown in Figure 11. 
 

 

Im_P = Im-Erode(Im) 

Minimum 

Erode(Im) 

  0  

0 0 0 

 0  

  

Erode 

Input image Im 

Neighbourhood 
operation 

Image-Image 
subtraction 

 

Im 

Im_P = Im-Erode(Im) 

Erode(Im) 

Approximated 
boundary 

Im 

 

 
Figure 11. An edge finding algorithm for binary images 

 
As mentioned above, a simple count of the number of 
pixel edges does not give an accurate measure of the 
perimeter (because of corners and diagonal edges). Instead, 
the contour is considered to be a sequence of links between 
the centres of adjacent boundary pixels (see Im_P in 
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Figure 11). However, rather than focus on the links (each 
of which straddles two boundary pixels), the individual 
contribution of each boundary pixel is considered. This 
contribution depends on the path which the contour 
follows through the pixel. Assuming a one-pixel wide 
perimeter, and an aspect ratio of 1.0 (i.e. square pixels), 
each edge pixel contribution to the perimeter can be 
classified into one of the following categories (or any of 
their rotations) [13]: 
 
(a)           and                in which case the contribution of 
the pixel is C = 1. 
 
(b)              and            in which case the contribution of the 

pixel is C = (1+ 2 )/2. 
 
(c)             and              in which case the contribution of 

the pixel is C = 2 . 
 
The perimeter is then given by: 
 Perimeter    =  No. of (a) pixels * 1  

         +  No. of (b) pixels * (1+ 2 )/2 

         +  No. of (c) pixels * 2   
One way of classifying the contribution of edge pixels 
(assumed to be ‘1’ against a background of 0’s) is to 
convolve the whole binary image with the following 
window: 

 

10  2 10 

2 1 2 

10 2 10 

 

T = Im_P <convolve> 

 
The result of this convolution at each pixel position 
enables the category of the corresponding edge pixel to be 
deduced: 
 

Result (T[i,j]) category 

5 or 15 or 7 or 25 or 27 or 17  (a) 

13 or 23 (b) 

21 or 33 (c) 

anything else no contribution 

Table 1. Classification of different convolution pixel 
results 

 

The make-up of these result pixels is shown in Figure 12 
below. 
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Figure 12. Different possibilities for edge segments 

The perimeter will then be given by: 
Perimeter   =  count(T=5, 15, 7, 25, 27 or 17) * 1  
   +  count(T=13 or 23) * (1+2 )/2  
   +  count(T=21 or 33) Pixels *2  
 
A block structure of the whole operation is given by Figure 
13.  
 

Minimum 

Erode(Im) 

Erode 
Neighbourhood 

operation 

Im_D 

Im_P = Im_D-Erode(Im) 

10 2 10

2 1 2

10 2 10

Mult-Accumulate 
(convolution)  

Neighbourhood 
operation 

T = 13 or 23 T = 21 or 33 
T = 5, 15, 7, 25, 
      17 or 27?  

T 

Binary image 
Bin2 

Binary image 
Bin1 

Binary image 
Bin3 

Im_C = Bin1 * 1 + Bin2 * (1+ 2 )/2 + Bin3 * 2  

Σ 

Perimeter = ∑
j,i

]j,i[CIm_   

A1 A2 A3 

O 
Weighted Addition 

  0  

0 0 0 

 0  

  

- Subtraction 

Accumulation 

Input labelled image 

Perimeter 
Counter 

Delay 

Im 

 Figure 13. A block diagram of a perimeter estimator 
 
3.2. The Case of a Multi-Object Image 
 
In the shape analysis application (illustrated in Figure 2), 
the input to the feature measurement blocks (compactness 
measurement in this paper’s case) is a labelled image. The 
latter consists of a discrete numbers of grey levels each 
corresponding to a distinct object in the image. The above 
perimeter algorithm could hence operate on every object in 
an image in parallel by making the perimeter counting 
process conditional on the pixels’ grey level. That way, the 
perimeter of each object in the image could be counted in 
one single pass of the labelled image with no need for 
multiple passes, each for each object. The following sub-
section presents the corresponding hardware 
implementation.  
 
3.3. Hardware Implementation 
 
Figure 14 (at the end of this paper) gives a block diagram 
of the hardware architecture adopted for the above 
perimeter estimation algorithm. The input of this 
architecture is the output of the labelling process i.e. a 
multi-scalar image with each scale or grey level 
corresponding to one single object in the image. As in the 
case of the labelling architecture, this architecture has also 
been captured in Handel-C. The following gives the top 
level Handel-C code for the architecture.  
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 par 
{ 
// Erode Neighbourhood operation 
Neighbourhood_operation(&Im, &Im2, add_min, 
[[~,0,~],[0,0,0],[~,0,~]]); 
 
// Subtract 
Reduction_operation(&Im, &Im2, &Im_P, sub); 
 
// Convolution operation 
Neighbourhood_operation(&Im_P, &Im_P2, convolution, 
[[10,2,10],[2,1,2],[10,2,10]]); 
 

// Threshold 
Point_Operation(&Im_P2, &Im_T, Array_of_Thresholds); 
 
// Perimeter Count 
// contribution =1 
ImageMultiScalarCount1(&Im_T, &Im_C1);  

// contribution=(1+ 2 )/2  
ImageMultiScalarCount2(&Im_T, &Im_C2);  

// contribution = 2    
ImageMultiScalarCount3(&Im_T, &Im_C3) ; 
 

Affine_operation(&Im_C1, &Im_C2, &Im_C3 , &Im3, Perimeter) ; 
} 
  

The final result i.e. the perimeter count for each object in 
the input image is stored in Array Perimeter. 
 
4. Compactness Measurement 
 
In order to measure the compactness of an object, both 
area and perimeter need to be counted. The previous 
section showed how to count object perimeters. Measuring 
an object’s area is a simple matter of counting the number 
of pixels in the object. Object compactness can then be 
measured by evaluating the following equation: 
 

Compactness = Area / (Perimeter)2 

 

Figure 15 (at the end of this paper) presents a block 
diagram of a hardware architecture for compactness 
measurement where the input image is fully labelled. Only 
an area count block and a block for the implementation of 
the compactness equation have been added compared to 
Figure 14’s architecture. 
The following gives the top level Handel-C code for this 
architecture. The final result, i.e. the compactness of each 
object in the input image, is stored in Array Compactness. 
 

 par 
{ 
// Erode Neighbourhood operation 
Neighbourhood_operation(&Im, &Im2, add_min, 
[[~,0,~],[0,0,0],[~,0,~]]); 
// Subtract 
Reduction_operation(&Im, &Im2, &Im3, sub); 
// Threshold 
Point_Operation(&Im3, &Im_P); 
// Convolution operation 
Neighbourhood_operation(&Im_P, &Im_T, convolution, 
[[10,2,10],[2,1,2],[10,2,10]]); 
// Perimeter Count 
// contribution  = 1 
ImageMultiScalarCount1(&Im_T, &Im_C1 ) ;  

// contribution = (1+ 2 )/2  
ImageMultiScalarCount2(&Im_T, &Im_C2) ;  

// contribution = 2   
ImageMultiScalarCount3(&Im_T, &Im_C3 ) ;  
 

Affine_operation(&Im_C1, &Im_C2, &Im_C3 , &Im3, Perimeter) ; 
 

// Area measurement 
Area(&Im3, Area) ; 
// Compactness Measurement 
Compactness(Perimeter, Area, Compactness); 
} 

 

5. Implementation Results 
 
We have implemented the shape analysis architecture 
presented in Figure 15 on Xilinx Virtex-II FPGAs. For 
this, we used Celoxica’s DK suite to compile our Handel-
C descriptions into EDIF netlist. Xilinx ISE software was 
then used to generate an FPGA configuration/bitstream. 
The design flow is illustrated in Figure 16. 
 

 

C Host Software  

Handel C 
program  

Celoxica DK 
suite 

bitstream 

Xilinx PAR 

Data and 
Configuration 

FPGA Hardware 

Object 
measurements 

Input Image 
EDIF 

 
Figure 16. Handel-C design flow 

 

Table 2 gives the hardware implementation results of the 
complete shape analysis engine described in Figure 2, as 
well as its major individual components, on the Xilinx 
XC2V6000-4 FPGA chip, for input images of 640x480 8-
bit pixels. The resulting FPGA configuration has been 
tested on real FPGA hardware in the form of AlphaData 
ADM-XRC board. This shows clearly that the resulting 
implementation can easily achieve real time processing of 
video signals even at high image resolutions.  
 

 Area  Speed Throughput  
Shape 
analysis 
engine 

980 slices, 5 
BlockRAMs, 
1 Mult18x18 

80 
MHz 

260 
frame/sec 

Labelling 540 slices, 4 
BlockRAMs 

80 
MHz 

260 
frame/sec 

Perimeter 
Counting 

220 slices 
80 

MHz 
260 

frame/sec 
Table 2. Hardware implementation results on a Xilinx 
XC2V6000-4 FPGA  
 
6. Conclusion  
 
This paper presented the detailed design and 
implementation of an efficient shape analysis engine on 
reconfigurable hardware. The engine can label objects 
present in video images and compute various 
morphological attributes related to each object separately, 
in real time. This has been illustrated in this paper in 
measuring the compactness of each object. Such 
information can serve as one of a number of features that 
can be used by a high level decision system e.g. for object 
recognition. 
The core has been captured in a high level hardware 
language called Handel-C which makes it portable across 
various FPGA families. The resulting hardware 
implementation on a Xilinx XC2V6000-4 FPGA chip 
achieves a throughput rate of 260 frames per second for 
640x480 8-bit/pixel images.  
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Figure 14. Hardware Architecture of the perimeter estimator  
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Figure 15. Hardware Architecture of the proposed compactness estimator 
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Abstract— Multiresolution analysis is very useful in many 
image processing applications including intelligent infor-
mation retrieval and medical imaging.  In this paper, dis-
crete wavelet transform has been explored for two applica-
tions namely latent semantic indexing and medical image 
segmentation.  The slowest parts of the proposed systems 
have been also accelerated on reconfigurable hardware 
using the RC1000 FPGA prototyping board.  Efficient im-
plementations and architectures have been developed for 
Haar wavelet transform and A`Trous algorithm which 
have shown better performance compared to existing sys-
tems in place. 

 

I.  INTRODUCTION 
Wavelets are a mathematical tool for hierarchically decom-

posing functions. They allow a function to be described in 
terms of a coarse overall shape, plus details that range from 
broad to narrow. Regardless of whether the function of interest 
is an image, a curve, or a surface, wavelets offer an elegant 
technique for representing the levels of detail present. This 
paper is intended to provide people working in imaging with 
some intuition for what wavelets can be used, as well as to 
present efficient reconfigurable architectures to accelerate this 
type of decompositions. 
The first application addressed is latent semantic indexing 
(LSI) used in intelligent information retrieval. It is used as an 
attractive alternative to traditional keyword matching ap-
proaches due to its ability to address the problems arising from 
lack of co-occurrence, use of synonymous, near synonymous, 
and polysemous words as dimensions of document representa-
tions [1]. LSI is implemented in several stages. The first stage 
is to pre-process the database of documents. A term document 
matrix (TDM) is then generated which represents the relation-
ship between the documents in the database and the words that 
appear in them.  This is followed by a decomposition of the 
TDM using singular value decomposition (SVD) or QR fac-
torization [1]. The document set is compared with the query  
 

and the documents which are closest to the user’s query are 
then returned. In this paper, a hybrid approach using Haar 
wavelet transform (HWT) and SVD is used to enhance the 
existing LSI based approach. TDM is visualized as an image 
as illustrated in Fig. 1 for Cochrane database, then image proc-
essing transforms and techniques are explored for processing 
the TDM and enhance the database content.  
The second application addressed is medical image segmenta-
tion using multiscale statistical techniques as illustrated in Fig 
2. It combines the A`Trous algorithm and a new Markov ran-
dom field model (MRFM) to quantify and segment the tumour 
for radiotherapy planning and cancer diagnosis. 

 

 
 

Fig 1.  Cochrane TDM represented as a grey scale image.  The Cochrane data-
base contains titles of medical studies: 

www.updatesoftware.com/publications/cochrane/ 
 

 
 

Fig 2. PET brain image segmentation using the system developed  
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A number of hardware acceleration techniques have been pro-
posed for text retrieval [2][3] and medical image segmentation 
[4]. None of these approaches have gained significant attention 
due to continuous changes and improvement in information 
retrieval and medical imaging algorithms that make ASIC im-
plementation infeasible. However, Field Programmable Gate 
Arrays (FPGAs) can be used as an accelerator for the basic 
building blocks in the system used in LSI for large databases 
and medical image segmentation. The reconfigurable nature, 
availability of C to hardware rapid development design flows, 
low cost and high performance nature due to massive parallel-
ism capabilities makes a good case for offloading the slowest 
parts in these applications on FPGAs. The structure of the rest 
of the paper is as follows: The proposed system environments 
for selected applications are presented in sections 2 and 3 re-
spectively. Implementation results are provided in section 4. 
Concluding remarks are stated in section 5. 

II. A RECONFIGURABLE ENVIRONMENT FOR SVD/HAAR 
HYBRID APPROACH FOR LSI 

Different components of the LSI system and the proposed hy-
brid technique based on SVD/HWT are shown in Fig. 3.  Each 
database used is held as table in Microsoft Access. The tables 
are in the form: ID Title. The ‘Title’ field holds the document 
title from which the keywords are generated. The ‘ID’ field 
provides acts as a unique key for each entry in the table, allow-
ing documents to be referenced easily. The Memos database is 
a small database consisting of nine Bellcore technical memos 
which is widely used as a testbench by many researchers deal-
ing with LSI [1]. Other commercial databases that have been 
tested in this paper include Cochrane, eBooks and Reuters.  
The database-style document table needs to be converted to a 
TDM. Before this can be achieved, pre-processing needs to be 
carried out on the document set. Punctuation and meaningless 
words need to be removed, and the keywords necessary for 
construction have to be extracted. The TDM for memos is 
shown in Table 1. 

 

TABLE 1.  TDM FOR MEMOS DATASET 

 

 
 

Fig 3.  Proposed hybrid LSI system with hardware acceleration 

 

The TDM is then generated from the overall keywords list 
which appears in the documents. Each row and column of the 
matrix are assigned to a term, and each a document respec-
tively. In order for searches to be carried out, queries also have 
to be represented in vector form. This is achieved by the same 
process that is used to convert documents into columns in the 
TDM. Keywords are extracted from the query, and if a key-
word also appears in the document set then the number of 
times it appears in the query is recorded in the same format as 
one of the document vectors in the TDM.  This is followed by 
the SVD/Haar operations in order to perform two key func-
tions: (i) extraction of semantic content from the search results, 
and (ii) removal of “lexical noise”.  
A commonly used approach in image processing is to combine 
different techniques in order to improve noise reduction. The 
comparison of the TDM to a gray scale image invites a similar 
technique. The system allows SVD and HWT techniques to be 
combined as below to investigate its effect on the TDM and 
the quality of the results. In image processing, the HWT can be 
used to remove noise from an image by means of thresholding 
in the multiresulotion domain, resulting in a clean image on 
reconstruction. For our present purposes, the TDM can be con-
sidered as a gray scale image, usually a binary image (sparse 
TDM with 0, 1 probabilities). By applying the HWT and a 

DASIP 2008 November 2008

- 238 - 



hard threshold to the TDM after the SVD has been performed, 
we can also improve the “noise” removal from our image, in 
this case lexical noise. Once the image is reconstructed, com-
paring the query with the approximated TDM should provide 
better results than the comparison with the original matrix. The 
SVD/ Haar hybrid sub-block is represented in Fig. 4. 
 

  
Fig 4. Hybrid SVD-HWT Decomposition 

 
In addition, hardware acceleration of the slowest parts in the 
LSI process using the RC1000 FPGA prototyping board is 
illustrated in Fig.3. 
 
A. SVD Applied to a TDM 
A matrix M can be decomposed as M = U * S * V

T 

where U is 
the singular row vectors of M, S is a diagonal matrix holding 
the singular values of M in ascending order V

T

 is the transpose 
of the singular value column vectors of M [2]. Matrix U can be 
considered to represent a term by concept matrix, matrix S as a 
concept by concept matrix and Matrix V as a concept by docu-
ment matrix. The diagonal elements in S are stored in ascend-
ing order. The higher order values are larger and this means 
that they represent more of the semantic content of M (as illus-
trated in Fig 5). By contrast, the lower order values are small 
and can be viewed as “lexical noise”. The original TDM can 
be re-approximated by multiplying the three matrices back 
together again. However, if the lowest singular values of S are 
discarded, TDM can be re-approximated by:                     
Ma = Uk * Sk * Vk

T 

 
where k < r, and  
Ma = approximated TDM; Uk = first k columns of U;  
Sk = the new matrix of singular values, and  
Vk

T

 = the first k columns of V
T

 [1] 

 
Fig 5.  Diagonal Matrix S. The inner boxes represent singular values 

 
B.  The Haar wavelet transform  
Popular discrete wavelets include Haar, Daubechies, Daube-
chies Biorthogonal, Coiflet, Symmlet etc. The Haar wavelet is 
one of the simplest wavelet transforms, and is of particular 
interest to us due to its unitary nature. The mother scaling 
function for the HWT is given by: 

⎪
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<≤−
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x
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2/101

)(ψ  

Fast computation of the HWT can be performed by means of 
lifting, using the HWT matrix. The smallest matrix of size 2x2 
is given by: 

⎥
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⎤
⎢
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⎡
−

=
11

11
2H  

This mathematical equation for the HWT is expressed in pseu-
do code form as shown in Fig. 6. 

 

procedure DecompositionStep (C: array [1. . h] of reals) 
     for i   1 to h/2 do 
           C[i]  (C[2i  1] + C[2i])/2 
           C[h/2 + i]  (C[2i- 1] - C[2i])/ 2 
end for 
C   C’ 
end procedure 
procedure Decomposition (C: array [1. . h] of reals) 
C   C/h (normalize input coefficients) 
while h > 1 do 
DecompositionStep (C[1. . h]) 
h   h=2 
end while 
end procedure 
 
procedure StandardDecomposition (C: array [1. . h, 1. . w] of 
reals) 
for row   1 to h do 
Decomposition (C[row, 1. . w]) 
end for 
for col   1 to w do 
Decomposition (C[1. . h, col]) 
end for 
end procedure 

 
Fig 6. Pseudo code for Haar standard decomposition 

  III. A RECONFIGURABLE ENVIRONMENT FOR MEDICAL 
IMAGE SEGMENTATION 

The proposed system for medical image segmentation is illus-
trated in Fig 7.  
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Fig 7. Proposed Segmentation System 

 

The 3D image is acquired from PET scanner, before segmenta-
tion a thresholding technique is preformed to remove artefacts 
and redundant data. 
This type of procedure is suitable for this application due to 
the distribution of intensity values through images of this na-
ture. The marginal segmentation achieved using a multiscale 
MRFM to segment the data based on the relationship of a 
voxel with its neighbours. In other words, the original 3-D 
image volume is decomposed using the A`Trous wavelet trans-
form, which is preformed on FPGA. The original image and 
selected wavelet scales are used in conjunction with a MRFM, 
which is considered through the utilisation of multivariate 
Gaussian density calculations. 
 

IV. IMPLEMENTATION DETAILS AND RESULTS 
 

Software simulations and reconfigurable hardware implemen-
tations have been carried out for both systems used in LSI and 
medical image segmentation. 
 
A. LSI System 
 
For the optimal value of k, the SVD-HWT hybrid approach 
returns one less result than the SVD approach. This is because 
the extra HWT step has filtered out the low frequency terms in 
the TDM, and has thus improved the relevance and quality of 
the search results. HWT post-processing can moderately im-
prove the precision of the document set returned for a query at 
the expense of losing a small number of irrelevant document 
matches. Decomposition and query of the various databases 
using SVD, HWT and SVD-HWT hybrid decomposition en-
gines delivers the following results in terms of software com-
putational time: 
 
 
 
 
 

TABLE 2.  SOFTWARE COMPUTATION TIMES DATABASES 

 Average Execution Time (s) 

Database SVD Haar Hybrid 

Memos 
Cochrane 
Ebooks 
Reuters 

0.018 
0.430 
42.45 

111.245 

0.011
0.408
4.134
4.433

0.029
0.775
45.28

114.54
 

 

In order to provide hardware acceleration for the proposed LSI 
system, the slowest sub-blocks of the design have been proto-
typed on the Celoxica RC1000 board containing the Xilinx 
XCV2000E FPGA. A full explanation of the architectural and 
performance and FPGA implementation details for a modular 
and parametrisable SVD core developed by our research group 
can be obtained from [8]. The HWT hardware implementation 
proposed in this paper occupies 259 FPGA slices and operates 
at a maximum frequency of about 67 MHz. The hardware im-
plementation of HWT clearly outperforms the software im-
plementation by a speedup factor of 5.5 times, and it has been 
shown in [8] that the hardware implementation of SVD outper-
forms comparable optimised software implementations by a 
factor of 2:1.  
 
 

B. Medical Image Segmentation  
The multiscale MRFM developed requires significantly more 
computation than the spatial domain MRFM. For an image 
with dimensionality 128x128x117, the multiscale MRFM, 
takes approximately 25 min (C source) to compute, for a pre-
determined number of clusters. Times are obtained using a 
single processor 2.4GHz Pentium 4, with 256MB of RAM. 
The above A` trous algorithm architecture with the use of a 
convolution with a mask of 5x5 (the B3 spline) has been im-
plemented for three resolution levels for a 32x32 8-bit input 
image due to the number of BRAMs available on the FPGA. 
The memory blocks RAM A and RAM B have been imple-
mented as 32x16-bit wide dual-port BRAMs available in the 
Virtex-E FPGA device with no additional hardware complex-
ity. In order to store 32x32 bit image and resulting wavelet 
coefficients 2x32 (32x16-bit) wide BRAMs have been used. 
The row delay circuit in the architecture has been implemented 
by 32 word depth 16-bit FIFOs with the use of embedded 
BRAMs. It is also important to point that the B3 spline filter 
coefficients are all power of 2. Therefore, the multiplication of 
the pointwise summation and filter coefficients in (1-D) filters 
(P0, P1 and P2) is implemented as right-shift operations. This 
way the increase in hardware area in terms of FPGA slice has 
been prevented. Table 3 shows implementation results for the 
A` trous wavelet architecture, in terms of FPGA area occupied. 
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Fig 8. Proposed architecture for A`Trous algorithm 

 

 

TABLE 3.  HARDWARE IMPLEMENTATION OF A`TROUS ALGORITHM 
 

Length Area 
(Slices) 

BRAMs Speed 
(MS/s) 

Computation 
time 

32 276 68 87 3x 322 
 

V. CONCLUSIONS 
In this paper, acceleration of multiresolution analysis algo-
rithms was performed on reconfirgurable hardware to address 
two applications in information retrieval and medical image 
segmentation respectively.   An FPGA based hardware accel-
erator has been developed to provide computational speedup. 
It has been shown that the hardware implementation of the 
basis computational blocks of the LSI and medical imaging 
system clearly outperforms their software counterparts.  Ongo-
ing research involves the investigation and implementation of 
other multiresolution algorithms such as ridglet, curvlet…etc 
on the most recent FPGA devices. 
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Abstract— Parallel machines are most often used in many
modern applications that need regular parallel algorithms and
high computing resources, such as image processing, signal
processing, etc. Several system on chip design methodologies are
studied in order to integrate such architecture.

The aim of this work is to propose an architecture based on IP
reuse. A model of a parallel SIMD architecture called Massively
Parallel Processor System on Chip is defined and discussed. An
implementation on FPGA is also performed in order to proof
its feasibility. The proposed architecture is generic and allows
the adaptation of the PEs grid size and the memory length
according to the application requirements. One original aspect
of this project is the use of IP to build the machine. One novel
approach is also the use of the same IP for both Array Control
Unit and Processing Elements.

I. INTRODUCTION

Parallel machines are most often used in many modern
applications that need regular parallel algorithms and high
computing resources, such as image processing, signal pro-
cessing, etc. In fact, SIMD (Single Instruction Multiple Data)
architectures are powerful executers especially for data inten-
sive calculations. This class of processors has been less and
less used in the nineteenths because of its dramatically high
fabrication cost.

However nowadays, present system design methodologies
promote component based design and enforce the use of
IP (Intellectual Prpoerty) blocks and industry standard in-
terfaces [5]. This context substantially alleviates the design
cost of a dedicated processor for a SIMD system. Significant
evolutions of system design, silicon integration technology and
growing application computing power requirement have also
change the context. So, the integration of a parallel system on
a single chip will be of prime interest for parallel applications.

Massively parallel machines make use of fine-grained com-
putational units, called Processing Elements (PEs) working in
parallel to speed up computation. They are connected together
in some sort of simple network topology, which often is
custom-made for the type of application it’s intended for. In
SIMD machines a main processor, called Array Control Unit
(ACU), is responsible for fetching and interpreting instruc-
tions. The Array Control Unit processor issues arithmetic and
data processing instructions simultaneously to the Processing

Elements, and handles any control flow or serial computation
that cannot be parallelized. Each PE then performs the global
operation on its own data. This work aims at proposing
a model of a parallel SIMD architecture called Massively
Parallel Processor System on Chip, and presenting one imple-
mentation on FPGA in order to proof the design feasibility.
FPGA has been choosen for its reconfigurability which can be
exploited to implement a reusable design, adjusted for specific
applications.

One original aspect of this project is the use of IP to build
a parallel machine. One novel approach is also the use of the
same IP for both Array Control Unit and Processing Elements.

The remainder of this paper is organized as follows. The
next section presents some significant works related to SIMD
systems and their integration on a chip. It highlights also the
use of IPs to design most of modern SoCs. Section 3 describes
the MPPSoC architecture. Section 4 presents the MPPSoC
design and its implementation on FPGA. It presents also the
MPPSoC toolchain needed for its programming, and discusses
experimental results by executing matrix multiplication algo-
rithm. Finally, Section 5 concludes this paper with a brief
outlook on future works.

II. RELATED WORKS

The history of SIMD machines began with the ILLIAC
IV project [12], [13] started in 1962. Several other SIMD
machines appeared such as the Maspar MP-1 [16] and the
Thinking Machine CM [19], [3]. These machines were cen-
tered on the concept of a very large number of processing
elements. However, in the end of nineteenths, SIMD has fallen
by the wayside in the arena of commercial general-purpose
computing. One primary reason attributed to the commercial
failure of SIMD machines hinges on the rate of growth of
microprocessor performance relative to the time to market for
SIMD machines.

But the spread of special applications that require a great
deal of independent data computation such as multimedia
and graphics applications as well as video or sound and
signal processing has lead to the appearance of small scale
commercial SIMD variants in the marketplace. They are in the
form of ISA multimedia extensions, including Intel’s MMX

DASIP 2008 November 2008

- 242 - 



Fig. 1. The MPPSoC architecture (composed of an ACU that controls the whole architecture, an array of PEs organized in different topologies and connected
to parallel memories, an irregular network and a regular network with various topologies).

and SSE, AMD’s 3D-Now and Motorola’s AltiVec, which
are short vector SIMD architectures. In addition, with the
recent great evolution of silicon integration technology, some
major IP providers start designing special components for on-
chip SIMD architectures acceleration; for instance, the Neon
technology proposed by ARM [17], the PicoChip’s PC101
array [9] and the Morphosys [6] architecture. However these
architectures are dedicated to specific applications and do not
treat the various needs of intensive parallel ones.

In [4], a project called CoMAP ”Co-Design of Massively
Parallel Processor Architectures” presents a new class of
parameterizable coarse-grained reconfigurable architectures
called Weakly Programmable Processor Arrays WPPA. The
architecture proposed does not follow the SIMD model. In
addition, this project focuses more precisely on implementing
a reconfigurable NoC architecture connecting multiple pro-
cessing elements.

According to all these works, there are no available SIMD
massively parallel SoCs using really the recent integration
technology capabilities especially in terms of IP reuse and
being generic enough to suit various application needs.

In fact, design re-use and Intellectual Property (IP) trading
should now be considered a necessity to face time to market
constraints. So, IP reuse methodology has been introduced in
SoC era to cope with very large and complex designs. It basi-
cally involves partitioning of the designs into smaller IP blocks
with well-defined functionality that can be re-used across mul-

tiple designs. Ideally, an IP core should be entirely portable,
that is, able to easily be inserted into any vendor technology
or design methodology. These cores may include embedded
processors, memory blocks, or circuits that handle specific
processing functions [15]. Different approaches attempt to
ease IP integration today by defining design methodologies
or techniques to solve specific problems. Indeed, designing
parameterized IP cores with a well defined interface [2] allows
cores to be quickly customized and integrated into multiple
design projects.

Some EDA companies provide a set of tools that allows
incorporating IP cores for high level specification and system
cosimulation [10]. The VSIA [18] and OCP-IP [7] standards
have produced specifications which dictate core interfaces
to promote IP reuse and speed up integration. Other new
standards, emerging today, include SPIRIT and SPRINT (Open
SoC Design Platform for Reuse and Integration of IP) which
are proposed to facilitate the IP integrator’s reuse process, thus
enabling a higher degree of automation across the SoC design
process.

Thus, to obtain a short time to market, less costs, better
performance and to provide an optimized and generic design,
our goal is to build a massively parallel SIMD architecture
based on IP reuse. In the following, we define our massively
parallel architecture and we describe its different components.
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Fig. 2. MPPSoC implementation on FPGA: the left-hand side represents the ACU and its sequential memory. The 2D grid of PEs is represented in the
center of the figure. The PE is build from the three last pipeline stages of the MIPS processor chosen for the implementation, and is connected to a local
memory as shown on the right-hand side of the figure.

III. MPPSOC ARCHITECTURE

Our work revisits the SIMD concepts, expands and in-
terprets them with modern requirements and technological
constraints. We propose a Massively Parallel Processor System
on Chip MPPSoC, close to the very well known MasPar [16].
The general basic MPPSoC architecture is composed of a
number of processors (the PEs), organized in a defined topol-
ogy such as a 2-D grid or a 3-D grid, working in a perfect
synchronization. A small amount of local and private memory
is attached to each PE. The latter is potentially connected to
its neighbours, which are of number 8 if we use the regular
network X-Net. Furthermore, each PE is connected to an entry
of mpNoC, a massively parallel Network on Chip that poten-
tially connects each PE to one another, performing efficient
irregular communications. The mpNoC could be of different
types like a crossbar or a multistage network for example. The
system operating is organized by a control processor (the ACU,
Array Control Unit) that accesses its own sequential memory
which contains data and instructions. The ACU reads instruc-
tions and, according to the executed program, synchronously
controls the whole MPPSoC architecture within these three
ways: a) parallel instructions which are broadcasted to the
grid of PEs which may be of different topologies, b) regular
interconnection network control which establish its connection
topology (torus, xnet,...) and c) the global router control which
determines the route of the irregular communications. Figure 1
illustrates the global generic MPPSoC architecture [11].

There are two major differences between our system MPP-
SoC and the original MasPar [16]. They are related to memo-
ries accessing issues and processing elements. MPPSoC offers
direct connections from the ACU to the parallel memories,
which remains an original solution to provide fast communi-
cation. The second difference concerns processors. Both ACU
and PEs are constructed from the same IP processor. Thus,

using the same IP, the dramatically high design cost linked
to SIMD machines is considerably reduced. This solution
remains, according to our knowledge, a completely novel
approach in SIMD design field.

Adding to that, the originality of our work remains in
designing one SIMD architecture MPPSoC, taking into consid-
eration the applications and their various demands. The main
parts like the ACU, the PEs and the interconnection networks
will always be in the system, but they will be designed to be
reusable and parameterized.

Below, we define the basic IP components of MPPSoC
architecture.

A. Processors

Processors include both ACU and the Processing Element.
Our work proposes to use an existing processor design as a
base to reduce the time needed for implementing and testing
a custom soft processor. We have also modified the instruc-
tion set by adding parallel instructions. The instruction set
extension has been chosen to be compliant with the MIPS32
standard one.

The ACU is connected to its sequential memory, which
contains data and instructions. It is build as a modified
processor which produces a micro-instruction at the end of
the decode stage. This micro-instruction is either executed
locally by the ACU in the case of a sequential instruction,
or is broadcasted to all the PEs in the case of a parallel
instruction [11]. The new instructions added give mainly to
the ACU the following functionalities: distinguish sequential
and parallel instruction, check activity state of the PEs, and
broadcast data to the PEs.

PEs are less complex than the ACU. In fact, they do not
have fetch and decode stages in their pipeline. This significant
gain will allow integrating a large number of PEs on a chip.
We note that the PE write-back stage is controlled by the
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Fig. 3. Memory instruction flow diagram

activity bit of each PE: operations are realized but their results
are not stored in registers or memory if the PE is inactive.
Each PE is connected to its local data memory, to a regular
interconnection network and to the global router. The PEs local
memories are directly accessible from the ACU, keeping so
the design flexible and allowing faster read/write access to
local memories than transferring via PE.

Moreover, the basic design of the PE consists of a memory
block, an I/O block and a processor unit containing the three
execution stages fed with instructions via an instruction bus.
So, data are received by the ALU either from the I/O, the
memory or from the instruction word. If the data comes from
the I/O, it is sent by another PE, received by the I/O block and
forwarded to the ALU using the internal data bus. If the data
is read from the memory it will be fetched from the block-
RAM by the memory block and sent to the ALU via the same
internal data bus. The memory block in the PE controls the on-
chip block-RAM, which receives instructions from the ACU
when data should be loaded from, or stored on the memory.

The functioning of the I/O is similar to that of memory. The
only difference is that we deal with specific memory addresses
which define the address range of the I/O block, as illustrated
in figure 3. In fact, the I/O block is a specified part in the
memory used for external communication i.e. the moving of
data between PEs. Two separate buses are used for data input
and output. The input and output buses are connected to the
regular network making the topology responsible for which
PEs that are neighbours, or to the irregular network to perform
point to point communications to another PEs. So, the main
function of the I/O block is to load and store data to the PE
from the router. If it is an input instruction the I/O block stores
the data from the input bus and forwards it using the data bus
to the PE processor. If the instruction is an output, the data in
the I/O block is immediately put on the output bus.

B. Interconnection networks

The choice of interconnection is of great importance in
SIMD architectures. When constructing a SIMD system, a
large part revolves around the interconnection network, and
specifically its topology. In fact, different applications require

different interconnection networks for maximum performance.
It is, therefore, necessary that the network is both effective
and easy to modify to suit different applications. And one of
the goals of our work is to be able to implement any kind
of topology, from the simplest bus systems to a multistage
network.

MPPSoC contains a neighbourhood network and a global
router. The MPPSoC regular network allows inter-PE regular
communications. It can provide connections to the neighbors
in the four primary directions (north, south, east, west) like
most parallel machines (2D mesh, torus, etc.) or to enable each
PE to communicate directly with its eight nearest neighbours
(four primary directions as well as the four diagonal di-
rections). Moreover, point-to-point communications are more
tedious and difficult. In fact, data transfers to and from the
array are often a bottleneck in parallel systems. Consequently,
a global router is also integrated on the MPPSoC. The global
router connects all PEs and their peripherals together. This
network allows point-to-point communications between any
PE. It provides a way to send/receive data into parallel mem-
ories, offering an efficient communication way with peripheral.
The counter part of such network is the conflict management,
which increases data transfer latencies. This global router is
generic and depend on the application needs. It is designed
based for example on a crossbar IP or a multi stage network
IP according to the MPPSoC architecture needs and perfor-
mances.

After defining the all MPPSoC architecture, we performed
an implementation of one configuration as a case study to
proof the feasibility of our design. This FPGA implementation
is described in the next section.

IV. DESIGN AND IMPLEMENTATION OF MPPSOC ON
FPGA

A first hardware implementation of the MPPSoC was set
as a feasibility study of the designed architecture. Targeting
an FPGA platform was chosen for the sake of its, relative,
simplicity and re-programmability. This implementation was a
practical experiment of an IP reuse, which remains, according
to our knowledge, a novel approach in SIMD field. Both
the ACU and PE implementations were designed from the
miniMIPS [8], a pre-existent MIPS implementation on FPGA.
The choice of an FPGA implementation allows also a generic
design that can be tuned with respect to the effective targeted
application. Our prototype generated an FPGA configuration
parameterized by the number of PEs and by the amount of
local memory attached to each PE.

A. Implementation methodology

The current validated implementation, shown in figure 2,
consists of two main components: ACU and a number of El-
ementary Units which derived from miniMIPS. Each elemen-
tary unit composes of processing element, its local memory
and its chip select. So the first implementation is carried in
hierarchical manner. In fact, the grid elements are included
in a hierarchic unit called elementary unit. An intermediate
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hierarchic level grouping several PEs has been also defined to
help the synthesis tool and to facilitate the routing.

This MPPSoC FPGA implementation does not yet integrate
interconnection networks. But different elements are defined to
achieve such implementation. Our aim is to be able to integrate
networks of different topologies depending on application
requirements. The network should be scalable from a very
basic topology such as a bus, to a complete all-to-all network
like a crossbar. The different parts will be constructed as
IP-blocks, which will be connected with a chosen network
architecture using SoC design. The benefit of using IP-blocks
is that the essential core of the system can easily be lifted
out of the design and introduced into another one, which is
important for reusability.

As the ACU can accede to PEs local memories, establishing
the connection mode ACU – PE, we want also that any PE
can communicate with any other by sending or receiving data
(mode PE – PE) or will be able to send data to the ACU
(mode PE – ACU). So an I/O block is designed to assure
communication between PEs. The I/O block is connected to
the network in one end and to PEs or peripheral units (in the
case of global router) in the other. The network topology will
determine how data is sent to and from PEs.

The interface between ACU and elementary units captures
the micro-instructions, as presented by figure 2, signals to
communicate with memories (sequential memory and parallel
memories) and control signals. More precisely, connections
between the ACU and the PEs are signals delivered from the
ACU decode stage to the PE input execute stage. In fact, a
parallel instruction sends the micro instruction to the PEs and a
NOP in the ACU execute stage, while a sequential instruction
performs things in reverse order.

For our first experiments, we target the Altera Stratix-
2S180 FPGA that contains 179k logic elements (LEs), a
number of dedicated memory blocks, and 96 DSP blocks. Our
implementation is a VHDL code that can be used either as an
input of the ModelSim Altera simulator, or as an input of the
Quartus II synthesis tools [1].

In this work, we tested one MPPSoC prototype integrating
64 PEs placed in a 2D grid, with 4kB of memory per PE.
After compilation and synthesis, our prototype implementation
on FPGA has validated several results. Beyond the feasibility
confirmation of the design, we have been able to identify
a rough idea of the number of Logical Elements needed to
implement a given MPPSoC configuration. In our case the
whole MPPSoC design uses 69% of the FPGA resources.
Furthermore, our implementation uses not only the LEs, but
also the memory (24%) and DSP blocks (68%) of the FPGA.
In fact, to create a large design on any platform it is important
to use the components that are cheap in that technology.

The analysis of the FPGA surface used shows also that a
PE is much smaller than the ACU. The maximum operating
frequency of our design is 50 MHz. This frequency depends
mostly on the frequency of the processor miniMIPS which
functions at 50 MHz.

soft.s

Soft_pSoft_s.s

Soft_s

Soft.bin

1 1

2

3

3

1. generation soft_s.s soft_p soft.s
2. sde-as -EL -o soft_s soft_s.s
3. fusion soft.bin soft_s soft_p

Fig. 4. Assembly steps (from a parallel extended assembler language we
generate the binary compatible with the extended MIPS instruction set).

B. MPPSoC Toolchain

In order to program MPPSoC, a tool chain has been
developed. From a data parallel extended assembler language
(the extended language allows parallel expression and parallel
variable manipulation), we are able to generate the corre-
sponding binary compatible with the proposed extended MIPS
instruction set and so compliant with MPPSoC.

Extended instructions include arithmetic and logical in-
structions and access memory instructions. However, branch
instructions or system calls were not extended, because PEs
can execute all MIPS standard instructions except those using
PC register (instructions executed only by the ACU). We
developed generation and fusion tools (written in C language).
The script-shell mppsocassembly allows then to generate a
binary executable from a source file in extended assembler,
using also our tools as well as sde-as.

Generation Tool
Generation is the first tool to use for the generation of an

executable file. The command used is: generation dest s src
dest p src. It permits, from an extended assembler source
file src, to separate the MIPS code from the extended code.
After execution, dest s src contains only the assembler src
instructions compatible with MIPSI. Compared with src, in-
stead having the extended assembler additional instructions,
we placed NOP instructions. The second file generated is
dest p. It contains so the specific extended instructions and
it is created directly in binary form. This method allows us to
get a MIPSI assembler source file. Then after using sde-as, we
get two binary files: the first is an executable file in elf form
that does not contain the extended instructions, the second is
the one containing the extended instructions of the program.

Fusion Tool
The second tool is named fusion. It allows us to obtain

the binary executable file by typing: fusion dest src s src p .
src s and src p are the two binary files obtained previously
(by generation and sde-as). dest presents the final binary file.
In this step, we copy the src s file where NOP instructions
are replaced by an instruction of src p. This latter is therefore
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Fig. 5. Time execution of matrix multiplication on different MPPSoC
versions parametrized by the PEs number

read sequentially. The number of instructions in src p is equal
to that of NOP instructions in src s file.

Mppsocassembly Tool
The third tool used is Mppsocassembly which is a sim-

ple script-shell allowing generating an extended executable
directly from an extended assembler source file. It is used
as: mppsocassembly dest src. It compiles the generation and
fusion tools if necessary. Then, it uses generation, sde-as
and fusion. The diagram shown in Figure 4 summarizes the
assembly different steps.

Finally, the binary is then downloaded into instruction
memory, itself downloaded into FPGA (via bit stream). The
program is then executed by the VHDL MPPSoC design.
The bit stream is provided by Quartus synthesis tool in few
seconds since MPPSoC architecture synthesis is not necessary.
This flexibility allows us to powerfully manipulate MPPSoC
according to a particular program.

C. Experimental Results

In this section we will present experimental results when
executing matrix multiplication with different matrix sizes on
MPPSoC parameterized by the PEs number. In fact, matrix
multiplication is commonly used on almost intensive data
parallel algorithms. It is a very compute intensive task, but
also rich in computational parallelism, and hence well suited
for parallel computation.

In this work, we consider the basic algorithms for the
special case of square N x N matrices that fit exactly on a
N2 processor machine. When N becomes large, block matrix
multiplication is used to divide the matrix into smaller matrices
blocks. The matrix multiplication is defined as C=A*B, where
ci,j =

∑
k ai,kbk,j for all i,j.

At the end of the algorithm, each processor P(i,j) will hold
the element c(i,j) of the product matrix. Two core strategies
are employed in our implementations to minimize the ratio of
memory accesses: accumulate results in registers for as long
as possible to reduce write backs and re-use values in registers
as much as possible.

We need to multiply two matrices to form a third. So, we
consider the second matrix as a collection of column vectors,
with each one assigned to a separate processor, one can then
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Fig. 6. Time execution of 64x64 matrix multiplication parametrized by the
PEs number

perform the multiplication almost as fast as on the single
vector.

In our experiments, we consider in a first step multiplication
of two NxN matrices on N2 PEs; and in a second step a 8x8,
32x32 and 64x64 matrix multiplications are tested on 4, 16 and
64 PEs. So, in our algorithms we use matrix decomposition,
when needed, based on the number of processors available.
For example, with 4 PEs, we decompose our 8x8 matrix in
4 matrices blocks 4x4. A 8x8 matrix multiplication necessi-
tates that each processor performs 28 operations: 16 integer
multiplications and 12 integer additions.

During execution, a processor calculates a partial result
using the block matrices it currently has access to. When all
multiplication is complete, the ACU reassembles the partial
results to generate the complete matrix.

The figure 5 illustrates time execution, in cycles, to compute
the multiplication of a 8x8 matrix, a 32x32 matrix and a 64x64
matrix using three different parallel architecture versions with
4, 16 and 64 PEs.

We see clearly that when increasing the number of pro-
cessors performing the computation in the SIMD architecture,
the matrix multiplication speeds up and we achieve so fast
matrix-matrix multiplies. Test results show sustained high
performance when the machine comprises more processors.
This is due to the fact that each processor executes fewer
operations to produce its result.

when considering a matrix multiplication 64x64 and by
varying the PEs number, we notice that the time needed to
perform computation is almost linear with the PE number as
illustrated in Figure 6. In fact, with 16 PEs for example MPP-
SoC is 4 times faster than with 4 PEs. Therefore the speedup
is significant and in line with the number of processors.

So, we have tested a matrix multiplication parallel algorithm
and shown that it can be efficiently implemented in our
first MPPSoC prototype. Due to task partitioning, there is
no need for communications between processing elements.
However, matrix multiplication application should be more
efficient and easy when implementing it on a SIMD machine
with interconnection networks [17]. Thus, our futur goal is to
compare performances results when executing this application
on MPPSoC with interconnection networks.
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V. CONCLUSION

In this paper we presented a parallel SIMD architecture
model for SoC, called Massively Parallel Processor System on
Chip. It is composed by a sequential processor and controller,
the Array Control Unit (ACU), a grid of Processing Elements
(PEs) and regular and irregular networks. One design aspect
distinguishes our proposal from the others by designing our
architecture based on IP reuse. Using the same IP to provide
both ACU and PEs, offers a large gain in term of development
time. Our goal is to propose a methodology toward building
MPPSoC generic architecture based on IP reuse.

In this paper, we presented a first FPGA implementation
which is generic and allows the modification of the PEs
grid size and the memory length according to the application
requirements. We tested then our ptototype by executing a
parallel matrix multiplication application with different PEs
grid size. The exeprimental results show high performances
with the increasing number of processors and so with the
most massively parallel architecture to multiply large matrices.
This application will be more easily implemented considering
communications between processors.

So, future works consist on integrating the interconnection
networks in the MPPSoC architecture and execute more data
parallel applications. When implementing MPPSoC networks,
performance and reusability have to be addressed, in order to
reduce the time needed for an inter-PE communication and to
provide the topology suitable for the application respectively.

The ultimate goal is to build a generic MPPSoC with its
different components that should be reusable and adjustable in
several parameters such as bus width, memory size, number
of PEs and network topology. This parameterization makes it
possible to tailor the architecture for a specific application and
thereby increasing its effectiveness.
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Abstract— When physically implemented, Independent 
Component Analysis (ICA) algorithm can achieve a real time 
Blind Signal Separation (BSS). However, due to the limited size of 
the hardware device in microelectronics technology, several 
constraints can be encountered to reach the real time processing 
since the application of the ICA algorithm requires the 
consumption of a huge number of input signal samples. Hence, the 
system performance was degraded since we required the 
processing of an important number of memory circuits with faster 
hardware execution time. Therefore, in order to improve the 
hardware performances of the device, the authors proposed the 
sequential processing of one neuron hardware model based on 
Field Programmable Gate Array (FPGA) implementation. Such 
approach overcomes the consumption resources and the 
interconnections complexities of the FPGA architecture. Thus, an 
optimal hardware design can be proposed in which a maximum 
number of samples can be handled while maintaining high speed 
of hardware processing time. The proposed approach was 
demonstrated through an experimental study of TIMIT database 
exhibiting a hardware execution time of 3.3µs to process 10000 
samples with 57 kHz of sample rates to separate two output 
independent signals from two input mixed signals. 
 

I. INTRODUCTION 

   In the past, it was not possible to study the hardware 
implementation using complex algorithms of digital signal 
processing (DSP) in which we cannot exhibit a real time 
processing through hardware devices. Nowadays, the advance 
of Very Large Scale Integration (VLSI) technology over 
complex digital circuit design for hardware implementation has 
open the door to the design of Application Specific Integrated 
Circuit (ASIC) devices that provides high computation 
performance. Therefore, intensive research in DSP area has 
been made to resolve the problem of Blind Signal Separation 
(BSS) for real time processing. In fact, such applications have 
received a particular attention due to their efficiency in the area 
of communication systems, including wireless networks, and 
speech signals [1], [2]. Hence, it will be very interesting to 
study the application of complex BSS algorithms since the 

impact of their performances over real time processing 
becomes physically feasible on hardware devices. 

The BSS application is sometimes used interchangeably with 
the processing of Independent Component Analysis (ICA) 
algorithm, although, technically, BSS and ICA are different 
tasks. For simplicity, we used the instantaneous mixture of BSS 
algorithm, which is suitable for BSS application that yields to 
low computation cost. Usually, the ICA algorithm searches for 
a linear transform of mixed signal provided from multi-sensors 
array. But, the main task of ICA is often to eliminate the 
dependence computation of higher order statistics, in which the 
final target is to estimate as close as possible the independence 
of signal subsets [3], [4].     
    The computation of ICA algorithm requires a high number 
of iterations, thus a lot of arithmetic computation in the 
learning step of the neural network to adjust the updated 
weights. However, to overcome such high computation tasks 
required by the ICA algorithm, different authors used the 
mutual information approach. It can help reducing the 
computation cost over the theoretical computing of the gradient 
descent processing of the learning rule of equation [5], [6]. 
With the recent advances in programmable FPGA circuits, one 
can implement and quickly verify the hardware computation of 
the algorithm leading to low development time. Frequently, the 
hardware circuit designer is almost encountered with the 
limitation problem of the hardware resources in the FPGA 
technology since the processing of ICA algorithm uses a huge 
amount of FPGA memory blocks.  
   However, in order to improve the performances of the 
hardware ICA processing of the FPGA design, the authors 
combined in this paper the computation of implementation 
design and the sequential operation of the hardware neuron 
model. Such approach led to less complex hardware 
architecture [7], [8] with faster hardware execution time. Thus, 
the aim of the FPGA design is to reduce the hardware resource 
cost while improving the performances of its computation. 
Therefore, with a large number of both sample rates and 
computation iterations required to update weights, we can 
demonstrate the command of the processing block from a 
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simple implementation of a principal sequencer block, which 
can help control signals to process with the utilization of an 
optimal amount of data flow. In this context, a variety of 
related works have been done [9], [10], [11] to point out an 
alternative design which focuses on both the processing of high 
sample rates and faster hardware execution time, which 
presents the platform comparison of our results. In our 
hardware implementation, we introduced an FPGA design that 
uses higher frequency rates of system clock than Charoensak 
and Sattar [10], and lower sample rates than Kuo-Kai and Ming 
Huan [11]. Thus, several advantages become significant. In 
fact, an FPGA implementation of the Virtex II XC2V8000 
from Xillinx allows a faster hardware design and can evaluate 
the number of sample rates to be used accordingly to the 
hardware execution time.  
     In section II, we introduced the computation of the 
implementation design based on the optimized ICA algorithm 
processing. Section III presents the digital circuit design. The 
synthesis simulation results of the FPGA hardware 
implementation is presented in section IV.  

II.  COMPUTATION OF IMPLEMENTATION DESIGN 

The processing computation of the algorithm can be divided 
into three main steps: Computation of the update weight step, 
the accumulation computation of the convergence of update 
weight step and computation of the final weight step.                                                                                                                                                                                                        

A. Computation of the update weight step 

   In this step, the weight Witeij cycles were updated through a 
number of iterations, noted ite, until convergence. Then, the 
computation of the update weight will be as follow: 

For (i=1, 2,…, n) and (j=1, 2,…, n); 
 

                    ( ) ijijij 1)-(ite1)-(iteite W1µWW ε++=              (1) 

 
where ε is a stop criterion parameter defined as 

                          ( )∑
=

=
n

i
ii uu

1

ϕε < εmax                             (2) 

εmax is a constant that fixes the correctness of the update 
weight. φ is the nonlinear learning function of the natural 
gradient learning equation algorithm that adjusts the update 
weight Witeij  of the neural network; ui is the input synaptic of 
the neuron.  
φ depends on the computation of the sigmoid function of the 

nonlinear activation function f of the neuron. It can be 
approximated by the piecewise linear function [12] as: 
                                    

                                  ))(21()( ii ufu −=ϕ                        (3) 

and:                              ∑
=

=
n

i
jijj xu

1
1)-(iteW                         (4) 

where xj  is the input signal sample. 
  
After convergence, the updated weights will be: 

 

                       ( ) ijijij )1(c)1(cc kkk
W1µWW −− ++= ε               (5) 

 

where (1≤ ite ≤ ck) and (1  ≤ k ≤ M); M indicates the maximum 
number of the samples of the input signals and ck the maximum 
number of iterations in the convergence step (for each sample k 
of the inputs). The update weight will be normalized to keep it 
less or equal to +1, 
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         (6) 

where Wckijmax is the maximum value of the update weight 
before the normalization step. 

B. Accumulation computation of the convergence update 
weight step 

    In this step, the iterative accumulation computation of the 
convergence of update weight at each input sample k is 
performed until the maximum input M sample given by 
 

                                          ijcijaija kkk
WWW +=

− )1(
                    (7) 

where Wa(k-1)ij is the previous accumulation of the updated 
weights. The computation of the final accumulation of the 

updated weights ijcW is thus given by  

                                    ∑
=

=
M

k
ijcijc k

WW
1

                       (8) 

C. Computation of the final weight step  

The final weight is given by the computation mean over the 
processing of the input signal samples. It will be as follow:  

for (i=1,2,…,n) and (j=1,2,…,n); 
 

                                        
M

W
Wf

cij
ij =                               (9) 

III.  DIGITAL CIRCUIT DESIGN 

In this section, we illustrate the proposed methodology used 
for the digital circuit design, highlighting the optimization of 
the area size of the digital circuit to improve its performances. 
Thus, in order to save number of hardware resources that can 
reduce the area size of the digital circuit, we used a model to 
implement one neuron. Hence, the processing of the neurons in 
sequential operation can implement the ICA computation, 
which is related to the digital circuit design. Therefore, the 
three function blocks illustrating the application of the 
computation of implementation of the algorithm can be driven 
by a control block, in order to implement the neuron model. In 
Figure 1, the digital implemented circuit of one neuron is 
shown. It contains the implementation of the control block that 
command the implementation of the RAM block for weights 
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and inputs. Such block memorizes the information carried over 
unidirectional data, for the computation of the input synaptic 
and nonlinear function block, and over bidirectional data, for 
the computation of update weight block and the computation of 
the final weight block. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   We can transmit principally three signals from the 
implementation of the control block to process the selection for 
three demuliplexers implemented in the digital circuit of 
implementation of the neuron. The first one is implemented in 
the nonlinear function block to select the signal Sel1 that 
deviates the updated weights towards the block of the updated 
weights before convergence. The second one is implemented in 
the updated weights blocks before the convergence step to 
select the signal Sel2 that deviates the updated weights towards 
the final updated weights block after convergence, and the third 
one is implemented in the final updated weights block to select 
the signal Sel3 that deviates the updated weights stocking their 
final values in the memory of the RAM block. We 
implemented the normalization unit in the updated weights 
block to illustrate the final computation processing at each 
iteration of the input samples after convergence of the updated 
weights. Also, we can optimize the normalization unit by using 
a shift register that highly reduces its complexity. In the nonlin-
ear function block, the digital circuit of the activation function 
of neural network is optimized when using a piecewise linear 
approximation to implement the nonlinear sigmoid function 
[12]. Furthermore, we can also reduce the complexity of the 
digital circuit of the neuron implementation when the adder and 
the multiplier illustrating the computation of the arithmetic 
processing are implemented with a fixed point number 
representation. In the arithmetic computation, we used the 
implementation of the Mac1 (Multiplier, Adder, and 
Accumulator) to compute the input synaptic in the nonlinear 
function block. The implementation of the Mac2, with the same 
components as the Mac1, illustrates the computation of the 
information signal ε transmitted towards the control block to 
either test the convergence of the updated weights or the 
computation of their adjustment. 

From the digital circuit design of the control block, 
illustrated in Figure. 2, the diagram state of the control block 

associated with the signal condition indicates the sequential 
operation of the computation.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Hence, the block of the processing computation is 
commanded by eight main states, which are in turn controlled 
by two conditions. The first condition is used for the fifth state 
to test the information ε that illustrates the criterion 
convergence of updated weights, and the second condition is 
used for the sixth state to test the maximum number of the 
input samples. 

Then, we give the function of each state as follows: 

• State1 provides the signals that control the start up and 
the reset signals of the digital circuit of implementation. 

• State2 provides the signals that control the adjustment of 
two address registers; the first one is used to adjust the 
input signal memory and the second one is used to adjust 
the updated weight memory that processes the first 
iteration of computation.  

• State3 provides the signals that control the processing of 
the nonlinear function block and the updated weight 
block from the initial weight data in the first iteration 
step. 

• State4 provides the signals that control the adjustment of 
the first address register for the input signal memory, and 
the adjustment of the address register for the updated 
weight memory to process the next iteration before the 
convergence step.  

• State5 provides the signals that control the pipeline 
processing computation that processes the iterations 
illustrating the adjustment of both the updated weights 
for the present iteration and the value of the information 
ε computed for the next iteration (to adjust the updated 
weight step).  

• State6 provides the signals that control the accumulation 
of updated weights after the convergence step for each 
sample of the input signals.  

• State7 provides the signals that control the final value of 
the updated weights after the accumulation of the 
updated weight step.  

• Finally, state8 provides the signals that stop the 
processing computation of implementation.  

 

Fig.1 Digital circuit of one neuron implementation 
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A. Digital circuit of the processing block 
 
The different components of the digital circuit listed above are 
detailed in Figure.2 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Digital circuit of the control block 
 
  To generate the control signals in the control block shown in 
Figure 3, we used the eight states. Thus, we implemented two 
flip-flops to control the states S1 and S2 and six counters to 
control the remaining states. To illustrate the overall control of 
all the states, the digital circuit of the control block used the 
implementation of the main counter (MOD8) called counter1. 
In this Figure, N is the number of the input signals and M the 
number of samples of each input signal. These parameters are 

used along with the convergence information ε and εmax to turn-
on the digital circuit of the signal condition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV.  FPGA DESIGN AND EXPERIMENTAL RESULTS 

   To demonstrate our approach, we used the FPGA software 
developing platform ISE 6.1 proposed by Xilinx. However, it 
has been found that 16 bits was the most suitable format of bit-
width data for the fixed point binary number for both the input 
samples xi and the synaptic weights Wij. Thus, we implemented 
the digital circuits of the control block and the processing 
block to show the effects in terms of the limit size and the 
execution time. The hardware device we used to illustrate the 
FPGA design was the Virtex II XC2V8000. First, we generated 
the synthesis results of the hardware neuron model wrt the 
maximum size. We obtained a successful processing of the ICA 
learning algorithm based on the FPGA implementation of the 
neural network to adjust the updated weights from two input 
mixed signals of 10000 samples for TIMIT data base to 
separate two output independent signals.   
 

A. System level of FPGA design  

   As for the FPGA design of the ICA algorithm, Du and Qi [9] 
implemented the hardware of the pICA algorithm for 
Dimensionality Reduction in Hyperspectral Images to process 
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2 input signals for system clock frequency up to 20.161 MHz. 
In 2005, Charoensak and Sattar [10] used the FPGA device of 
the Virtex–E family to implement a BSS algorithm that 
processes 8 kHz of sample rates and 64.4 MHz of system 
clock. Later, in 2006, Kuo-Kai and Ming Huan [11] used an 
FPGA design with the implementation of the FasICA algorithm 
in the Altera device, reaching 192 kHz of sample rates and 50 
MHz of system clock.  
   Increasing the number of input samples will lead to more 
complex implementation knowing that the hardware can handle 
limited memory circuits.  
   Therefore, we studied the acquisition of the required input 
samples that can achieve a signal separation for each related 
work in FPGA design based on the ICA algorithm. In our 
FPGA design, the maximum required input signal that can be 
implemented is increasing with the number of memory circuits 
available (with respect to the FPGA capacity).   
   In Tables I and II, we compared the simulation results of our 
FPGA design with other published simulation results. 
   In order to evaluate exactly the performances of the obtained 
results, we illustrated the computation of the normalized 
learning time in Table III. It contains the implementation of the 
ICA algorithm based on ICNN [6] and the implementation of 
the FastICA algorithm [11]. We introduced another parameter 
to validate the computation of results; called the ‘performance 
value’, this parameter is proportional to the learning time and 
the number of input samples, and inversely proportional to the 
number of cost slices as well as the maximum frequency.  
 
 

TABLE I  
COMPARISON OF OUR SIMULATIONS WITH PUBLISHED RESULTS 

 

Implementation 
FPGA 
circuit  

Cost 
(slices) 

Learnin
g time 
(µs) 

Sample 
rates 
(kHz) 

Frequency 
Max 

(MHz )  

Implementation of  
ICNN[6] 

Xilinx 
Virtex  
XCV 
 812 E 

12271 6.44 _ 50 

Implementation of  
pICA algorithm [9] 

Xilinx 
Virtex 
V 1000 

E 

11318 _ _ 20.161 

Implementation  of 
BSS algorithm [10] 

Xilinx 
Virtex-E 
family 

 

_ _ 8 64.4 

Implementation of 
FastICA algorithm 

[11] 

Altera 
company 

_ 5.2 192 50 

Implementation 
of  our ICA 
algorithm 

Xilinx 
Virtex II 
XC2V 
8000  

5500  3.351 57.53 185.580 

 
 
 

TABLE II 
DIFFERENT INPUT SAMPLES ACHIEVED IN FPGA IMPLEMENTATION OF ICA 

 
 

FPGA 
circuit  

Xilinx 
Virtex 
XCV 
812 E 

Xilinx 
Virtex 

V 1000 E 

Xilinx 
Virtex-E 
family 

 

 

Altera 
Inc. 

Xilinx 
Virtex II 
XC2V 
8000 

Input 
samples 500 6000 6000 1000 10000 

 
TABLE III   

THE VALUES OF PERFORMANCES RESULTS  
 

Implementation FPGA circuit  Performance value 

Implementation of  
ICNN[6] 

Xilinx Virtex  
XCV 812 E 0.0052 

Implementation of 
FastICA algorithm [11] 

Altera Inc. _ 

Implementation 
of  our ICA algorithm 

Xilinx Virtex II 
XC2V 8000  0.183 

 
   Then, the degree of the performance value of our 
implementation is 35.2 higher than the performance value of 
the ICNN implementation [6]. Consequently, the performance 
value demonstrates that we handled a maximum normalized 
number of input samples through an optimal value of the cost 
of slices with faster processing time. Such result is useful to 
reach a high speed of the hardware execution time when the 
target is the real time processing. 
 

CONCLUSION 

  The FPGA design based implementation of one neuron model 
has reduced the area size of the digital circuit since we can get 
the BSS processing by sequential operation. Thus, we used 
fewer calculations in the ICA algorithm, mainly due to the 
computation of implementation design and the ICA model 
computation. Therefore, the most significant advantage of the 
digital circuit architecture is the use of one parameter that can 
be adjusted to control the updated weights in the learning 
process of the neural network. Furthermore, we significantly 
improved the hardware implementation performance that 
supports a maximum number of input samples that can 
maintain a high speed of hardware processing time. Hence, the 
performance results are satisfactory when the application was 
performed on speech signal separation. Thus, the BSS 
performance was not degraded when we utilized the FPGA 
design that can improve the processing time of the updated 
weight convergence. As future investigations, we plan to 
exploit the synthesis of the proposed FPGA design based 
implementation of the ICA algorithm to identify radio 
frequency signals. In fact, we have there a long processing time 
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to solve the anti-collision problem due to several radio wave 
signals.    
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Abstract—We present a fine-grain parallel processor
chip which can be embedded in very compact machine
vision systems, e. g. in 3d stacked die assemblies.
Smart and fast vision systems are frequently required
in industrial environments to automatically detect and
inspect objects, e. g. on an assembly line. The chip die
has a size of 5 x 5 mm2 and is manufactured using a
0.18 µm CMOS technology. The chip processes binary
images with a maximum resolution of 320 x 240 pixels
(QVGA) supplied by a separate closely-linked image
sensor array.
It is possible to process an image in multiple cycles
where a set of morphological operations can be subse-
quently combined depending on the image processing
problem. In addition the chip is able to compute more
complex user-defined programs, e. g. to skeletonize
images. The output data can be a preprocessed image
or projection representations in horizontal, vertical and
diagonal direction, which reduces the data amount.
Therefore a faster image post-processing is supported,
e. g. to calculate object’s momenta. The chip is driven
by a 40 MHz clock. As result a base morphological oper-
ation including image in/output needs only 250 µs. For
even faster data in/output a ROI (region of interest)
can be defined. Two standardized interfaces (JTAG,
SPI) allow to parameterize as well as to program the
circuit.

I. Motivation and Preface

The motivation to present that paper emerges from
a clear tendency to substitute PC-based standard ma-
chine vision systems with smaller and faster embedded
components. A number of different ways to process the
data amount of image sensors are described in the liter-
ature, e. g. smart cameras based on high quality sensors
and FPGAs [1], [2], asynchronous/synchronous techniques
(ASPA) to process local operators introduced in [3] or
smart cameras as embedded systems [4]. Our way to
manage fast subtasks within image processing systems is
to use application specific integrated circuits (ASICs) as
basic platform. The advantages of ASIC based components
confront with their main weakness: the inflexible and fixed
instruction set. To meet that we present a so called ASIP

(application specific instruction set processor), which com-
bines an instruction subset of a GPP (General Purpose
Processor) with the speed of an ASIC [5]. Our work
shown here bases mainly on [6], where we have presented
a fine-granular parallel architecture to manipulate binary
images in a fast and applicable way. In [7], [8] and [9]
programmable grey value image processing architectures
using higher level operators are introduced where the
sensor is an integrated part of the circuits. By contrast we
intend to separate the sensing and processing functionality
due to the advantageously use of different CMOS process
nodes for both sensor and processor as shown in [1] and
[10]. Our design strategy can be summarized as follows: to
integrate not as much as possible functionality but rather
as much as required to fulfil the desired specifications. A
certain subset of industrial applications are well defined
concerning the illumination and the clearness of object
and background pixel information. Therefore a complex
grey value arithmetic is not required in each case.

1. real scene

4. improved binary image  

Further processing
(robot control)

Embedded Vision System

2. grey scale image
    representation

image segmentation

// Physical attributes 
centroid = [5.3 4.6]
orientation = 35 °

image sensing, AD-
conversion and read out

      CMOS-Imager

3. raw binary image
    representation

image enhancement,
removal of disturbance 

 5. x, y and diagonal    
     projections

calculation of
projections

ASIP

calculation of
object centroid and 
orientation

FPGA

Fig. 1. Image processing flow
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Before we explain some details of our system architecture
we point out the characteristic data processing flow of the
considered machine vision system where our processor chip
will work. Figure 1 illustrates a generic procedure of the
embedded machine vision environment. In the beginning
a real scene is captured by a CMOS image sensor and
converted to digital values (1). Afterwards the gray scaled
image is segmented (2) and we receive a raw binary image
representation. The quality of the image is improved by
applying e. g. morphological filter operations (3). In the
next step we will calculate diagonal, vertical and horizontal
projections of the binary image (4). This means simply
that pixels are counted what can be perfectly parallelized.
This information can then be used in the next step to
calculate the object’s centroid and orientation, what is one
of the most important tasks in industrial image processing.
For step 1 we can use a commercial CMOS sensor as well
as a sensor which was especially designed in our project.
The steps 2 and 5 are solved by hardwired algorithms
implemented in a low-priced medium class FPGA (field
programmable gate array). An FPGA is the most practical
solution to solve that, not only to compute the segmented
image representation (such algorithms are highly appli-
cation specific and should be configurable), but also to
calculate the object’s physical attributes like moments of
first (centroids) and second order (orientation) what has
to be performed in step 5. The steps 3 and 4 are calculated
in our ASIP chip which is the core of the embedded real
time vision system and which is the main task we present
in this paper.
In particular the performance of the image processing sys-
tem to be designed depends on the following parameters:

• total latency of the system image sensor – image
processor

• the frame rate (time resolution)
• the number of the processed pixels (lateral resolution)
• the number of bits per pixel (color/gray scale depth)

These variables span a parameter space, where some com-
binations of them represent a certain application area.
The application range of our imaging system covers high
speed time resolution tasks (fast image sequences), short
latencies, though a lower lateral resolution. The achievable
color/gray scale depth depends on the used image sensor
and its AD converter unit. In detail we aim to an image
frequency of more than 500 Hz and latencies shorter than
5 ms from the start of the image capturing process until
the availability of the results.
The rest of the paper is organized as follows. Chapter II
presents the ASIP chip architecture, chapter III addresses
the basic design characteristics and the chip layout. In
chapter IV an embedded system for machine vision ap-
plications is introduced where our ASIP is a part of it. To
illustrate the ASIP functionality an application example
is given. The paper closes with some conclusions and an
outlook.

II. Chip architecture

In this section our chip architecture is described in a
top down manner. We will start with a presentation of
the main functional chip components at a glance (II-A).
The most important of them are the processor core (II-B),
the control unit (II-C) and the pixel counters (II-D).

A. The ASIP at a glance
Figure 2 shows a block diagram of our ASIP’s architec-

ture. The chip is separated into seven functional modules:
• Data IO (pad array)
• Boundary scan chain
• Control unit
• JTAG/SPI control
• Horizontal counter array (320 eight bit incrementers)
• Vertical counter array (240 nine bit incrementers)
• Core (main processing unit)

Before the chip can work properly it has to be initialized
by writing programming data either onto the JTAG [11]
or the SPI control interface (thick black arrows on the
left). After the configuration is done the image processing
procedure is performed in the following way:
A binarized input image is read in via the data input pads
into the processing core either serially (slow mode) or in
a parallel fashion (fast mode) using up to 16 channels
(upper striped arrow). The control unit receives and
interprets the configuration data (thick vertical arrow) in
order to drive the computation modules. Hence the core
module executes the image processing operations (thick
horizontal arrow).
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Fig. 2. Block diagram of the image processor

To count pixels in X, Y and 45 degree angle direction
the horizontal and vertical counter arrays can be accessed
(thin arrayed arrows). The counted results are required to
determine the centroid and the orientation of objects. Ei-
ther the processed image data (16 one bit channels) or the
pixel counter results (17 one bit channels) are shifted out
on the same (multiplexed) output ports (bottom striped
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arrow), monitored by a protocol signal bus. The modules
are described in more detail in the following subsections.

B. Image processing core

The core performs image preprocessing operations in a
parallel fashion. To realize that the image to be processed
has to be split into line-based clusters. Such a pixel cluster
is serially processed by a PE whereas all clusters are
processed in parallel. Figure 3 illustrates the basic core
architecture. We call one PE including the corresponding
storage resource (pixel and result registers 1 .. M) a
multiplexed PE (MuxPE). Two register files are required
to store both the original image and the result image. The
reason is that each step to compute a single cluster pixel
requires the neighbored pixels of the original image as
input data. The PE (processing element) on the central
position (with the ingoing black arrows) has signal inputs
from the eight directly neighbored image pixel registers.
The computation is subdivided into two steps: A new
result pixel is calculated as result of a binary relation
between the own pixel value and the neighbored pixels
and stored into the respective result register.

1 2 ... MPEPE

PE

1 2 ... M

M 2 1...M 2 1...

PE

PE

PE

PE

PE

1 2 ... M

1 2 ... M1 2 ... M

M 2 1...M 2 1...

M 2 1... M 2 1... PE

PE

PEPE

1 2 ... M

Fig. 3. Core architecture

The second step is a shifting operation, where the entire
origin image and the result image is shifted to the next
register cells in eastern direction. The procedure loops
until all pixels in a cluster are processed.
During the computation process the two images (origin
and processed image) are synchronously moved within the
register files. To prevent data loss the pixel register output
at the end of each processing line is directly connected to
the first pixel register’s input. Hence each processing line is
folded to a ring on its middle, where the rings are stacked
one upon the other. Further information and more details
about the core architecture are given in [6].
To integrate the ROI functionality we use a scheme illus-
trated in Figure 4 which is easy to realize due to the folded
processing lines. During the data read in the switch S0 is in

position o. Before the computation it toggles to position I
to form a closed ring. Between each multiplexed PE block
(MuxPE with 16 bit register) one of the seven 2 to 1
multiplexors S1...S7 switches the data channel in order to
the required horizontal image resolution in discrete blocks
of 32 pixels. For the given example the closed switch S5
provides the shifting of 160 pixels at all within the ring
register. At maximum resolution (240 pixels) all switches
have to be at position o.
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Fig. 4. ROI switching scheme

C. Control Unit

The basic function of the control unit is to generate
and distribute control signals to drive the computing units
(core and pixel counter arrays). To provide the basic
morphological operations (e. g. edge detection or open-
close loops) a standard instruction set is implemented. It
can be accessed by loading single instruction words at the
peripheral JTAG or SPI master controller. To perform
more complex instruction sequences (e. g. the skeleton
algorithm [12]) the control unit is free programmable by
transmitting operation sequences via the JTAG or SPI
interface. To store such a micro program a 512 byte
register file is a fixed part of the control unit. The control
unit is designed as a state-machine represented in Figure 5,
triggered by the input image protocol signal frame valid.
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image
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count

process

counter
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output
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Fig. 5. Simplified state machine of the control unit

A new image macro cycle starts when the image enable
signal goes to logic high level. The state machine leaves
the wait status (1) and enables the core logic to store
the image data (input mode, 2). After the read in the
control unit switches to the processing mode (3), where
the desired micro programs are executed to manipulate
the image. A mechanism to adjust horizontal data offsets
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(4) evoked by the processing tasks is provided before the
image is put out or is committed to the pixel counters. All
image processing macros can be supplemented with the
pixel counting process to get the image projections (5).
Each image macro step is finished either by the image (6)
or the counter data output process (7).

D. Pixel counters

The pixel counter arrays are designed as parallel integer
incrementers where each of it counts the pixels of one
image row (vertical counter) and accordingly one image
line (horizontal counter). All counters are enabled when
the result image pixel has the logical value ’1’.
To count in a diagonal fashion a scheme shown in Figure 6
is applied. The pixel field is shifted alternately in vertical
and horizontal direction on each clock cycle. The hori-
zontal count enable signal c hor ena controls the horizon-
tal counters whereas its inverted logical value c vert ena
controls the vertical counters. Hence one complete count
process requires 2 (Nx + Ny) steps where Nx is the
horizontal and Ny the vertical number of pixels.

  

...

...

...

...

clk

c_hor_ena

c_vert_ena

Pixel counters Core

Fig. 6. Pixel counting scheme

III. Design parameters and chip layout

Table I shows the primary design parameters of the
ASIP chip. The chip size of about 5 mm x 5 mm is the
basic constraint, which affects the given image resolution
and the number of pixels in a serially processed cluster
(M , multiplex coefficient). For our chip we have to balance
between an feasible image resolution, the given timing
constraints, the limited chip area and the die costs because
for prototyping purposes the fab supported only quadratic
tiles of exactly 25 mm2 as smallest area unit. Hence there
were some difficulties to place the design onto the given
chip die area shown in Figure 7. The main modules are
located like Figure 2 demonstrates it.
We point out, that the core logic cells occupy more then
98 % of the available module area. The logic signal pads
of the core limited design are located on the left chip side.

All remaining connections (at the top and bottom side)
are at most core supply voltage pads.

Parameter Value

Die size
Die width 5 mm
Die length 5 mm

Bonding pad pitch ≥ 64 µm
Process node UMC 0.18 µm 6m MIM
Number of pads

IOs 54
Power supply 54

Power supply voltage 1.8 V (core), 3.3 V (IO)
Power consumption
(only core, simulated) ≈ 1 W
Programming interfaces JTAG, SPI
Number of processor
elements 4800
Pixel multiplex factor 16
Clock rate 40 MHz
Image resolution (max.) 320 x 240

TABLE I

primary design parameters

Due to the lack of vertical space these pads could not be
placed in a regular orientation. Unfortunately we could
not use a standard package offered by the fab to enclosure
the circuit because too many bond pads are located on
the left circuit edge. To bond and cover the chip we access
a project’s co-partner specialized in electronic packaging.
We prefer a COB (chip on board) technology, where the
chip is directly fixed and bonded onto the base circuit
board, together with the sensor chip die.

Fig. 7. Image processor chip (GDSII view)

The achieved processing time per image reflects the char-
acteristics of our massive parallel architecture. Instancing
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a simple task like a built-in EROSION operator each pixel
processing step requires n = 20 clock cycles. Then the
processing time tp of one complete image processing task
is calculated as follows:

tp = Tc(Mn + (Nx −M)) (M < Nx) (1)
= Tc(M(n− 1) + Nx) (2)

In each MuxPE M pixels are processed in n steps (M ·
n). Furthermore the image offset has to be corrected with
(Nx − M) clock cycles per macro operation in order to
get valid output data. If we assume a multiplex coefficient
M=16, a clock period time Tc of 25 ns and an image width
Nx of 240 pixels, then we will receive (3) for tp:

tp = 25 ns · (16 · 19 + 240) = 13.6 µs (3)

Processing action time/µs

Data read in (full resolution)
via 16 single bit channels 120
via 1 single bit channel 1920

Data processing times (full resolution)
Output: result image

OPEN operator 23.5
Data in/output
(16 single bit channels) 240
Total time 263.5

Output: Projections
Data input (16 single bit channels) 120
OPEN operator 23.5
pixel count
(x,y and diagonal projections),
projections data output
(17 single bit channels) 56.5
Total time 200

TABLE II

asip execution times

image processing system

1. start system 2. boot / init 5. ready
(idle or scan)

6. event occurs
(activ or passiv)

7. light on, adjust
shutter, take picture

8. transport, filter,
store image data

9. process
image data

10. output
decision

3. watchdog

4. error

Fig. 8. Basic image processing system

As Table II shows the data read in/out process is the
most time consuming task. Once the image is read in it
can be manipulated in a very fast fashion. We remark,
that the more image processing steps are carried out, the
more processing time is required (e. g. OPEN operator:
23.5 µs). It is obvious, that the on-chip pixel counters
reduce the data amount. In the first case 76800 bit values
(320 x 240) are put out, in the second case only 19040 bits
at all (2 (Nx + Ny) on 17 channels).

IV. Imaging system and application example

Considering a simple embedded image processing sys-
tem composed of some compound states1 shown in Fig-
ure 8 it is possible to visualize behavior, function, data flow
and the integration of our ASIP (box with bold letters).
On standard conditions the usual system start-up proce-
dure would be to provide global reset signals to all system
components and check their status (state 1). Now the basic
initialization, tests and identification of our ASIP and all
involved peripherals can take place (state 2). This includes
loading the counter of our watchdog, which detects system
failures (3) and reporting the successful task to an error-
log state machine (4).
If everything went well, the system enters state (5), ready
for some machine vision tasks, if not it will fall back
to state (1) to try again or to stop working. While the
watchdog needs to be updated from time to time to
prevent the system from an unwanted soft restart, there
is not much to do in state (5), a good chance to invoke
some suspend or power-saving mode, until some expected
external event occurs causing a transition to state (6). This
can be a simple digital PLC2 trigger pulse generated by a
light barrier. The event needs then to be verified to take
the regular action before the control will be taken over by
state (7), where a camera component captures the relevant
image. Meanwhile, if required, a precise adjustment of the
ASIP and the sensor parameters can be carried out.

1A state that can contain an entire state machine within it
2Programmable Logic Controller
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In state (8) some early image preprocessing like shading
correction can be done and the pixel data stream will be
further passed through to our ASIP architecture which is
represented by compound state (9) in Figure 8. Finally a
decision has to be made in state (10) whether the sample
under test passes the predefined criteria or not.

1

2a 2b 2c

2d 2e 2f

3

TABLE III

application example (image 1a by courtesy of V&C GmbH)

The solution will usually be presented as a logic PLC
output value to achieve a high processing speed. Any
possible severe error will be recognized and reported,
causing the system to enter state (4) before it is doing some
attempts to soft restart the system represented through a
gray arrow pointing towards state (1). After some relaxing
time the system is ready again to await the next external
event.
Considering the entire system as a black box, the main
overall system performance is mainly defined by the delay
between a trigger input and the generated trigger output
illustrated by black dotted arrow lines entering and leaving
the image processing system. Table III gives a typical ap-
plication example, how the functionality of our prototype
chip can be used to inspect a rim. The example task shown
here is to find out the positions of the five mounting holes
(e. g. to automatically carry the rim to another production
line in a save way). The presented images are the result of
a chip simulation at system level.
The built-in ROI functionality of the sensor crops the
image to the required size (sub-figure 2a). After the bi-
narization with a fixed threshold some disturbances (holes
in the rim shape, obsolete pixels on the background) have
to be removed. The processor is able to receive the image
with the same size in x and y dimension like the sensor
has captured it. The result of a first erosion operation is
sub-figure 2b; in 2c, 2d and 2e the results of three dilate
operations are shown. Two erosion operations shrink the
foreground object to its origin size (2f and 3). In addition
sub-figure 3 illustrates an overlay of the raw image (1) with
the computed image.

V. Conclusions and outlook

In machine vision object detection and classification
is a common application, e. g. to inspect automated
product pipelines. The algorithms to segment images, to
identify certain objects out from a set of objects known in
advance, and to detect their position and their orientation
within few milliseconds with cheap hardware is both
an economically important and technically challenging
task. To meet that we designed a massively parallel
programmable ASIP processor chip which is suited for
the integration in small embedded vision systems fulfilling
real-time tasks. We solved this by a micro-programmable
parallel on-chip architecture which allows e. g. the
programming of fast image segmentation operations.
This programmable structure is supported by additional
counter resources to extract certain features like the
moments of zeroth, first and second order to compute
rapidly, area or centroid resp. orientation of detected
objects.

This work shall highlight hardware implemented pre-
processing methods to avoid too much redundant image
information, which otherwise has to pass through mostly
too expensive and often too slow standard PC-based com-
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ponents. That way is possible since industrial scenes are
often clearly defined in illumination and the constitution
of objects. So we can reduce images to their essential in-
formation, at a fraction of the origin data amount. A two-
dimensional gray scale image representation is mostly not
needed anymore. The data reduction process begins at the
image binarization. By determining the image projections
only a quarter of the binary image data amount has to be
submitted to the further computation process. The effect
is a crucial reduction of the data transmission and com-
putation times. The image resolution (320 x 240 pixels)
of our prototyping chip is a consequence of the limited
silicon area. The pixel resolution of later manufactured
chips may be larger without that constraint. The generic
design description would support this.
Further works in progress engage with bio-inspired algo-
rithms [13] to determine objects centroids more efficiently,
more precisely and even faster as the methods described
above.
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Abstract—  Freeing  the  constraints  that  the  languages 
meant to be used for software development and those used 
to  describe  hardware  should  be  similar  with  respect  to 
arithmetic  capabilities,  this  paper  attempts  to  motivate 
mixing  dynamically  changeable  formats,  in  high  level 
description languages.   A  perspective  on  the  most  often 
used computer formats, precedes the presentation of few 
arithmetic design trends, which leads to the creation of a 
map from desirable  capabilities  into HDL requirements. 
A few encouraging steps are then exemplified.  

I.INTRODUCTION

One of the first options faced by the designer of a digital 
system  including  arithmetic  computations  is  wether  that 
system should be implemented in hardware or software. For 
many years the software implementation was more attractive, 
mainly  due  to  rapid  progress  of  compiler  technology,  the 
mass-production  of  microprocessor  devices  and  the 
availability of a good number of software engineers. Demand 
for increased DSP computational throughput and low power 
considerations  lead  to  gradual  migration  from  the  general-
purpose processors to specialized programmable DSP devices, 
with the alternative to a microprocessor implementation being 
a custom digital hardware. The hardware approach improves 
speed and reduces the power consumed, but still suffers from 
the lack of mature high-level design tools.  Development  of 
expensive tools becomes more attractive when there is a better 
understanding of the problems they address, but the promise 
of fostering innovation and avoiding building commodities is 
preserved.  This  motivated  the  writing  of  this  paper,  which 
initially attempted the following: 

• Identify major trends in the design of custom hardware 
for arithmetic algorithm implementation;
• Map  those  trends  into  desired  capabilities  for  the 
methodologies  based  on  popular  hardware  description 
languages  (HDLs);
• Extract requirements for the HDL extensions,
• Discuss the first known steps in the right direction, made 
by standard organizations or private efforts.

Additionally,  an  attempt  was  made  to  clarify  why  the 
arithmetic  support  mandated  for  classic  programming 
languages,  and  that  required  for  hardware  description 
languages  (HDL)  supporting  system  design  and  computer 
arithmetic optimisations is and should remain different.  The 
first kind of support is driven by the need to hide the hardware 

(platform) details from the language user, ensure portability, 
etc., while an HDL is best when it enables convenient control  
and refinement of  the hardware details.  On the other  hand, 
poor  HDL  design  equates  software  development  language 
arithmetic  requirements  to  those  for  languages  describing 
hardware performing arithmetic computations. While this was 
less  visible  in  the  past,  the  massive  recent  progress  in 
hardware capabilities, the trend to start the design above RTL, 
and the  pressure  to  early-optimise  designs  for  performance 
(including power), makes mandatory the clear understanding 
of  the difference,  and its  manifestation   in modern HDLs. 
Adding to that is the need to conveniently describe, and many 
times  refine,  re-configurations  of  arithmetic  computations, 
graceful  degradations,  redundancy  in  computations,  all 
enabled  by  the  dramatic  recent  progress  in  re-configurable 
devices. 
Early  concerns  were  only  about  integer  numeric  types  for 
synthesis  [4].  Those  were  followed by the  need to  address 
floating and fixed-point types [1]. The possibility of run-time 
dynamic HDL fixed and floating point types, based on unified 
(across  HDL languages)  type  descriptors,  was  flagged  in  a 
report  in  early  2006  [5].  A  study  of  HDL  arithmetic 
capabilities as they appeared in VHDL, Verilog, and ELLA 
was  published  in  [2].    Today  there  are  good  ISO/IEC 
standards  that  describe  the  software-driven  language 
requirements  for  arithmetic  support  [6]-[10].  An 
implementation  of  variable  precision  hardware  building 
blocks described in HDL appears in [11]. 
The structure of this paper is as follows. A perspective on the 
most often used computer numeric values, and some widely 
impacting  basic  properties  (section  II),  is  followed  by  the 
presentation of few arithmetic design trends (section III), and 
their  map  into  HDL  requirements  (section  IV),  section  V 
covers a few encouraging steps already taken using examples. 
Conclusions  and  some  ramifications  are  summarized  in 
section  VI.  Mathematical  notations  are  only  used  to  avoid 
lengthy repetitions. 

II.GENERAL OVERVIEW OF COMPUTER NUMERIC VALUES   
Digital  computer  arithmetic  deals  with  manipulating 

numeric values encoded into strings of bits, and belonging to 
particular subsets of  Z  or  R , i.e. integer or real values. Of 
particular interest are integer  unsigned values, integer  signed 
values,  fixed-point values  and  floating-point values.  All 
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numeric values are in fact real1 values, and the boundaries of 
the subsets are determined by the length of the string of bits 
used for encoding, and by the representation scheme. Using a 
bit  string  of  length  n ,  at  most  2n different  values  can  be 
encoded,  but  the  values  may  be  either  uniformly 
(equidistantly)  or non-uniformly distributed.  Throughout the 
paper notations that are closer to those used in the ISO/IEC 
standards  [6-10]  will  be  used.  Some  newer  ones  will  be 
introduced.  Five  families  of  sets  are  first  introduced,  and 
summarized in table I.  Then a few interesting properties are 
enumerated.  

Α.Families of Sets Containing Numeric Computer Values

Given  a  positive  integer  n ,  the  sets  n and  n will 
contain all unsigned and signed values respectively, which can 
be  encoded  with  n  bits  using  positional  binary  and  two’s 
complement encoding respectively. Given p ∈  ,  ,n p will 
denote  the  set  of  all  fixed-point  numbers  which  can  be 
represented using a bit string of size n , where parameter p
represents the displacement of the binary point from the LSB. 

When sign-magnitude encoding is used one bit encodes the 
sign,  while  with  two’s  complement the conventions  are  the 
same as for  n , and the value is multiplied by  2 p− . When 
two’s complement representation is  used for the fixed-point 
values we will denote their set by  2'

,
s

n p .  Finally, the set 

,m e  contains all floating-point number values, which can be 
encoded, using the binary representation mandated by IEEE 
Std.  754/854 [13] conventions, where  m  is the number of 
mantissa bits (significant field size), and e  is the number of 
exponent bits.

Parameterised  sets  2'
, , ,, , , ,s b

n n n p n p m e      form 

families indexed by positive integers  ( , , )n m e , integer  p , 
and the set {2,10}  for b . The union of each such family will 

be denoted without indexes as  2', , , ,s b     or  [ ]b . 
Let the union of all these sets be  . When the size of the 
bit string available (or used) to encode the    elements is 
limited to  n , the set will  be denoted as  n .  Note that it 

could be shown that   includes  . However, n  is just 
a subset of the rational numbers2. 

TABLE I
COMPUTER ARITHMETIC SETS OF REAL NUMBERS 

1  These values are, restricted to be only rational numbers 
{ / : , }p q p q ∈  , for which q is a power of the base, but to 
simplify notation, we will refer to those rational numbers as just 
real numbers, especially when the fraction form is not relevant.

2A wider subset of the rational numbers is / (2 1)k
n − , 

and that is because any rational number can be written as 
/ (2 (2 1))p kN −  for some integers , ,N p k .

Five Set Families Forming 
Set Name Bit Encoding    Value

n Unsigned 
12n−      …    12  02 1

0

2
n

i
i

i
b

−

=
∑

 

n Signed

1
1

2

0

2

2

n
n

n
i

i
i

b

b

−
−

−

=

− +

∑

,n p
Sign-
magnitude 
fixed-
point 

1

0
2

2

n
i

i
i

p

b
−

=
∑

2'
,

s
n p

Two’s 
compleme
nt fixed-
point

1
1

2

0

( 2

2 ) / 2

n
n

n
i p

i
i

b

b

−
−

−

=

− +

∑

,

{2,10}

b
m e

b∈

 Base b 
floating-
point

s exp f

me
exp1

( 1) { }.
0

s f b− 

,
b

m e  
Floating-
point 
including 
special 
conditions

Β.Some Computer Numeric Value Set Properties
There are a few obvious, properties involving the sets just 

defined. The most important ones are categorised and listed 
below. 

1)  Same Family Set Inclusions:

1

1

, 1, 1

, 1,

, . 1

n n

n n

n p n p

b b
m e m e

b b
m e m e

+

+

+ +

+

+

⊂
⊂

⊂

⊂

⊂

 
 
 
 
 

2)  Mixed Family Relations:

1

,0

2 '0

n n

n n

s

+⊂
=

∈    

 
 
    

3)  Fixed  Point  Sets  Including  Floating  Point  Sets:  The 
floating-point formats provide for a much wider dynamic 
range than fixed-point formats. Therefore, it is not expected 

, { , 0, , }b
m e NAN− ∞ − + ∞UF

bn-1, bn-2,…b1, b0

bn-1, bn-2,…b1, b0
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that for comparative sizes any set from the   family would 
be  included  in  one  from the    family.  However,  it  is 
interesting to know what are the smallest numbers  n  and 
p  for which 2

, ,m e n p⊂  , and wether they always exist. 
The following proposition gives the answer.

Proposition 1: For any pair ( , )m e  of positive integers,

there is a pair ( , )n p  of integers, so that 2
, ,m e n p⊂  .

One simple proof is to find the smallest values satisfying
    the inclusion relation. 

Those are:

  min

min

1 max ( min)
( min)

n e abs e m
p abs e m

= + + +
= +

where emax and emin are the maximum and the minimum
 values of the exponent of 2

,m e . 

Example 1: Given 2
48,9 , we find that emax = 255 

 and emin = -254, then minn = 1+255+254+48=558
 and minp =255+48=303. 
Therefore, 2

48,9 558,303⊂  . 

4)  Arithmetic  Operations  Closure:  Defining  arithmetic 
operations   º  { , ,*, /}∈ + −  for  sets    with 

2'
, , , ,{ , , , , ,[ ]}s b b

n n n p n p m e m e∈        requires 
either that the result be considered in another set from the 
same family, the reduction of the domain to less than 2 , 
or the use of special extra artificial elements. For example, 
the + operator can be evaluated for all pairs from 2

n only 

if the result is considered in 1n+ . This makes the correct 

definition  for  the  addition  in  n  to  be  something  like
2

1: n n++ →  .  The  set  2
1 ( ( ))n n+ − +  3 is  in 

general  mapped back into  n  using either  a  convenient 
correspondence, or the mapping is left to be consequence of 
the hardware implementation. What was exemplified here 
for  n  similarly occurs for all arithmetic operations and 
all sets  . There are three cases to be considered for      º

2: →  . 
1.Result belongs to  .
2.Result is between two elements of  . In this case 
a rounding scheme has to be specified4, which 
designates the choice for one element to be the result 
of that specific application of the operation. 

3 The '–' sign represents here the set difference, while '+' denotes the 
name of the addition operator (as a function). 

4 Like those classic and well known, to nearest, towards infinity, 
truncate, etc. The particular rounding scheme is not relevant for 
this discussion. 

3.Result is not between two elements of  . Special 
rules are specified about what is the result. This cases 
deal with pairs for which the operation is not defined, 
or it is outside of the range of   because   does 
not contain ± ∞ . 

This is the semantic when the families (as categorized in 
Table  I)  are  not  mixed,  and  the  best  effort  is  made  to 
provide a result in the set both operands belong to. While 
this  could  be  a  desideratum  for  some  fixed  type 
programming languages,  simple examples  show that  with 
hardware which is performing computer arithmetic this is 
not always the case, result getting frequently outside of the 
initial  operand set.  Indeed,  starting with the simple extra 
carry  bit  for  addition,  one  can continue  to  imagine  how 
more  complicated  operations  on  the  significant  field  of 
floating point  numbers  place  a  partial  result  into  a  fixed 
point  register  (before  normalization).  Section  III  below 
identifies more cases where inter-mixing the sets is highly 
desirable. 
      Note:  Such  cross  family  operators  become  much 
simpler     when  executed  directly  by  the  hardware, 
compared to emulating/modelling that, from within current 
software-driven  programming  languages.  The  emulation 
task is not impossible, but it is tedious, and that's why the 
modern  hardware  description  languages  are  moving 
towards direct specification of cross family operators. This 
is  something  needed  for  the  progress  of  arithmetic 
computation, and maybe its evolution from the state where 
“software is slow-dancing in the rhythm of hardware”, to 
the more desirable state where the “hardware generation is 
driven by the requirements enabling progress in computer 
arithmetic.” 

5)  Generalized  Rounding:  One  key  new ingredient  for 
this  is  the  capability  to  work  with  operations  º 

{ , ,*, /}∈ + − defined  as  →  × ,  where  the  three 
sets , ,    could be different, either from same family, 
but having other precision settings (sizes of the fields), or 
they  could  be  sets  from  different  families.  An  obvious 
requirement for, commutative operators, is  that  for  any a 
and b, belonging to both  and  , a º b = b º a. When the 
exact result is not in   , its rounding should occur based 
on the same three rules specified in the previous paragraph, 
as they apply to set   .  This generalized rounding should 
also  be  used  as  a  basis  for  the  (implicit  or  explicit) 
conversion between elements from the different sets. That 
way any particular real number could be “landed” in any 
particular set,  meaning that any number from    can be 
stored  –  exactly,  rounded,  or  “re-routed” (case  3  above) 
into any format.  Note that  the association of a  particular 
rounding scheme could be done at the lowest  granularity 
that is the operation level. 

     This global overview of the unsigned values, integer signed 
values, fixed-point values and floating-point values, and the 
implications that mixing their sets in hardware operations is 
mathematically sound, feasible and comes hardware-natural, 
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could mean nothing,  without  more  compelling examples  of 
why a language describing hardware should do that too. 

III.MAJOR TRENDS   
This  section  presents  some  actual  trends  in  designing 
arithmetic hardware, and how the sets introduced in section II 
are mixable. 

A.Exact Dot Product Hardware Solutions
The computation of dot products like

              
0

n

i i
i

x y x y
=

⋅ = ⋅∑
plays an essential role in DSP, scientific computations, and in 
verification numerics. 

        Fig. 1 Accurately computing the dot product.  

Most  DSP  processors  come  with  a  special  multiply-
accumulate  instruction to  help  accelerate  the  frequent 
computation of the dot product. Many scientific computations 
involving  Hilbert  spaces,  norms,  or  matrix-based 
optimisations  are  also  computing  most  of  the  time  dot 
products.  It  is  surprising  that,  the  current  general-purpose 
computers do not have yet a built in mode to help avoid errors 
that often occur when large (xi·yi) product pairs cancel after 
the contribution of a smaller value product was truncated. 
A  powerful  algorithm  for  this  task  is  based  on  a  long 
accumulator [3]. The accumulator (see Fig. 1) is a fixed-point 
accumulator,  which  satisfies  proposition  1,  (i.e.  it  is  wide 
enough to fit any double size floating point accurate product). 
A few extra guard bits are added to avoid overflow after the 
fixed-point addition. At the end of the accumulation phase the 
fixed-point accumulator is guaranteed to contain the exact dot 
product.  If  normalization  occurs  and  the  fixed-point 
accumulator content is read into a float some rounding may 
occur, but still the floating-point result is guaranteed to be the 
most accurate possible given the result format restriction. 
Example  2:  Example  1  from  section  II  computed  that 
2

48,9 558,303⊂  .  That  means  that  dot  product  on vectors 

from the space  2
24,8

N  can be accurately computed using a 

558 ,303guard+  fixed-point  accumulator  register,  if 

2guardN < ,  and one or more  2 2 2
24,8 24,8 48,9*: →  ×  

multipliers possibly working in parallel.
During the accumulation phase some long carry chains may 
occur. One technique is to use some hardware “all one” flags 
and efficiently jump the carry. The experimentation with this 
technique and/or other such optimisations has to be specified 
in the same HDL where the hardware simulation is performed. 
By being able to mix the sets, the designer and experimenter 
would be able to concentrate on just increasing performance. 

B.Predictable Accuracy for Computed Functions
When  the  precision  of  the  numeric  value  is  fixed  it  is 

relatively easy to provide precise function results, because the 
optimisation is done once only, on known sizes. The support 
for  variable  precision  brings  the  challenge  to  provide 
predictable accuracy for the computed functions. This can be 
done by selecting algorithms that are known to converge to a 
specified accuracy in a number of steps like the CORDIC, or 
by  estimating  for  each  result  an  upper  bound  and a  lower 
bound. 

C.Support for Interval Arithmetic
     A strong trend towards accurate arithmetic computations is 
building  around  interval  arithmetic.  This  is  involving  full 
bounded intervals of real numbers, instead of single values. 
Remarkably,  intervals  of  real  numbers  can  be  defined 
precisely with the sparse sets of computer arithmetic values. 
Statements about numbers  that  are not  representable can be 
made based on arithmetic executed on the intervals containing 
them,  which  are  bounded  by  representable  numbers.  The 
semantic of the operation on intervals is that the result interval 
contains all the possible results for one operand from the first 
interval  and  the  second  operand  from the  second  interval.5 

However, the interval arithmetic has much wider ramifications 
in  scientific  computing,  verification  of  crisp  (one  value) 
arithmetic,  and  proof  of  critical  systems.  Each  interval 
operation ends up to be split in a set of cases, and in each case 
specific  operations with  rounding-up, or rounding-down are 
performed. The support for convenient rounding specifiable at 
the level of operation is therefore a requirement, which could 
enable  the  implementations  of  efficient  interval  arithmetic 
machines.  The  usual  exceptions  of  floating-point  arithmetic 
like  underflow,  overflow,  division  by  zero,  or  invalid 
operation  do  not  occur  in  interval  arithmetic.  While  this 
arithmetic  is  not  applicable  to  all  problems,  it  is  becoming 
more  important,  and a  request  to  start  a  study group for  a 
standard  dealing  with  interval  arithmetic  was  already 
submitted to the IEEE. 
Modern computer arithmetic has also extended the precision 
of interval arithmetic by considering intervals of the form 

5  EDA engineers are familiar with such techniques from the 
timing calculators.
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1

( , )
n

i
i

x ε ε
=

= +∑x

where  2
1 2 ,,i m ex ε ε, ∈  ,  x  (bold  x)  is  an  interval  with 

boundaries  1
1

n

i
i

xε
=

+ ∑  and  2
1

n

i
i

xε
=

+ ∑ , and the significants 

of all the ix , and iε are non-overlapping if accumulated to an 

appropriate  element  from  ,n p .  Computations  with  such 
intervals  involve  mixing  floating  point  and  fixed-point 
accumulators.  An  interesting  generalization  of  the 
normalization  operation  would bring  back the  sum of  float 
representation from a long accumulator. This operation would 
look for the leading one extract a mantissa of size m and build 
a  corresponding  floating  point.  An  HDL  useful  procedure 
would take an element a of ,n p , and return the first floating 
point x and a x− . The sizes of x  could either be passed in 
or  inferred  directly  form  the  sizes  of  a  using  again 
proposition 1.
Note that  the operation  a x−  is  a  cross-family operation6. 
With availability of mixed operations the best choice for the 
hardware implementation of this kind of precise computation 
could be again well optimised, to take best advantage of the 
available hardware resources. 

D.Migration between Floating and Fix Point Solutions

      We can identify two phases in the ESL design. In a first 
phase designers concern is only with the numeric values, with 
the  verification  of  the  concept,  and  creation  of  a  golden 
model.  In a second phase focus is on the register sizes, and 
encoding, and tradeoffs between accuracy (quantisation errors, 
overflows  etc.)  and  performance,  area,  and  power  are 
performed. Current  HDLs  do  not  support  the  two-phase 
approach to ESL design;  users  are forced to  jump between 
software  programs,  which  are  designed  for  scientific 
computations and HDLs, or between custom C and HDLs. A 
particularly  interesting  phase,  which is  the  transition of  the 
design from floating-point  to,  fixed-point  format,  and more 
recently the decision about what format to use continue the 
implementation  should  be  feasible  just  by  changing  the 
descriptors  of  the  types  within  a  single  HDL,  and  not  by 
forcing  the  transition  of  the  whole  design  into  another 
environment.  Many times  designers  like  to  keep parts  of  a 
non-transited design running in one format and use the live 
stimulus to exercise the changed part. The recognised trend is 
to use more floating-point units and that adds to the decision 
complexity.

E.Design Exploration of Multiple Word Length Paradigm
 In  DSP  when  fixed-point  is  used  there  is  a  need  to 

optimise the sizes of the registers, to avoid using larger than 
needed  registers  on  one  hand  and  to  avoid  unpleasant 
quantisation errors on the other.  While this is done easily for 
6 The operation is just a reset of a particular field. Another mode 

would just return an integer pointing to the last visited bit. 

linear  systems,  by  using  analytical  approaches  and  some 
heuristics, the non-linear case (much more often) encountered, 
has  to  be  solved  using  also  simulation.  The  current 
simulations start  with a fixed size registers.  That’s why the 
optimisation loop included re-elaboration of the simulator, and 
in many cases a designer in the loop. The automatic, tight loop 
is feasible only if changes to formats are made at run time. 

F.Synthesis with Low Power Constraints
During  low  power  behavioural  synthesis  optimisation 

changes  are  made  to  a  computation  graph,  to  explore  the 
design  space.  Those  changes  include  size  of  the  operands 
changes,  value  encoding,  and  operator  binding.  In  order  to 
cover a large design space decisions for the next best move 
are taken based on an estimation of  a cost  function,  which 
takes into consideration area, timing, and dynamic and static 
power. To determine the timing and the dynamic power the 
activity is simulated and statistics are extracted. The time to 
execute classic re-elaboration of static objects for each small 
incremental  change  or  exploratory  move  is  prohibitive.  A 
good  solution  is  to  provide  the  functionality  in  the  HDL, 
which will allow changes of the object characteristics during 
the same elaborated simulation. 

G.Base 10 Arithmetic
Recent  IEEE  Std.  754R  include  support  for  decimal 

floating point. With the known benefits of decimal arithmetic 
out of the question, the trend is that more devices supporting 
decimal  arithmetic  will  be  built.  HDLs used  to  design  and 
verify  such  systems  are  the  first  to  provide  the  decimal 
arithmetic capabilities. 

IV.REQUIREMENTS FOR HARDWARE DESCRIPTION LANGUAGES

To each trend discussed in section III, a set of desired HDL 
capabilities were associated. The rationale was that if the 
capability were provided in the HDL, more progress would be 
achieved in the direction of the trend. This is essential given 
the to fulfil the commercial requirement for the viability of the 
HDLs and the tools based on them. A clear requirement was 
then established for each capability. The summary of this 
exercise is provided in Table III.

TABLE III
ESSENTIAL HDL ARITHMETIC REQUIREMENTS 

Modern Design Trends Reflected into HDL Requirements
Design 
Trend

 HDL Desired 
Capability

 Requirement

A Design 
Exact Dot 
Product 
Computation 
in Hardware

Multiply pairs of 
floating point 
numbers into a 
double sized 
float, accumulate 
into a large 
fixed-point 
register, and use 

Mixing different sizes  
and different kinds 
(fixed or floating point) of 
objects in operations and 
assignments, while 
observing the numeric 
value semantic. 
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just one final 
rounding. 

B Predictable 
Functions 

Predictable 
accuracy for all 
precision ranges.

Provide HDL predictable  
and accurate solutions 
for all common algebraic 
and    transcendental 
functions (i.e. sqrt, 
sin, cos, tan, 
log, sh, ch, etc.)

C Implement
Interval 
Arithmetic 
Processors

Operator driven 
rounding mode.

Run time easy change of  
rounding mode (specified 
in a procedure call, or 
flagged by special 
operator symbol in the 
HDL)

D Float-Fix 
Migration
for DSP 
Design

Manageable 
change between 
floating and 
fixed-point 
representations.

Provide capability (i.e. a 
descriptor) to change 
numerical  
representations without 
any code re-write. 

E Multiple 
Word 
Length 
Exploration 

Run time tight 
loops including 
simulation and 
format size  
changes driven 
by automatic 
measurements. 

Support dynamic (run 
time) format size  
changes.

F Power 
Constrained 
Synthesis

Run time 
numerical  
representation 
changes during 
design 
convergence 
towards minimal 
power. 

Support dynamic (run 
time) representation 
changes.

G Decimal 
Arithmetic

Standard decimal 
floating point 
with 
customisable 
choices.

Support decimal floating-
point arithmetic, and 
accurate verification 
mechanisms.

V.STEPS IN THE RIGHT DIRECTION 
A few good steps to enhance the HDL capabilities to handle 
variable precision types,  and provide for dynamic,  run time 
changes of the type  descriptor were taken by both standard 
organizations and the private sector.
This section briefly discusses  the new enhancements  of  the 
VHDL language  IEEE  P1076  in  ballot  at  the  time  of  this 
writing, and will  use the result computed in the example 1, 
section I, to present how computation of the dot product in the 
space with  100 dimensions  2 100

24,8  using an  accumulator 

from  558,303Q  is  described  and  simulated  using  Fintronic 
FinSimMath  by  extending  a  popular  HDL,  the  Verilog® 
HDL. 
A.Enhancements to VHDL 
      There  is  good news for  the  VHDL supporters  doing 
arithmetic with fixed-point and floating-point types. It appears 
that  the  proposed new draft  contains  capabilities  to  declare 
types  representing  values  from 2

,m eF  and  both  ,n pQ and 

2'
,

s
n pQ .   The sizes  should be provided before elaboration, 

and  cannot  be  changed  during  simulation.  Conversion  is 
explicit (requires always a function), and there is a good set of 
functions supported. From the requirements shown in Table 
III,  A  is  feasible  only  with  explicit  conversions;  B  is 
supported  but  the  burden  to  bring  the  result  close  to  the 
desired  value  is  left  to  the  users  who  have  to  specify  (by 
intelligent  guessing)  things  like  the  number  of  required 
iterations; C is possible; and D, E, F, G are not possible. Note 
that fulfilling requirement G is not out of the reach, but it will 
require another specialized package.  

B.FinSimMath Extensions to Verilog®
FinSimMath,  an  extension  of  Verilog  for  Mathematical 

computations  is  described  in  chapter  8  of  FinSim's  User's 
Guide [11]. Those extensions satisfy all requirements A, B, C, 
D,  E  and  F  from  the  table  III.  G  is  also  feasible.  These 
requirements are  satisfied for all  six families  from listed in 
Table I.

A FinSimMath tutorial [13] provides running examples in 
extended Verilog that show how to:

(1) modify  during  the  simulation  the  format  (floating 
point or fixed point), as well as the number of bits 
used for each field of the format in the model of a 
low pass filter, 

(2) perform  without  the  need  of  explicit  conversion 
functions arithmetic operations with operands of type 
complex (Cartesian or polar)  or of matrices  having 
elements of type complex, including the computation 
of the inverse of such matrices,

(3) compute the pseudo inverse of matrices,
(4) separate  data  from  its  location  using  high  level 

constructs  such  as  the  "View  as"  and  “InitM” 
constructs for multi-threading processing,

(5) perform FFT, and fast autocorrelation,
(6) exchange FinSimMath data between modules, and
(7) monitor  special  conditions  such  as  overflow  or 

underflow.
 Example 3: The example selected here shows how the dot 

product  in  2 100
24,8F ,  a  real  space  with  100  dimensions  is 

computed accurately using a long accumulator tmp2which was 
designed based on the results of Example 2.   The full listing 
was  given  here  just  for  information  and  the  details  of  the 
descriptor specifications are all available online in chapter 8 
of [13]. First lines included in the first for loop containing the 
code 

tmp1 = V1[i]*V2[i];

is in fact performing an operation 

2 2 2
24,8 24,8 48,9*: →  ×  

and the line

tmp2 = tmp2 + tmp1; performs
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2 2' 2 '
24,8 608,304 608,304: s s+ →F Q Q×

while the assignment  v = tmp2; which follows after the 
loop has an explicit conversion from a fixed point value into a 
floating point value. The data for the example was chosen for 
a case where the result without using the long accumulator is 
wrong.  This  can  be  seen  in  the  results  printed  by  the 
simulator. 

A.Code for Example 3

module top;
parameter SIZE = 100;
/*format */
`define TWOS_COMPLEMENT 1
`define SIGN_MAGNITUDE  2
`define FLOATING        3

/* rounding */
`define TO_NEAREST_INTEGER_IF_TIE_TO_MINUS_INF 1
`define TO_NEAREST_INTEGER_IF_TIE_TO_PLUS_INF 2
`define TO_NEAREST_INTEGER_IF_TIE_TO_ZERO 3
`define JUST_TRUNCATE 4
`define TO_ZERO 5
`define TO_INF 6
`define TO_MINUS_INF 7
`define TO_PLUS_INF 8

/* overflow */
`define SATURATION 1
`define NORMAL 2
`define WARNING 64

(* varprec = descriptor *)
reg [0:1] d1;
(* varprec = descriptor *)
reg [0:1] d2;
(* varprec = descriptor *)
reg [0:1] d3;

(* varprec = data *)
reg  [0:32] V1[SIZE-1:0];
(* varprec = data *)
reg  [0:32] V2[SIZE-1:0];

(* varprec = data *)
reg [0:283] tmp1;

(* varprec = data *)
reg [0:561] tmp2;

(* varprec = data *)
reg [0:32] v;

integer i;

initial begin
  $VpSetDescriptorInfo(d1, 8, 24, `FLOATING,
                       `TO_NEAREST_INTEGER_IF_TIE_

TO_MINUS_INF,
                       `SATURATION+`WARNING, 1);
  $VpSetDescriptorInfo(d2, 9, 48, `FLOATING,
                       `TO_NEAREST_INTEGER_IF_TIE_

TO_MINUS_INF,
                       `SATURATION+`WARNING, 1);
  $VpSetDescriptorInfo(d3, 304, 304, 

`TWOS_COMPLEMENT,
                       `TO_NEAREST_INTEGER_IF_TIE_

TO_MINUS_INF,
                       `SATURATION+`WARNING, 1);

  $VpSetDefaultOptions(8, 24, `FLOATING,
                       `TO_NEAREST_INTEGER_IF_TIE_

TO_MINUS_INF,
                       `SATURATION+`WARNING, 1);

  $VpAssocDescrToData(V1,  d1);
  $VpAssocDescrToData(V2,  d1);
  $VpAssocDescrToData(v, d1);
  $VpAssocDescrToData(tmp1, d2);
  $VpAssocDescrToData(tmp2, d3);

 $InitM(V1, (($I1 == 0) ? -11 : 1+2**-13));
 $InitM(V2, (($I1 == 0) ?   9 : 1+2**-13));
 $PrintM(V1, "%k");
 $PrintM(V2, "%k");

 tmp2 = 0;
 for (i = 0; i < SIZE; i = i + 1)
   begin
     tmp1 = V1[i]*V2[i];
     tmp2 = tmp2 + tmp1;
   end
 v = tmp2;
 $display("using temporary registers: v = %k\n", 

v);
 v = 0;
 for (i = 0; i < SIZE; i = i + 1)
   begin
     v = v + V1[i]*V2[i];
   end
 $display("without using temporary registers: v = 

%k\n", v);
end
endmodule

B. Example 3 Simulation Results
Simulating until no event ...
V1[ 0]=11000010.011000000000000000000000
V1[ 1]=00111111.000000000000100000000000
V1[ 2]=00111111.000000000000100000000000
…
V1[99]=00111111.000000000000100000000000
V2[ 0]=01000010.001000000000000000000000
V2[ 1]=00111111.000000000000100000000000
V2[ 2]=00111111.000000000000100000000000

…
V2[99]=00111111.000000000000100000000000

using temporary registers: 
v = 00111001.100011000000011000110000

without using temporary registers: 
v = 00111001.100011000000000000000000

Ending at time 0s.

VI.CONCLUSIONS

The tremendous progress in computer technology should be 
accompanied by extension of the mathematical capacity of the 
computer. A balanced standard of computer arithmetic should 
require  that  the  basic  components  of  modern  computing 
(floating-point arithmetic, interval arithmetic, and an exact dot 
product) should be provided by the computer’s hardware. We 
presented  how  those  and  many  other  DSP  and  hardware 
arithmetic design problems do benefit from enhancements to 
HDLs including dynamic variable precision. 
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Abstract—This work presents a Neural Networks based 
intelligent control design used for harmonics current 
identification as a part of an Active Power Filter (AFP) control 
unit. APF rule is to compensate reactive power in low voltage 
power systems as well as eliminate current harmonics caused by 
non-linear loads. For their integration on FPGA (Field 
Programmable Gate Array), the algorithms developed and 
simulated under MatLab/Simulink® were converted in Altera 
Dsp Builder® (ADB) interface by overcoming some 
incompatibilities between the two environments. The 
experimental results and the material resources utilization ratio 
confirm the interest to continue the hardware implementation 
process of the whole APF control unit. 

I. INTRODUCTION 

Nowadays, APFs are one of the most advanced solutions 
to suppress harmonic currents and compensate reactive power, 
which presence in a distribution power system bring about 
serious problems such as transformer overheating, machine 
vibration, motor failures and higher line losses, etc. In 
presence of a nonlinear loads (rectifiers, inverters, AC 
regulators, etc.), harmonics are added on the source current 
thus creating a disturbed current. The injection of 
compensation currents in the electrical power supply by 
means of the APF’s power circuit composed of an inverter and 
an output filter, allows returning to the initial current's shape. 

The APF control unit is split in two main blocks: the first 
one assumes current harmonics identification in order to 
produce the required reference currents for the control 
algorithms, while the second one carries out the control 
method for injecting phase-opposite these currents in the 
electrical power system [1]. 

The technique used to obtain the reference currents, will 
have a decisive influence on the APF efficiency and 
performance. In [2], an evaluation of the techniques 
traditionally used for this purpose is proposed. It is possible to 
differentiate between those which operate in the time domain 
and in the frequency domain. The latter case includes the 
algorithms based on the Fourier theory. This technique is 
characterized by some drawbacks: the impossibility of having 
precise results in transient conditions and a large memory 
requirement to store the samples of the last fundamental 
period. There is a greater diversity among the techniques 
operating in the time domain, including the least square error 
technique and the Kalman filtering [3],[4]. Beyond their 
simplicity they cannot easily take into account noises and 

errors, and they need an incompressible time-delay to 
convergence. The more powerful technique is with no doubt 
the Instantaneous Power Theory (IPT) [2], [5], [6]. The 
application of this technique requires an equilibrated and 
balanced voltage system provided by an auxiliary block 
usually achieved with a Phase-locked Loop (PLL). However, 
the IPT is not available for a specific harmonic current 
compensation. 

For a few years, artificial intelligence techniques were 
applied to control APFs. For instance, ANNs by their learning 
capabilities allow them to constantly adapt themselves to any 
changes and thus to be very efficient. Indeed, current research 
proposes a unified neural approach of the entire adaptive 
harmonics compensation system, as in [5], [6]. The proposed 
approach is unified in the sense that it is only based on a 
single type of ANN: the Adaline neural network. This 
approach is motivated by a need of simplicity and flexibility 
in ANNs-based control strategies used in electrical systems, 
but also to optimize the hardware resources required in digital 
implementation. Thus, four intelligent control structures based 
on Artificial Neural Networks (ANNs), adapted to various 
constraints were developed in [5], with full satisfactions, 
supplanting the traditional approaches. The work presented in 
this paper concerns the implementation methodology for the 
first block assuming current harmonics identification. 

On this subject, due to the parallelism and pipelining 
technologies, application specific hardware implementation 
can offer much greater speed than software implementation 
using DSP or microprocessors. There are essentially two types 
of technologies available for hardware design: full custom 
hardware design also well-known as Application Specific 
Integrated Circuit (ASIC) and semi custom programmable 
devices like Field-Programmable Gate-Array (FPGA). While 
it can offer highest performance, the ASIC can’t be 
reconfigured. Implementing complex algorithms on 
reprogrammable device minimizes the time-to-market cost, 
enables easy and fast circuit modification and rapid 
prototyping through Hardware Description Language (HDL) 
[7], [13]. So FPGA should be the excellent choice for real-
time harmonics mitigation.  

The ADB provides an integrated environment where the 
designer can easily generate timing-optimized RTL code 
based on high-level Simulink® design descriptions. Moreover, 
it can generate synthesizable FPGA HDL, allowing multi-
disciplined users to work at high level of abstraction in a 
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common workspace. Succeeding the simulations on this 
interface, a FPGA implementation is planned in order to 
evaluate the constraints required by such implementation to 
obtain similar results as those generated by 
MatLab/Simulink®. These constraints are mainly due to some 
incompatibilities between this software and the FPGA 
development environment, i.e. ADB, and on the other hand, to 
the FPGA development board characteristics. 

The Neuronal modeling of the Active Power Filter is 
related in the next section. Section III is dedicated to the 
methodology required by the FPGA implementation due to 
the different design environments and finally simulations and 
experimental results are presented in section IV. 

II. NEURONAL MODELING of the ACTIVE POWER FILTER 

CONTROL UNIT 

A. Adaline Neural Networks  

Originally, the formal neural networks are a mathematical 
attempt of human brain modeling [8]. Well-known ANNs, 
such as Multi-Layer Perceptrons (MLP) have proved to be 
able to solve various problems, but due to their relatively high 
complexity, they are not well suited for hardware 
implementation. In our application, we used the ADAptive 
LINear Element (Adaline) which is a particular case of MLP 
with a very simple architecture; only one neuron with a linear 
activation function and a vector entry type. Its efficiency has 
been proved in signals estimation applications and adaptive 
filtering. The learning process is carried out by minimizing the 
system's global error. In [9], another application of ANNs can 
also be found in position control of a robot hand. 

The general network topology of an Adaline is described 
on Figure 1. The estimated signal y(t)est of y(t) can be 
determined by the linear relation (1) : 

)()()( tXtWty T
est =  (1) 

where (t)WT represents the weight vector updated during the 

learning process and X(t) the input vector.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Adaline topology 
 

 Adalines are trained by an online learning process based 
on the ∆-rule called LMS (Least Mean Squares). In the 

following, we will use the ∆-rule in its simplest form by 
equation (2) whose convergence was proved in [10], [11].  

)()(

)()(
)()1(

tXtX

tXte
tWtW

T

µ+=+  (2) 

For most applications, the learning rate µ can be 
empirically determined without prejudice to the scientific 
rigor of the work. 

B. APF Compensation Strategy 

Figure 2 presents a system with a non-linear three-phase 
load and voltage supply, both simulated on 
MatLab/Simulink/Power System Blockset®. An APF is used 
to generate the compensation current. The non-linear load 
current ic is the sum of the source current is and the 
compensation current iinj. As shown in [12], the goal is to get a 
balanced supply current without harmonic. The APF control 
unit shows up in detail four blocks with specific functions: 

• Power supply frequency estimation  
• Direct voltage components extraction 
• Harmonics current and reactive power identification 
• The three-phase inverter control 

The harmonics identification is firstly carried out with the 
traditional approach, then with the Adaline networks. Several 
control strategies were also evaluated, in particular the 
neuronal approach with identical simulation parameters. 

The compensated signal is, resulting from this purely 
neuronal approach looks like a sine wave disturbed by a weak 
noise. Moreover, the on-line training of the neural network 
dynamically allows the compensation by following the 
fluctuations of the disturbances. With this approach, the 
measured Total Harmonic Distortion (THD) is of 0.82% 
instead of 8% with a traditional one. 

This neuronal approach deals with: 
• a variant of the IPT called Real and Imaginary 

Instantaneous Powers method based on Adaline for the 
identification of the harmonic currents  

• the Direct and Reverse neural control for re-injecting 
these currents in the electrical power supply. 

 
Fig. 2. General diagram of the APF compensation strategy 

. 

. 

. 

+ 

e(t) 

  ∑  f 
... 

W0(t) 

W1(t) 

Wn-1(t) 

 Wn(t) 

W2(t) 

y(t) 

X(t) 
Algorithme 

d’apprentissage 

1 

x1(t) 

x2(t) 

xn-1(t) 

xn(t) 

y(t)est - 

DASIP 2008 November 2008

- 271 - 



 

C. Identification method for harmonic currents 
 

A periodic waveform can be decomposed by Fourier series 
into a sum of simple oscillating functions, namely sine and 
cosine. By applying it on the load current ic, as in [5][12], we 
can obtain relation (3) 

ic(t) = icf (t) + ich (t)      (3) 
 
where icf  represents the fundamental current and ich  the 
harmonic currents. Equations (4) and (5) present the details: 
 

 )cos()sin()( 1211 αωαω −+−= tItIticf
 (4) 

∑
=

−+−=
Nn

nnch tnItnIti
,...,2

21 ))](cos())(sin([)( αωαω  (5) 

ω represents the fundamental frequency of the electrical 
power supply, α is an unspecified angle which can be equal to 
zero, I11 and I12 are the amplitudes of the sine and cosine 
components of the fundamental current, In1 and In2  are 
associated with the sine and cosine components of the n-order 
harmonic current. The harmonics identification is done by the 
same Adaline network on each phase according to the 
topology of figure 1. Therefore, the load current can be 
written in the matrix form (6):  

)()()( tXtWti T
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and  W(k+1) = W(k) + µ.e(k).X(k)   (8) 
 

By using the equation (8), a very simplified alternative of 
the Widrow-Hoff algorithm for weights updating, the 
fundamental current can be evaluated with (4) and the 
harmonic current by the equation (9) : 
 

ich(t) =  ic(t)−i cf (t)     (9) 
     = ∑

=

+
Nn

nn tnItnI
,...,2

21 )]cos()sin([ ωω  

In this way, this method allows the selective compensation 
of the harmonic currents.  

 

 
Fig. 3. The DSP development Kit 

III.  HARDWARE IMPLEMENTATION of HARMONIC CURRENTS 

BLOCK using ANNs TECHNOLOGY 

This research aims to implement an intelligent control 
design used for harmonic currents identification by using 
neural networks. Based on the Matlab/Simulink® developed 
design, a new version suitable for FPGA implementation is 
done through ADB environment. According to the 
reconfiguration and flexibility ability of FPGA, it can satisfy 
requirements for iterative learning and parallel processing of 
the neural networks. 

The development kit of figure 3 used in our designs, 
integrates a Stratix® EP1S80B956C6 as FPGA, of Altera 
family, memories, A/D and D/A converters.  

A. Compatibility Problems Between DSP Builder and 
Matlab-Simulink®. 

During installation, ADB library is added to those of 
Matlab/Simulink®, and provides dedicated functional blocks 
(arithmetic, bus manipulation…). The SignalCompiler block, 
which is the heart of this interface, ensures the following 
functions successively, according to the Top/Down method. 

• Conversion of the design into a VHDL program 
• Analysis and logical synthesis  
• Architectural study and RTL synthesis according to 

Quartus II software 
• FPGA programming. 

To achieve the design on ADB, it is possible that some 
needed functions were not available. For example, the ramp 
f(t) = t has been realized with a Look-Up Table (LUT) 
associated with an "Increment Decrement" block. Moreover, 
sine and cosine blocks were also built with a LUT to 
constitute the input vector. The three-input multiplying block 
is carried out by cascading two two-input multipliers blocks, 
but this isn't without consequences on the data bus size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Modular representation of harmonic currents identification design in 
ADB 
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B. FPGA Programming 
 

 In the algorithm's MatLab® version, the disturbed current 
is a signal composed by the following components: 

TABLE I. 
INITIAL CONDITIONS of the DISTURBED SIGNAL 

Harmonic Components Amplitude  Frequency(Hz) 
Fundamental 100 (mA) 50 

5-order harmonic 100/5 (mA) 5x50 
7-order harmonic 100/7 (mA) 7x50 

 
In addition, the learning rate is hold at 0.01, the Adaline 

weights are initialized to 0 and the sampling period is 5.10-5 s 
corresponding at a 20 kHz sampling frequency. 

After a simulation time of 0.3sec, the weights are 
converging in the following way:  

- for the fundamental  I 11  = 100mA    and    I 12  = 0  
- for harmonic 5,  I 21  = 20mA      and    I 22  ≈ 0  
- for harmonic 7,  I 31  = 14,28mA and    I 32  ≈ 0  

The observed learning phase is less than 0.08s. 
 

 

 

 
 

Fig. 5. Input signals of the Adaline 
 

1) Input signals generation module: The used input vector 
is as follows: 
 
X(t)=[1 sin(ωt) cos(ωt) sin(5ωt) cos(5ωt) sin(7ωt) cos(7ωt)] T   (10) 

 
Building this vector suppose:  

o to generate the time t with a unit ramp block. 
o to apply sine and cosine functions on the time t 

multiplied by values (ω, 5ω and 7ω).  
With sampling periods of respectively 5.10-5s and 5.10-8s, 

simulations were done with fundamental current frequencies 
of 50Hz and 20Khz. Figure 6 shows Input signals waveforms 
of 20, 100 et 140Hz. 

2) Weights Update Module: This module consists of 2-
inputs adders, memory blocks, and self-built 3-input 
multipliers. Obtained simulation signals are given in figure 6 
which indicate the evolution of the Adaline's weights values 
during learning and steady-state phases. During the 
approximately 0.06s long learning process, the Wij weights 
vary quickly before being stabilized around 100, 0, 20, 0, 
14.28 and 0 in accordance with the Matlab's® obtained values. 

 

 

 

 
Fig. 6. Weights convergence of the Adaline 
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(d) 

 
(e) 

Fig. 7. Output signals from identification algorithm under ADB 
x10-4 
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3) Output signals generation module: Various signals 
generated by this module allow evaluating the effectiveness 
regarding signals estimation of the algorithm developed under 
ADB. Thus, figure 7 shows the disturbed load current (a) and 
its fundamental component (b). In addition, (c) presents the 
sum of the 5th and 7th harmonics extracted from (a), (d) the 
estimated current and (e) the estimation error. Therefore, 
multiplier and adder/subtractor blocks were used and a sub-
module dedicated to the fundamental identification was 
developed. 

 
4) Adaptation module for output signals: There are two 

12-bits A/D signed format converters on the DSP board from 
figure 3 which allow to code values between -2048 and 
+2047. However, the two D/A converters are 14bits unsigned 
integer and can then receive 16384 positive values. Signal 
processing inside FPGA is done on wide bus size sometimes 
in signed fractional format. Hence, to obtain signals through 
D/A converters, we need to convert the data format to a 14 
unsigned bit format. This is possible by using adders and 
especially the block "barrel shifter" of ADB interface. 

IV.  METHODOLOGY VALIDATION 

A.  Simulation results analysis 

 Figure 8 shows Matlab's® simulation results. 

 

 

 

 
 

Fig. 8. Output signals from identification algorithm under MatLab® 

 
 We observe light differences on the harmonic signals 
especially during learning process before time 0.1sec. 
Nevertheless, they are the same in steady state (after 0.1s).  
 Moreover, figure 9 shows that the steady-state error is not 
really stable to 0 as under MatLab®. Fluctuations of ±0.15mA 
remain even if they are negligible.  

 

 
 
Fig. 9. Estimation error comparison under Matlab® and ADB - (a) Steady 
state estimation error under MatLab® (b) Details on steady state error under 
ADB 

 In addition, it is difficult to verify the frequency 
components by looking at an original signal, i.e in the time-
domain. Converting currents in the frequency domain, the 
spectral decomposition shown in figure 10, represents the 
frequency content of the estimated current ic and the identified 
harmonics current ich.  

 
 

Fig. 10. Frequency content of the load current ic and the harmonics current ich
 

 
According to figure 9, precision is a little bit affected for 

many reasons: 
- Analog Digital conversion on the DSP board which is in 

signed bit format doesn’t take into consideration fractional 
values of the input signal.  

- The digital processing in fixed point is done through 
arithmetic blocks which, like the multiplier, double the data's 
output bus size when using two inputs of same size. The 
succession of calculations quickly increases the data bus size 
going beyond the limits of 51 bits.  

- The D/A converters still impose to reduce the data buses 
size to be adapted to his 14 input bits.  
  

B. FPGA Hardware implementation  
 

We firstly proceeded to the adaptation module for output 
signals implementation while changing the amplification 
level. Thereafter, we embedded the Input signals generation 
module on the board. After those input/output blocks, we 
developed and implemented a disturbed signal generation 
module. We chose a 50Hz signal disturbed by the 5th and 7th 
order harmonics according to the low voltage power supply. 

(a) 

(b) 

(a) 
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Since the weights calculation and the output signals 
generation module are not being able to be checked 
independently because of the estimation error feedback, we 
directly went through the whole design implementation which 
produced the attempted signals.  

Figure 11 shows a 49,8Hz frequency disturbed signal of 
575mV peak to peak from which the algorithm based Adaline 
extracts a 194mV peak to peak voltage representing 
harmonics current. 

Harmonics identification during experimental phase has 
allowed an easy determination of the load's THD (at the 24% 
value) by using the estimated signal of figure 12. In addition 
we can observe that the fundamental component has 581mV 
peak to peak amplitude. The used resources by the 
implementation in the Stratix® EP1S80B956C6 FPGA are 
gathered in table II: 

 

 
 
Fig. 11. Estimated disturbed signal and harmonics generated by the DSP 
board. 
 

 
 
Fig. 12. Estimated disturbed signal and the fundamental component 
identified. 
 
 Table II shows an average use of 33% of the FPGA 
resources. In fact, this result includes the disturbed signal 
generation module which should come from a real low 
voltage power supply. Moreover, the use of the recent FPGA 
Stratix IV could offer more resources.  

TABLE II.   
USED RESOURCES on FPGA 

Resources Used Total Ratio in % 
Logic elements 31.673 79.040 40% 
Memory bits 

(RAM) 
1.451.520 7.427.520 19% 

Stratix pins 32 679 4% 
9 bits Memory 1.290.240 7.427.520 17% 

DSP blocks 176 176 100% 
PLL 2 12 16.67% 

V. CONCLUSION AND FUTURE WORKS 

 
 A hardware implementation of an intelligent current 
harmonics identification module based on neural networks has 
been presented. The design has been developed using the 
Altera DSP Builder®. Due to the limited resources available 
on an FPGA, fixed-point numeric representation which is 
more area-efficient than floating-point was preferred. 
According to the disturbed current estimation error during 
simulations, we observed that blocks parameterization, data 
bus sizes and self-built blocks used in the identification design 
didn’t cause degradation on the compensation current.  
 This FPGA implementation validates the feasibility for 
neural networks implementation. With careful design, 
mapping the algorithm with adequate system performance is 
reachable despite the lack of resources. The designing 
modular approach will be extended towards the building of 
synthesizable and reusable blocks [13]. 
 The proposed identification block will allow getting an 
excellent filter dynamic response to load variations. Although 
other methods for the control of active filters are widely 
known, the hardware implementation of the whole APF 
control unit with only neural networks will show with a 
source current THD of around 1% that ANNs are of efficient 
application in power electronics. The use of a FPGA target for 
such applications may improve the global performances due to 
its aptitudes for parallel processing.  
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Résumé—In this paper we present a modelling of the pro-
cessing throughput of a data processing architecture. We mo-
del various architectures, namely general purpose processors,
V LIW DSP , FPGA with and without run-time reconfigu-
ration. Based on this modelling, we can characterise various
architectures before going through any implementation and
make a selection based on the throughput requirements. We
implemented the AES encryption algorithm in order to compare
experimental results with our modelling. The model is quite
accurate for the FPGA implementations, but requires some
refinements for the processors, because the model always over
estimates the throughput. But we can still use our modelling as
the basis of a design methodology that can give some advices to
a designer about the opportunity to whether use the run-time
reconfiguration feature or not.

I. INTRODUCTION

One of the claimed goals of the run-time reconfiguration
(RTR) feature allowed by some FPGA architectures is that
this technique provides more flexibility than ASICs and more
processing power than general purpose processors (GPP) [16].
The reasons given to justify this, are that more specialisation
leads to more efficiency and a more generic architecture leads
to less efficiency [15], ASICs and GPP being the extreme
architectural cases. If this sounds, at least qualitatively, quite
intuitive, from a quantitative point of view little work, has
been done in order to prove it. In this paper, we will try to
quantify at least one aspect of the more general efficiency :
processing throughput. We have still proposed a modelling of
the flexibility [11], but because the flexibility of an architecture
is a multi-faceted metric it is difficult to compare practical
architectures based on it. In contrast, throughput is easy to
measure and is well defined, thus we propose to model it in an
abstract way and then compare this modelling in the case of a
signal processing application : the AES encryption algorithm.

The remainder of the paper is organised as follows :
in section II we present the modelling used to assess the
throughput of a GPP , a V LIW DSP , an FPGA and an
RTR FPGA. Then, in section III we present briefly the
AES algorithm. Section IV presents implementation results
obtained on the various architectures. Section V presents a
confrontation between the modelling and the results in this

particular application case and we conclude in section VI.

II. THROUGHPUT MODELLING

A. Throughput modelling of a GPP and a V LIW DSP

Here we make the very simple assumption that a GPP
can load, apply a single processing instruction and output (or
store) the resulting data whose size is the same than that of
the data-path of the GPP at each clock cycle. This implies
that if the processing algorithm needs NP instructions in
order to complete, the throughput will be NP times lower
than the one obtained with a single instruction. The duration
of a clock cycle is TGPP = 1

ClkGP P
. Here again, one can

object that the pipeline architecture of most GPP would give
some improvements. This is true, and it is always possible to
assume that all the pipeline stages are always fully supplied
with data, thus providing an improvement factor equal to
the number of pipeline stages available. Even with such a
conservative assumption, it would be difficult to obtain a
sustained throughput of one data word per clock cycle for an
algorithm of more than a very few instructions. But we will
see that there are generally many orders of magnitude between
the throughput of a GPP and the one of an FPGA.

Hence, the data processing throughput ThGPP of a GPP
can be modelled by equation 1. We can see that this could
explain the trend towards high width data-path, because the
throughput is proportional to the width of the data-path (BD).
Of course, for a V LIW processor, the data-path has rarely the
same size as instruction words have, but the throughput would
still be proportional to the width of the data-path with the
added benefits of an instruction level parallelism (β) greater
than 1.

ThGPP = ClkGPP · BD

NP
· β (1)

B. Throughput modelling of an FPGA

In an FPGA we can theoretically choose any size for the
data-path width. In a real case however, there are some limiting
factors. First, there is a limited number of I/O pins available to
the designer, secondly, and may be most importantly, the data
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buses pushing and pulling data to and from the FPGA are
generally not very wide. We assume that the data-path is BO

bits wide, that it is fully pipe-lined and that it operates at a
clock frequency FclkFPGA. Hence the throughput ThFPGA

can be modelled like in equation 2. We can see that an
important difference is that the complexity of the algorithm
(i.e. the number of “instructions” to apply) does not affect the
throughput in this case. This is in contrast with the GPP ,
where it was inversely proportional to the complexity.

ThFPGA = FclkFPGA ·BO (2)

C. Throughput modelling of an RTR FPGA

In the case of run-time reconfiguration of an FPGA, the
throughput modelling depends on four more parameters :
the number N of temporal partitions, the size D that is
the number of words in each data block processed between
reconfigurations, the number n of pipeline stages in the data-
path and the reconfiguration time Treconf that is needed for
reconfiguring the logic cells used in a temporal partition of
the algorithm. Hence, we can model the average throughput,
which is the number of processed bits per time unit, of an
RTR FPGA implementation by means of equation 3. Thus,
we can see a double overhead in the use of RTR. The
first one is reduction by a factor of N of the throughput if
we neglect the reconfiguration time. The second one is the
value of Treconf , that in practise, is very great compared with
TclkFPGA = 1

FclkF P GA
, thus requiring a very big value for

D in order to achieve an interesting throughput. The last case
implies that n can generally be neglected with respect to D.

ThRTR FPGA =
D ·BO

N · ((D + n) · TclkFPGA + Treconf )
(3)

III. THE AES ENCRYPTION ALGORITHM

Data security is a significant subject for which various
algorithmic solutions have been proposed. In 2001, Advan-
ced Encryption Standard (AES) was accepted as a FIPS
(Federal Information Processing Standard) [10]. AES is an
encoding algorithm intended to replace DES, which had
already showed some safety weaknesses in data protection.
In October 2002 NIST (National Institute of Standards and
Technology) selected the Rijndael cipher developed by two
Belgian cryptographers as the AES algorithm. Since then,
many achievements on hardware and software had been pro-
posed by combining various architectures. In general, various
architectures have been used to apply the AES algorithm
on hardware. They seek to satisfy two metrics important in
digital systems : the throughput, and the area or the amount
of hardware resources required to achieve this throughput. The
throughput reached goes from 20 Mbps to 70 Gbps according
to the technology and the architecture used as described in [3],
[4], [5], [6], [7] and [8]. The technology of the circuits as well
as the tools available for the design and the implementation of
the algorithms have played a significant role to achieve a high
throughput, but with a high cost in terms of resources used.

Nevertheless, the intrinsic parallelism of the algorithm is still
well adapted to a hardware implementation.

A. Description of the algorithm

The AES is a block cipher with possible lengths for the
blocks and the key of 128, 192 and 256 bits. The blocks to be
encrypted and the key can have different lengths. The encryp-
tion is comprised of a variable number of rounds (determined
by the key and block lengths) with each round containing
four transformations : ByteSub, ShiftRow, MixColumn
and RoundKeyAddition (in the last round, the MixColumn
is omitted). An initial key is expanded to form an Expanded
Round Key based on the number of rounds. Since AES
is a symmetric cipher, decryption is just the inverse of the
encryption. If more details are needed see [10], [1]. Figure 1
shows the operations required by the algorithm [9]. Thus, we
can separate the AES algorithm into two distinct functions :
the key expansion part and the cipher part.

B. The key expansion part of the AES

The AES algorithm takes the Cipher Key K, and performs
a Key Expansion routine to generate a key schedule (i.e. the
ten different keys that will be used later by the Cipher module).
The Key Expansion generates a total of Nb · (Nr+1) words :
the algorithm requires an initial set of Nb words and each of
the Nr rounds requires Nb words of key data. The resulting
key schedule consists in a linear array of 4-byte words, denoted
[wi], with i in the range 0 < i < Nb(Nr + 1) [10], [1].

The data are arranged in a linear vector of words of 4 bytes,
indicated by [wi]. The data are put to the algorithm through
dato_e(128bits) and the result is provided at dato_s. Let us
specify that temp is a variable of 32 bits wide and w[i] is the
line of a matrix that has a dimension of 4 by 4 bytes. The
RotWord function takes a word of 32 bits [a0, a1, a2, a3]
as input, carries out a cyclic permutation, and returns the
word [a1, a2, a3, a0]. SubWord is a function that takes on
its entry a word of four bytes and applies a look-up matrix
S_Box to each four byte to produce a new word. This matrix
has a size of 256 data of 8 bits each. The constant Rcon[i]
contains already defined values. For word indices that are
integer multiple of Nk (number of 32-bit words comprising
the Cipher Key), a transformation is applied to w[i − 1],
followed by an XOR with a constant iteration, Rcon[i]. The
transformation is composed of a circular shift of the bytes in
a word (RotWord), followed by a look-up of each byte in a
word (SubWord). Figure 2 shows the block diagram of the
execution of a single round for this module.

C. The cipher part of the AES

At the beginning of the Cipher module, the input is stored in
the State array that has a size of 128 bits (16 bytes). Following
the addition of the Ki key (the i − th key), the State array
is modified by applying the standard round (Nr − 1 times)
and a final round, which does not include the Mixcolumns
transformation. Finally, State is sent to the output. The various
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FIG. 1: Block diagram of the AES algorithm

transformations (SubBytes, ShiftRows, MixColumns, and
AddRoundKey) that treat the State array are now described :

– SubByte is a non-linear function, operating indepen-
dently on each byte from the State vector, known as a
substitution box (S −Box).

– The ShiftRows function shifts the data (this function
divides its input in 4 segments of 4 bytes each and makes
a rotation towards the left of respectively 0, 1, 2, 3 bytes
for segments 1, 2, 3 and 4).

– MixColumns is a function that transforms each byte of
input into a linear combination of bytes. This function
can be expressed mathematically as a matrix product in
the body of Galois (28) [10]. This matrix multiplication
uses multiplications in "finite fields" by two and three,
that reduce to an XOR function and thus makes the
architecture more efficient [2].

– The AddRoundKey transformation adds Ki (previously
generated by the key expansion function) to State by use
of an XOR operator. Each Ki is composed of Nb words.
Ki is the k − th sub-key calculated by the algorithm
starting from the main key K. The application of the
AddRoundKey transformation in the Nr rounds of the

cipher, occurs when 1 < round ≤ Nr [10].
Finally, as it can be seen on figure 3, the transformations
SubBytes, ShiftRows and MixColumns are always used.
So, the re-usability of these operators can be exploited here.

IV. IMPLEMENTATION RESULTS

A. The various architectures and implementations

We have implemented the AES 128 − 128 algorithm on
three kind of processors and on one FPGA with three
different architectural choices. This leads to six implemen-
tation results for which the measurement methods are briefly
described :

– The P4 implementation was made on a Pentium 4
processor by help of a C compiler. This processor has
512 KBytes of level 2 cache and runs at 2.4 GHz. The
measures were made by the use of the system timer
functions and correspond to the average of many results.

– The µB implementation was made on a MicroBlaze
processor embedded in an FPGA and again in the C
language. This processor runs at 100 MHz and had no
cache memory. The measure was made by toggling a I/O
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FIG. 2: The key expansion part of the AES algorithm

port bit at the begin and the end of the processing and
an oscilloscope attached to this port.

– The V LIW implementation was again made in C
on a TMS320C6713 DSP . This processor runs at
200 MHZ has 4 KBytes of both instruction and data le-
vel 1 cache a shared 256 KBytes level 2 cache. We used
the same measurement method as for the MicroBlaze
processor.

– The FPGA_Fact implementation was made from a
V HDL description on a V irtex 2 FPGA. The imple-
mentation kept the iterative nature of the AES algorith-
mic description. The measurement of the throughput was
easy thank to the simulation work preceding the final
implementation. The same is true for the next two FPGA
implementations.

– The FPGA_Unroll implementation was made from a
V HDL description on a V irtex 2 FPGA. The im-
plementation took a modified description of the AES
algorithm in order to remove its iterative nature. We
unrolled the 10 iterations and this leads to a pipe-lined
chain of replicated sets of operators.

– The FPGA_RTR implementation was made from a

TAB. I: Implementation results for the 6 implementations
Implementation Throughput (Mbps) Kernel “size” Tconf (ms)

P4 41 1875 clocks -

µB 2.6 1400 clocks -

V LIW 16 400 clocks -

FPGA_Fact 4200 618+1225 cells 2.3

FPGA_Unroll 44000 2725+11705 cells 18.2

FPGA_RTR <4200 1285 cells 2.4

V HDL description on a V irtex 2 FPGA and used the
partial reconfiguration feature of these devices in order
to implement separately the two parts of the AES (the
key expansion end the cipher itself). This introduce a new
parameter because the mean throughput now depends on
the length of data encrypted with the same key.

B. Results

Table I gives the results that we have obtained for our six
implementations. The results for the FPGA are very high
compared to the processors despite a quite low operating
frequency (300 MHz), this is not really a surprise. It is mainly
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TAB. II: Modelling results for the AES algorithm
Implementation Throughput NP or BO Work Freq.

P4 468 Mbps 164 instr. 2400 MHz

µB 20 Mbps 164 instr. 100 MHz

V LIW 240 Mbps 164 instr. 200 MHz β = 6

FPGA_Fact 3840 Mbps 128 bits 300 MHz

FPGA_Unroll 38400 Mbps 128 bits 300 MHz

FPGA_RTR <3840 Mbps 128 bits 300 MHz

due to the pipeline type of parallelism and the adaptation
to the size of the data (128 bits). One must note that the
result for FPGA_RTR is a kind of asymptotic value, because
it corresponds to a case where the key does not change
frequently. This means that the value of D in equation 3 is
very big.

V. CONFRONTATION OF THE MODELLING AND THE
EXPERIMENT

A. Modelling applied to the experimental cases

We apply the modelling described in section 2 for each
corresponding case of the experiment and we obtain the results
given in table II. There are two important parameters to
characterise in order to use the model : NP for the processors
and TClk_FPGA for the FPGA. For NP we enumerate the
basic operations required by the AES algorithm and we came
to a total of 164 instructions among them 92 are used by the
key expansion part and 72 by the cipher part. For TClk_FPGA

we used the data-sheet of the FPGA and applied a 40%
penalty to the maximum frequency in order to take into
account the routing between operators.

B. Discussion about the divergences

While the modelling is quite accurate for the FPGA
implementations there are some issues in the cases of the
processors. It is worth noting that the algorithm used here
leads to a regular data-path with the output of an operator
going straight to the input of the next one, except for the
iteration, but since there is only one “feedback” path, there
are not many routing congestion issues. This could explain
that our rough 40% penalty leads to a quite accurate frequency
estimation. Furthermore, we did take into account the fact that
for the FPGA_Fact implementation, a result was output only
every 10 clock cycles. This highlights a big weakness of our
modelling, indeed it does not take into account the structure
of the algorithm. This is quite a problem here because of the
iterative nature of the AES description and this leads to a
highly underestimated value of the number of clock cycles
needed by the processing kernel. Thus if we correct the value
of NP in order to take into account the iterations, the new
results (obtained easily by dividing the values from table II
by 10) become closer to the modelling. But after correcting
for this, the more inaccurate modelling concerns the V LIW .
This is most probably due to the fact that the C description did
not permit to the compiler to use all the potential parallelism

provided by the DSP architecture. Indeed, the DSP that we
used has 8 processing units among which 6 contain an ALU ,
so one would expect to see at least a value of β equal to 6.
But if we look at the results, we only see an effective value of
4. This has always been a problem with V LIW architectures.
We will try to optimise the C description or even write the
kernel in assembly language to see if one can obtain results
more close to the modelling.

VI. CONCLUSION

In this paper we have presented a modelling of the through-
put of various data processing architectures. Based on this
modelling, we can characterise various implementations for
the AES encryption algorithm on different kind of processors
and various architectural choices on FPGA. We made six
implementations of the AES on three types of processors and
three on an FPGA. We compared the experimental results
with our modelling and we obtained quite accurate results for
the FPGA implementations. The processors implementation
were less accurate, this is due in part to a not fine enough
model (i.e. ignoring the structure of the algorithm) but also
because of compiler issues. However, given some throughput
constraints, a designer can quickly estimate which architec-
tures are suitable for his needs. Then he can choose its final
architecture based on other metrics such as the resource requi-
rements, power consumption, ... or on more subjective criteria
like development time or the ease of design modifications. Our
future work concentrate on the refinement of this modelling
and the modelling of the power consumption in order to help
the designer to assess the advantages and drawbacks of run-
time reconfiguration compared to other architectures very early
in the design schedule.
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Abstract— This document presents the OveRSoC Graphical De-

sign Environment. The OveRSoC project objective is to develop 

an exploration and validation methodology of embedded real time 

operating systems for reconfigurable System-On-Chip platforms. 

Here, we describe an integrated graphical environment to explore, 

simulate, and validate the distribution of OS services on these 

platforms. Our work mainly focuses on developing an easy to use 

tool which supports graphical editions, SystemC source code gen-

eration, and functional/timed simulation. 
 

The OveRSoC project deals with embedded systems featur-

ing dynamically reconfigurable units. The goal is to develop a 

complete executable model of an RSoC platform (hardware 

and software) in order to bring out the services that an embed-

ded real time operating system should provide. The project also 

proposes an exploration flow based on a flexible SystemC 

model of Real Time Operation System (RTOS). This RTOS 

model is a package of modular services [1]. To develop each 

service, an Object Oriented approach has been adopted and 

implemented using SystemC 2.2 library. This model allows the 

building of an application specific RTOS by assembling gener-

ic custom OS services basic blocks. The application is linked 

to the resulting OS from a POSIX standard API. The applica-

tion and its custom OS are then deployed both in software and 

hardware. Finally, the entire platform is simulated using the 

SystemC kernel. The design methodology for the exploration 

of the OS services distribution is described in figure 1. The 

software aims to automate this methodology through the fol-

lowing main design steps: 

Design of the platform: The design phase consists of choosing 

and instantiating the needed components into the graphical 

editor in order to assemble the OS services and distribute them 

into the RSoC execution units.  

SystemC source code generation: After interconnecting all 

components and verifying the bindings, the structural source 

code of all the objects instantiated graphically into the platform 

are generated automatically. 

Compilation and Simulation of the platform: To complete the 

creation of the platform, the parameterized structural SystemC 

description is combined with the behavioral source code of all 

component provided by the user. The global SystemC descrip-

tion is compiled and simulated. 

Analysis of the simulation results: Graphical diagrams are 

produced to visualize the evolution of the system metrics dur-

ing the simulated time. This step helps the designer to evaluate 

the quality of the design. It acts as a decision guide for the ex-

ploration of the design solution space. 

  
 

 

 

 

Fig. 1 OveRSoC Design Flow 

The approach has been applied on a robotic vision applica-

tion [2] in order to explore its hardware and software imple-

mentation. In this study case, encouraging results have been 

obtained. We are currently implementing the OveRSoC GME 

as a standalone application based on Eclipse Rich Client Plat-

form. Standard project management functions like importation 

of API service or template components into standard provided 

library are supported as well as the creation of new platform 

models. The SystemC library and the C++ compiler can be 

customized by a preference menu. The software offers the pos-

sibility to add the new created platform to the pre-configured 

library. All data manipulated by the OveRSoC GME applica-

tion are stored using a proprietary XML format focusing em-

bedded software modelling. It is also possible to import exter-

nal RTL hardware IP components only if they are previously 

stored in the XML format conformed to IP-XACT specifica-

tion [3]. 
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Abstract—A large part of real time embedded systems RTES 
has to satisfy real time constraints and it usually employs Real 
Time Operating System RTOS. In order to decrease the design 
complexity of such systems, they need methods and tools based 
on high abstraction layers. 

Currently, UML profiles are found to be an effective solution 
for the automatic RTES design. Unfortunately, they are poor in 
integrating RTOS modeling. 

In the present work, a methodology based on model driven 
engineering MDE for RTOS design is introduced. The proposed 
approach aims at defining a platform independent model of 
RTOS. It suggests the implementation of statecharts relating to 
the process states, whose real time constraints can be checked by 
defining their semantic variants. The ultimate goal is the 
automatic generation of the code related to the scheduler. 
 
Keywords— RTOS modeling, semantic variants, statecharts 

implementation, MDE, automatic code generation 

I. INTRODUCTION 
Designing ERTS has always been a challenge. Indeed, 

standards to facilitate the checking of system properties at a 
preliminary stage are progressing well based on different 
abstraction layers. With regard to the bottom layers, there 
exists many synthetic tools; the only problem relates to the 
CAD (Computer Aiding Design) of the highest level which is 
the concern of this work. 

At present, UML (Unified Modeling Language) is having a 
growing interest in the software and hardware development. It 
represents a viable solution to decrease the complexity of 
ERTS design via UML profile. The ERTS complexity 
depends on the architecture deployment and requires runtime 
guarantees. Although ERTS requires a real time operating 
system, the existing profiles do not integrate the notion of 
RTOS modeling during the ERTS design, since they just focus 
on architecture and application modeling. 

This paper presents our contribution to the RTOS modeling, 
based on model driven engineering. In fact, the mains goals 
are the definition of a platform independent model of RTOS 
and the automatic generation of the code related to the 
scheduler. It suggests the implementation of statecharts 
relating to process states. 

For the suggested models, the structure of the RTOS is 
described through a class diagram which includes the 
definition of operational semantics. Then, the behaviour of a 
task which constitutes the core of the RTOS is defined in 
order to ensure coherence between various diagrams UML. 
The temporal and transitional semantics of the statecharts 
relative to the various states of a real time process is defined 
in order to reach the model of task scheduling. These two 
independent platform models are integrated in MDE process 
to generate the code related to the scheduler. 

This paper starts by providing a brief discussion about some 
related work in section two. Then, the proposed design 
methodology is described in section three, in which the 
models of the RTOS structure and the scheduler are 
introduced through the implementation of statecharts. The 
experimental results of an application example are provided in 
section four. At the end, some final conclusions with some 
future work are given. 

II. RELATED WORK 
After examining the specificity of each UML profile such 

as SPT (Scheduling, Performance and Timing) [15, 12], 
QoS/FT (Quality of Services & Faults Tolerance) [15] and 
MARTES (Modeling and Analysis of Real-Time and 
Embedded systems) [13], it is concluded that the focus was on 
the description of the material architecture and the application. 
These profiles are founded on an abstraction level higher than 
other approaches like ROOM, SDL, ADL, Petri Net. They 
also aim at the applications to data flow predominance rather 
than those to control. Even though these works briefly tackle 
the temporal aspect, they cannot cover the RTOS modeling. 
They are criticized for the lack of temporal and transitional 
semantics common to the models as well as the absence of 
tools which support them. In reality, these works have not 
enabled us to guarantee the reliability of the system yet; i.e., 
its determinism aspect. These models do not support the 
integration of real time characteristics sufficiently and 
therefore they do not consider the RTOS related to a specific 
architecture and application. The simulation approaches need 
a simulation time long enough to give a relatively reliable 
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sight of operation. 
According to [16], RTOS modeling is based on two 

independent class diagrams: a diagram describing the structure 
and another describing the scheduler. They suffer from major 
limitations, namely the coherence between the used diagrams 
and the lack of temporal semantics definition. In fact, because 
it can not cover the temporal behaviour of the RTOS, the 
diagram used to characterize the scheduler is a static one. It 
must also be complementary to the structure model via a good 
expression of the follow-up of the real time process evolution. 
Therefore, a methodology assuring the coherence between the 
used diagrams and the support of scheduling model is 
important. 

In [14], the author’s work consists in developing a 
middleware in order to implement scheduling algorithms on a 
real platform. It just focuses on mapping and ordering tasks 
dynamically for platforms using a middleware layer between 
the application and the RTOS.  

In [10], a model driven approach aims at proposing generic 
RTOS APIs (Application Programming Interfaces) and 
generating a fully-functional code by transforming generic 
RTOS APIs into RTOS specific APIs. This proposition can 
describe most of typical RTOS services but does not support 
real time task scheduling. 

III. RTOS MODELING 
The proposed methodology presents a step ensuring 

coherence between the various used UML diagrams and 
covering the behavioral aspect of the system as real time 
constraints. First, the model of the RTOS structure is defined. 
Then, a statechart diagram related to the state of a real time 
task is specified. After that, the temporal semantics presented 
by the statecharts [1] is given. While defining the semantic 
variation points of the statecharts, some techniques such as the 
reification and enumeration of the states and the events are 
applied. The model related to the RTOS structure corresponds 
to the source model during the stage of model transformation. 
During this stage, the scheduling model represents the target 
model. 

After defining the RTOS models, temporal constraints such 
as deadline, duration, etc are specified using Object Constraint 
Language (OCL).  

A. RTOS structure model 
 A class diagram is proposed for the description of the 
RTOS structure. It describes the major components of the 
RTOS. 
The class diagram which is presented by Figure 1 is 
characterized by the following entities: 

 Task: It is the most important component of the 
RTOS. A task must acquire a great number of 
information in order to manage their scheduling  

 Event: It causes the change of a task state 
 ISR: Interrupt Server Routine: It is the routine in 

charge of the interruption processing. In this context, 

it makes the relay between the material interruption 
mechanism and the software one 

 Alarm: Based on a meter, an alarm could activate a 
task, impose an event or activate an alarmCallBack 

 Counter: It presents a software/ hardware source for 
an alarm. It is an object intended for the recording of 
"ticks" coming from a timer 

 Resource: This entity is used to coordinate the 
concurrent accesses to shared resources. It is similar 
to semaphores. It is also used for explaining resource 
management. 

 MeanOfCommunication: It is an abstract interface 
which manages data between active objects [4]. The 
class ProtectedVar, which implements this interface, 
associates a mechanism of data protection 
(semaphore). In addition, LettreBox uses a file of 
messages. Besides, the read and write methods of this 
interface can update or get the value of the 
protectedVar class. This entity ensures data 
protection  

 Watchdog: The ISR contains one or more watchdog 
timers. The watchdog could possibly provide 
debugging information 

 Precedes: It illustrates the dependence of a task on 
another. It includes the definition of operational 
semantics [2]. 

Before presenting the scheduling model, it should be born 
in mind that each state of a running task on RTOS can take 
only one of the following values: {Waiting, Running, Ready, 
Suspended, Created}. As for the event, it has these values :{ 
terminate, activate, start, wait, preempt, release, create}. 

B. RTOS scheduling model based on statecharts implantation 
The structure of the statecharts diagram is, nonetheless, 

given a precise specification [17]. It can not easily be 
understood. So, UML 2.0 Statecharts present some semantic 
variation points. These variation points [9] concern, 
principally, three aspects: the time management, event 
selection policy, and transition selection policy. 

A set of approaches [8, 11] was proposed in the literature in 
order to define these semantics and implement the statecharts. 
The present work adopts the approach proposed by [6], whose 
technique is based on the enumeration and reification 

The reification consists in the transformation of states into 
specific class hierarchy through the application of the design 
patterns. 

A solution to separate the behaviour related to a state in an 
object, is to reify states through the use of the state pattern [7]. 
To reify and select the right transition events, the command 
pattern [7] is applied to the entity Task (See Figure 2). In 
order to ensure the progression of the automat, it is necessary 
to focus on the deterministic aspect of the system. It is also 
essential to determine the state running of the automat and the 
behavior to be adopted according to the event which has 
occurred. 
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Figure 1: Static Model of the RTOS Structure 
 

 
Regarding the enumeration of the states and the events, the 

code reacting the progression of the automat is localized in 
the method processEvent(). As for the enumeration of the 
states and the reification of the events, the code will be set out 
again between the method processEvent() and execute() of 
each class. As far as the reification of the states and the 
enumeration of the events are concerned, the code will be 
distributed between the method processEvent() and the 
method processEventPlay() of each class state. Finally, when 
the states and the events are reified, the code is distributed 
between the method processEvent() principal class, the 
processEvent() methods of the state class and the execute() 
methods of the class called event. 

The last solutions based on enumeration and reification do 

not allow the representation of the concept of file messages 
related to the automat progression. Time is not taken into 
account. To overcome this problem, the use of the Active-
Object pattern is, therefore, essential since it is effective for 
the achievement of the various policies of parallelism as 
shown in Figure 2. 

Following the reification application of the states and 
events, as well as the evolution illustration of the automat, the 
final model represented in Figure 2 will be considered as the 
target model during the transformation process. 
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Figure 2: RTOS scheduler model 

 

C. Specifying temporal constraints 
In order to focus on software correction quality during 

model transformation, OCL is used to explain temporal 
constraints such as deadline and duration. Let us take the 
example of the attribute progress of the Task entity, whose 
value must always be lower than the deadline. This constraint 
is translated into OCL as shown in Figure 3. 

 

 
Figure 3: Example of Temporal constraints specified with 

OCL 

IV. CASE STUDY 
The objective of this step consists in transforming an XML 

(Extensible Markup Language) source model obtained 
automatically from an UML source model to an XML target 
model. The model transformation is based on ATL (ATLAS 
Transformation Language) [5]. To describe the model 
transformation, the KM3 (Kernel MetaMetaModel) language 
is used. It makes it possible to define models according to 
meta-model MOF (Meta Object Facility) in a textual form. 

The source model transformed corresponds to the diagram 
of class presented by Figure 1. The code corresponding to 
XMI (XML Metadata Interchange) based on XML offers a 
tree structure to our model by presenting the classes and the 
attributes in textual format.  
To do these transformations, four tasks are taken with various 
characteristics. The scheduling of these tasks is made 
according to the scheduling algorithm Rate Monotonic [3].  
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The four tasks are specified in ecore format as shown in 
Figure 4.  
 

 
 

Figure 4: Tasks example 
 

The model transformation consists of the following three 
major stages: 

 Stage 1 (Scheduling analysis): It checks the 
schedulability conditions 

 Stage 2 (Initialisation): It puts all task instances in the 
event pool and initializes the tasks and events states  

 Stage 3 (Scheduling): It ensures tasks scheduling 
through time progressing 

A. Scheduling Analysis  
 The basic schedulability conditions for Rate Monotonic 
were derived from a set of n independent periodic tasks with a 
fixed priority. A set of tasks is schedulable by the RM 
algorithm if (1) is verified where Ti is the task period, n is the 
number of tasks and Ci is the worst case execution time. 
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Using ATL, Equation (1) is specified as shown in Figure 5: 
 

 
 

Figure 5: Schedulability conditions explained with ATL 

B. Initialization 
After checking schedulability condition, it is important to 

take instances of all classes of target model. The rule called 
Task2Task aims to transform Task source model elements to 
Task target model elements. It is described by Figure 6: 

 
Figure 6: Tasks initialization 

 
After transforming all instances of the task source model 

into the target model one, it is important to use a helper named 
isCreate which selects all tasks with created state. In the same 
way, four other helpers are implemented in order to cover the 
other task states. IsCreate helper is represented by Figure 7. 

 

 
Figure 7: isCreate Helper 

 
The previous helper is used via a rule called 

Task2CreateState. The rules «task2WaitState», 
«task2RunningState », « task2StopState », «task2ReadyState 
» are implemented with the same manner as shown in Figure 
8. 

 
Figure 8: Task2WaitState helper 

 
After initializing all the tasks and putting them in the 

eventPool, the four tasks must be scheduled using Rate 
Monotonic algorithm with a fixed priority. These tasks are 
scheduled according to each time unit. To do that, it is 
important to follow the following steps: 

For each moment, the file message Eventpool gives an idea 
about the existing tasks, their current attributes, specially the 
progress and the state ones. 

C. Scheduling 
According to Rate Monotonic, the task with the highest 

priority is extracted from the event pool. To find the highest 
priority, all the instances of this class are collected in a 
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sequence. These instances are sorted using the instruction 
asSet(). This operation returns a set containing the elements of 
the self collection. Order is lost from a sequence or an ordered 
set. The helper that defines the highest priority is shown by 
Figure 9. 

 

 
Figure 9: Extracting task with highest priority using ATL 

 
During the last step, the task with the highest priority is 

running while the other ones are waiting or blocked. So, the 
class RunningState of the target model is instanced. Thus, 
after selecting the highest priority, the concerned task is 
defined via a helper called check2 and it is used in the 
following rule and represented by Figure 10. 

Finally, after executing all the necessary rules, the target 
model is written in ecore format. It contains the four tasks 
scheduled according to Rate Monotonic algorithm. This file 
can be translated to any specific platform, i.e., to any 
computer programming language. 

 

 
 

Figure 10: Instantiation of RunningState class 

V. CONCLUSION 
MDE is a well-known technique that has been successfully 

applied in ERTS design, especially for hardware and 
application modeling. In this paper, the mentioned technique 
is used for integrating RTOS modeling in high abstraction 
level. At this level, concepts undergo abstraction and are 

independent of realisation and specific platform execution. 
The major contributions are the definition of independent 
platform RTOS models and the production of the code that 
ensures tasks scheduling.  

MDA pattern based on statecharts implementation 
technique is very effective since it leads to the creation of 
scheduling model. During model transformation, scheduling 
model is considered as the target model while the structure 
model is the source one. The proposed approach is validated 
through a case study on Rate Monotonic algorithm. 

Future work includes the focus on annotating used UML 
diagrams with reliability attributes to identify and recover 
system from failures. 
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Abstract – In this paper, a new approach for face 
recognition using component-based linear discriminant 
analysis is proposed. The proposed method may find 
many applications in systems requiring very high 
recognition rate, high speed and low memory. 
Component-based approaches for face recognition have 
gained interests in order to compensate for face changes 
and other disadvatages of holistic methods. A methodical 
study and comprehensive experiments relating time 
consumption versus system performance are presented. 
This study relates the three factors (component size, 
number of components, and component location) on one 
hand, with the performance of the system and its speed on 
the other hand. Further, we demonstrate a solution to the 
problem of face occlusion using this method. The 
experimental results show that the proposed method 
enhances the performance of the system and achieves a 
substantial saving in the computation time when 
compared to other known methods.  

Index Terms – Face recognition, high speed devices, 
component LDA, system performance 

I. INTRODUCTION 

Face recognition has received extensive attention 
because of its significant applications in many fields, 
ranging from biometrics, information theory, law 
enforcement and surveillance to smart cards and access 
control. Accurate automatic personal identification is 
now needed in a wide range of civilian applications 
involving the use of passports, cellular telephones, 
automatic teller machines, and driver licenses. 
Moreover, in video processing and internet 
applications, face image retrieval is an important factor 
for identification and verification purposes [1].  

Despite the great advances in this field of research, 
face-based identification still poses many challenges 
because of the changes in viewpoint, colour, and 
illumination. Further, the majority of the systems 
designed to date are not robust to occlusion. Another 
important concern is that the feature representations of 
most of these methods are of high dimensionality. This 
last important disadvantage makes them inadequate for 
the implementation in systems that require efficient 
storage and high speed processing, such as cell-phone 
cameras and video surveillance systems. One of the 
important reasons beyond these disadvantages is that 

most of the proposed systems are global or holistic 
approaches. In other word, they deal with the face 
image as a whole.  

In order to compensate for face changes and other 
disadvantages of holistic methods, recently, researchers 
have focused more on component-based approaches to 
use flexible relations between the face components [5, 
6, 7, 8]. The ability of component-based methods to not 
require a perfect view of all facial features offers many 
benefits. Nevertheless, there are still many shortages in 
this track of research. The processing and 
computational time of proposed methods are still not 
enough attractive to be implemented efficiently by 
limited memory and high speed processing devices’ 
manufacturers. Most of these methods require many 
pre-processing steps and use large image component 
size, which yield many deficiencies. In addition, the 
selection of the components of other methods is done 
manually around pre-selected points on the face. 

In general, component-based approach passes 
through two stages. In the first stage, the local features 
of the face image that comprise most of the importance 
are found using a set of characteristics and special well-
defined criteria or function. Next, these local features 
are combined at a second stage to decide whether the 
input face image belongs to a given class. One of the 
main objectives of the component-based approach is to 
find the best set of components, including their 
locations, their numbers, and their sizes that can 
classify and identify the face image.  

Ullman et al. [6] used both whole face images at 
intermediate resolution and local regions at high 
resolution for face verification, where components of 
various sizes were cropped at random locations of the 
images. Amit and Geman [9] employ small, localized 
and oriented edges and combine them with decision 
trees. Weber et al. [10] use localized image patches and 
explicitly compute their joint spatial probability 
distribution. Heisele et al. [7] introduced an algorithm 
that learns rectangular facial components around pre-
selected points on the face, and each component is 
grown iteratively, and consequently it was 
computationally costly. Heisele et al. in [8] have 
restricted the location of the components to be within a 
pre-defined search region and they add the position of 
the detected pre-defined components as an additional 
input to the classifier. Using linear and second-degree 
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polynomial SVMs classifiers in their system makes 
their system computationally exhaustive. Kim et al. [5] 
apply component-based LDA onto facial components 
and offer a good representation for MPEG-7 face 
description.  

In this paper, we present a novel method that aims 
to solving some of the problems mentioned above. 
Specifically we show that our proposed system is of 
high speed and it is attractive for domains demanding 
strict timing requirements with efficient recognition and 
verification rates, when compared to other systems. We 
present a study that relates the three factors (number of 
components, their sizes, and their locations) on one 
hand, with the performance of the system on the other 
hand. Further, we present a study and comprehensive 
experiments showing the relationship between the 
performance of the system and the time consumed by it. 
Furthermore, we will show that the proposed technique 
provides a solution to the occlusion problem in face 
recognition. From the above mentioned works, the 
closest one to what we are proposing is presented by 
Kim et al. [5]. However, in their study they do not 
explain how the facial components are chosen. Further, 
no criteria are mentioned on how to choose the size of 
component that should be used, or how many 
components are needed, or the proper location of these 
components. Therefore, we try to find the best 
component-based LDA for face representation by 
finding the best size, the number, and the location of 
components necessary to describe the face image 
efficiently. Moreover, the training time consumed by 
the method presented in [5] is very large as we will 
demonstrate in our experiments. This problem is 
efficiently overcome in our new proposed method. The 
extensive experimental results of testing and 
implementing the proposed approach are presented on 
two independent databases; the Olivetti Research Ltd. 
(ORL) database and the xm2vts, CVSSP – University 
of Surrey database. The organisation of the paper is as 
follows. Section 2 presents a brief mathematical 
background about the linear discriminant analysis 
(LDA) technique, since it is used in our proposed 
method. Section 3 discusses our proposed novel 
component-based method. Section 4 presents the 
experimental results and explores the relationship 
between the performance of the system and the time 
consumed by it. Finally, concluding remarks are given 
in Section 5.  

II.  LINEAR DISCRIMINANT ANALYSIS 

The LDA has been exhaustively used in face 
recognition due to its optimal performance and time-
efficient matching for multi-class face recognition. 
LDA emphasizes variations among different classes 
while the variations of the same class are de-
emphasized [3, 4]. Consequently, the LDA method 
finds a direction on which data are well class-wise 
clustered. Assume that a data matrix 

MN
Mxxx ×ℜ∈= },....,,{ 21χ  is given, where N

ix ℜ∈  is a 

N-dimensional column vector representing the face 
image and M is the number of images. Each vector 
belongs to one of C object classes },....,,{ 21 Cχχχ . 
Classical discriminant analysis aims to derive a 
transformation )( NnW nN ≤ℜ∈ ×  which maps a 

vector x to nT yxWy ℜ∈= ,  such that the transformed 
data have maximum separation between classes and 
minimum separation within classes. The between-class 

BS  and within-class WS  scatter matrices in LDA for 
the c-class case are given respectively by 
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where im  denotes the class mean, m  is the global 

mean of the entire sample set and in  denotes the 
number of samples in class c. The attempt is to solve 
the generalised eigenvalue problem 

iWiiB uSuS λ=  (3) 

by first projecting the image into a lower dimensional 
space using the PCA technique and then applying the 
LDA. This will ensure that the within class scatter 
matrix is non-singular. The optimal projection optW  
that maximises the ratio of the determinant of the 
between-class scatter matrix of the projected samples to 
the determinant of the within-class scatter matrix of the 
projected samples if found by the following 

T
pca

T
fld

T
opt WWW =  (4) 

where 

WSWW T
T

W
pca maxarg=  (5) 

WWSWW

WWSWW
W

pcaW
T
pca

T

pcaB
T
pca

T

W
fld maxarg=  (6) 

where TS  is the total scatter matrix. 

III.  COMPONENT-BASED RECOGNITION 
SYSTEM USING LDA AND SFFS 

By considering local components of a face image 
(instead of the entire face image) for recognition, we 
may achieve higher correct recognition rates. Since the 
image variations on the component level is limited 
when compared to the variations within the entire 
image. Thus, by adding the efficient use of the LDA 
method to the components makes the component-based 
LDA approaches advantageous for many applications, 
such as: 

DASIP 2008 November 2008

- 292 - 



   

1) Time efficient applications: our experiments 
show that the training time required for our 
proposed component-based method is much 
smaller than the others, as will be shown. 

2) Occlusion problem: when a targeted image is 
occluded, we can divide the image into a number 
of blocks in order to exclude the occluded part of 
that image and consequently the recognition will 
be based on the other components, as will be 
shown shortly. 

The most important issues of face recognition at the 
component level are finding the best size, location, and 
number of these components. Selecting the right size of 
a component is a difficult task and could depend on 
many factors such as: the number of images in the 
database, the size of these images, the variations in the 
input images, the required identification speed, and the 
required recognition rate. These factors influence the 
decision of choosing the best component size, number, 
and location, which are not independent. Fig. 1 shows 
our proposed component-based LDA method 
considering the above mentioned factors. A face image 
in the database is partitioned into a number (L) of 
components with an initial predefined size. The size 
and the necessary number of these components are then 
adapted and optimised by the algorithm that 
automatically finds the best presentation of the face 
image and consequently the best performance. These 
important components are automatically found through 
a search of the best number of sub-images 
(components) that can describe and eventually 
recognise the face using the Sequential Floating 
Forward Search (SFFS) algorithm [2].  

The L components of the image undergo LDA 
transformations. In a similar way to the training images, 
the test (query) image is divided into L components and 
their LDA transformations are performed. Now, for 
every component of the test image we find the distance 
between its LDA transformation and the corresponding 
training LDA transformation.  

In mathematical words, given a set of M training 
images },...,,{ 21 Mxxx , then a set of LDA 
transformation matrices is extracted for each of them. 
First, all the images are partitioned into L facial 
components. The images (patches) of each component 
are represented in a vector form with the 

thk component being denoted as },....,{ 1
k
M

k cc . Then, 

for the thk  facial component, the corresponding LDA 
transformation matrix kW  is computed. During testing, 

the L vectors },....,{ 1 Lcc  that correspond to the 
facial component patches are extracted from a face 

image ix  of the test data set. Next, a set of LDA 
feature vectors },....,{ 1 Lyyy =  is extracted from the 

test image ix  using the corresponding LDA 
transformation matrices as  

LkcWy kTkk ,......,1,)( == (7) 

Thus as shown in Fig. 1, a face image ix  is 
represented by a set of LDA feature vectors 

},.......,{ 1 Lyy . We have used the Euclidian distance 
in finding the minimum distance.  

At this stage, we have a candidate for each 
component representing the identity of the test image. 
Finally, we find the maximum number of the 
components scoring the same candidate and recognise 
the test image as that person. This is basically a fusion 
process where we fuse the information coming from 
each component to produce a single score that 
represents the combined decisions of the components 
result. The fusion method that is used is the Voting 
method. This method outputs a score equal to the 
number of component classifiers that output scores 
above their respective thresholds. For example, if we 
have five classifiers and three of these classifiers give a 
score belonging to identity A, while the fourth classifier 
suggests identity B and the fifth classifier gives a result 
in favour of identity C, then based on the voting method 
the system decides that the image belongs to identity A. 

As we mentioned earlier, the SFFS method is used 
in our method to find the best features since it was 
found to be one of the best feature selection methods 
[2]. The proposed system shown in Fig. 1 uses the 
SFFS algorithm to find the best location of a certain 
number of components that can give the highest 
possible recognition rate. If a pre-defined recognition 
rate is not achieved, the SFFS algorithm increases the 
number of components and the process is repeated 
again. In this regard, the SFFS algorithm includes new 
best features (here the feature is the component) that 
when added to the current feature set, the error rate is 
minimized. In addition, the SFFS algorithm excludes 
the worst feature during the selection process in order 
to further improve the selection of the feature set. 
Floating search methods of feature selection provide a 
performance that has been found to be very good 
compared with other suboptimal search methods and 
they are computationally much more efficient than the 
optimal method [2]. Briefly, the component selection 
using SFFS procedure can be explained as follows. 
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Figure 1. The proposed component-based LDA system for choosing the components size, number, and locations. 

Suppose k features (components) have already been 
selected from the complete set of measurements 

},...,2,1{ DjyY j ==  of D available features to form 

the set },1:{ YxkixX iik ∈≤≤=  with the 
corresponding criterion function )( kXJ . In addition, 
the values of )( iXJ  for all preceding subsets of size 

,1,...,2,1 −= ki  are known and stored.  

Step 1. Select feature 1+kx  from the set of available 
measurements, kXY −  to form feature set 1+kX  such 

that )( 1++ kk xXJ  is minimised with respect to 1+kx . 

Step 2. Find a feature, 1ˆ +kx  , in 1+kX  the removal of 
which will minimise )ˆ( 11 ++ − kk xXJ  with respect to 

1ˆ +kx  . 

Step 3. If 1+kx = 1ˆ +kx , then 1+= kk  and return to Step 
1. 
Step 4. If ≠+1kx 1ˆ +kx , then 11 ˆˆ

++ −= kkk xXX . 

Step 5. If 2=k , then kk XX ˆ= , and return to Step 1. 

Step 6. Find a feature, rx̂ , in kX̂ , the removal of 

which will minimise )ˆˆ( rk xXJ − . 

Step 7. If )()ˆˆ( 1−>− krk XJxXJ , then kk XX ˆ= , and 
return to Step 1. 
Step 8. If )()ˆˆ( 1−≤− krk XJxXJ , then 

1,ˆˆ
1 −=−=− kkxXX skk  . 

Step 9. If 2=k  return to Step 1, otherwise return to 
Step 6. 

IV. EXPERIMENTAL RESULTS AND 
ANALYSIS 

We carried out experiments on two independent 
and different databases; the ORL and the xm2vts. Both 
sets include a number of images for each person, with 
variations in pose, expression and lighting. The ORL 
set includes 400 images of 40 different individuals 
where each individual is represented by 10. The system 
was trained using 4 images for each person from this 
set. The xm2vts set have 2360 images for 295 different 
individuals with each individual represented by 8 
different images, where we have trained our system 
with 4 images [11]. Figures 2 and 3 show examples of 
the images from the xm2vts and the ORL databases 
used in the experimentation of our system, respectively. 
Example of an image and some of its corresponding 
components taken from different parts of the image are 
shown in Fig. 4. These components are candidates for 
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the system to choose the best ones that can give the best 
performance among the others, as it was explained in 
section 3.  
 

 

 
Figure 2. Different images from 4 different sessions (each 

session with 2 shots) for a certain individual taken from the 
xm2vts database. 

 
Figure 3. Examples of the images from the ORL databases. 

 
Figure 4. A demonstrative example of different components 

that correspond to a face image. 
 
A. Occlusion Problem 

As a first experiment, 4 components (L = 4) each of 
size 30×30 from the xm2vts database (2360 images) is 
used as shown in Fig. 5. The component-based LDA 
finds the individual recognition rate of each component, 
and then fuses the information of each component to 
produce a single score rate that represents the combined 
decisions based on a voting method. The final combined 
rate is shown in Table 1. It is worth mentioning that 

although an excellent successful recognition rate is 
achieved, the time consumed in the training stage is 
very large (48.7 minutes). As such, we reduced the size 
of the components to 25×25 and the corresponding 
training time eventually reduced to 36 minutes. 
Nevertheless, this is still unsatisfactory for many 
practical implementations. Therefore, in the next sub-
sections we will keep reducing the size of the 
components and at the same time try to keep the 
recognition rate as high as possible.  

 
Figure 5. Example of four components face image. 

Table 1. The results of the experiments related to Fig. 5 (4 
components). 

Comp. 
size 

Success 
Rate 

Training 
Time (minutes) 

30×30 99.5% 48.7 

25×25 99.2% 36 
 

As a demonstration of the strength of our proposed 
technique, we have applied it to the occlusion problem 
in face recognition. If a targeted face image is 
occluded, as shown in Fig. 6, our approach achieves 
acceptable recognizing rate for this image. For the 
quarter-part occluded images applied to the xm2vts 
database, we have reached an ~93% successful 
recognition rate. When we applied our method to the 
half-part occluded images, we have achieved an ~80% 
successful recognition rate. Note that the occluded 
images are used for the testing ones.  

 
Figure 6. Original, one-quarter, and one-half occluded image.  

B. The Component Size and Location 

Table 1 reveals the important fact that the 
performance, the speed of the recognition system, and 
the size of the components are closely related. For 
many practical applications, the speed of recognition is 
crucial. To achieve this objective our method reduces 
the size of the components as much as possible in order 
to decrease the amount of calculation needed. As a 
result, the issue of the component location arises, since 
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for smaller component sizes, empty uncovered regions 
of the images will be present. Further, these 
components should cover the most important regions of 
the face image. In this regard, we have reduced the 
image size to 20×20 using 4 components. Some initial 
selections of the 4 components that are proposed by the 
SFFS algorithm are shown in Fig. 7. Table 2 shows 
some examples of the results (the results correspond to 
xm2vts database). The recognition rate for an individual 
component is found to be above 50%. However, the 
overall success recognition rate for the whole 
component analysis approach can reach 81%. Note that 
the component number shown in Table 2 represents a 
specific case of a combined components layout which is 
generated by the SFFS algorithm. It is clear that some 
parts of a face are more descriptive and discriminative 
and need to be considered when generating face 
components. This emphasizes the importance of the 
location of the components that our approach focuses 
on. 

 
Figure 7. Some combinations of the four components face 

image of size 20×20. 

Table 2. Sample results (from the xm2vts database) of the 
experiments (components) for images in Fig. 7. 

Comp. Success 
% 

Fusion 
Rate Comp. Success 

% 
Fusion 
Rate 

34 52.4 38 51.2 

35 55.4 39 56.6 

36 71.0 40 58.5 

37 63.4 

81.4 

41 63.4 

76.6 

On the other hand, to further emphasize the 
important issue of the size of the selected components 
in a face image and in order to reach some conclusions, 
we have decreased the size of a component to 15×15. 
Figure 8 shows a sample of the component. The 
performance has dropped significantly (33.22% success 
rate was obtained). Increasing the number of 
components and keeping the component size unchanged 
did not give promising results. The highest rate that we 
have obtained was 51.6 % success rate for the case of 
14 components.  

Further, the experiments have demonstrated that 
increasing the component size has much better effect on 
the performance than increasing the number of the 
components. This was demonstrated in Table 1 for the 
cases of 30×30 and 25×25, and Table 2 for the case of 
20×20 component size. However, the improvement of 
the performance will be obtained at the expense of 
speed and time efficiency. The execution time for the 4 

components of size 20×20 is higher than the 
corresponding time for the 5 components of size 15×15. 

      
Figure 8. Four components face image of size 15×15. 

C. Number of Component vs. Computation time and 
Performance Rate 

The results of the previous experiments indicate 
that the number of components should be increased in 
order to improve the recognition rate and at the same 
time keep the components at a reasonable size. By 
increasing the number of the components, a higher 
overall recognition success rate is achieved. Fig. 9 
shows a comparison between the recognition rates for 
different number of components (all of size 20×20). 
Note that by using 14 components, a success 
recognition rate of 98.5% is achieved.  
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Figure 9. A comparison between the recognition rates for different 

number of components using the xm2vts database.  

Table 3 shows the computational time (using 2.8 GHz – 
512k RAM machine) needed to train the recognition 
system for different number of components and for the 
method presented in [5], when applied to the xm2vts 
database using 2360 images. Our method gives a 
success rate of 98.5% and needs a training time of only 
~27 minutes, for the 14 components case; whereas the 
method proposed in [5] takes more than 134 minutes to 
achieve the corresponding high rate. In other word, our 
technique performs 5 times faster than the one proposed 
in [5]. Note that, although the 30×30 four-components 
method achieves 99.5% success rate, it takes almost 49 
minutes to train the system in order to accomplish its 
task. Whereas the 20×20 14-components experiment 
achieves 98.5% success rate and needs only 27 minutes. 
It is important to mention that the computation times 
include the computation of LDA matrices. 
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Table 3. The training time consumed (in minutes) and the success recognition rate for the different number of 
components and the component-based method described in [5] using 2360 images of the xm2vts database. 

 

4 
comp.
-size 

30x30 

4. 
comp.
-size 

25x25 

4. 
comp.
-size 

20x20 

5 
comp.
-size 

20x20 

6 
comp.
-size 

20x20 

7 
comp.
-size 

20x20 

14 
comp.
-size 

20x20 

5 Comp. 
[5] 

14 
Comp. 

[5] 

time 
(min) 48.7 36 10.1 14.5 16.8 19.3 27 112.1 134.6 

Success 
Rate % 99.5 99.2 80 86.9 91.1 92.4 98.5 Not 

mentioned 98.5 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.15 0.25 0.35 0.45

False Acceptance

Fa
ls

e 
R

ej
ec

tio
n

4 Opt. Comp.of
size 25x25
14 Opt. Comp. of
size 20x20 
7 Opt. Comp. of
size 20x20
6 Opt. Comp. of
size 20x20
5 Opt. Comp. of
size 20x20
MPEG-7

Holistic LDA

Eigenphase

PCA

 
Figure 10. Comparison of the ROC curves of various methods for the ORL database.  
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Figure 11. Comparison of the ROC curves of various methods for the xm2vts database.  
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In addition, the Receiver Operating Characteristic 

(ROC) curve is used to assess the performance of the 
proposed method and compared to different other 
techniques. The ROC curves for the ORL and xm2vts 
databases are shown in Figures 10 and 11, respectively. 
It is worth mentioning that these curves were also 
calculated for MPEG-7, Holistic LDA, Eigenphases, 
and PCA techniques as shown in the figures. From the 
Figures, we can comfortably state that the performance 
of our system is robust. 

V. CONCLUDING REMARKS 

In this paper, a new approach using the component-
based LDA for face representation was presented. Our 
new approach relates the size, the number, and the 
location of the components in order to describe the face 
image efficiently, and consequently achieve the best 
recognition rate within the minimum possible amount 
of training time. We have experimentally demonstrated 
the existence of a trade-off between the component 
size, the number of such components, the processing 
time, and the recognition rate. In addition, thorough 
experiments have been conducted in order to decide a 
suitable component size which can give high 
performance and at an acceptable training time. For the 
images used in our databases (size of 56×46), it has 
been found that component size of less than 20×20 
would not give good recognition rates. Moreover, we 
experimentally demonstrated that increasing the 
component size reflects directly on the processing time. 
In other word, a trade-off between the component’s size 
and the time to process them must be decided. In 
addition, increasing the number of components 
increases both the recognition rate and the processing 
time. Moreover, our proposed method was compared to 
other published well known methods (PCA, Holistic 
LDA, Eigenphase, and MPEG-7) and it was shown that 
we have achieved much better performance. As such, 
the new technique can find applications where real-time 
processing and high speed performance are required.  
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Abstract— This paper presents the comparison of two design
methodologies applied to the design of a co-processor dedicated
to image processing. The first methodology is the classical devel-
opment based on specifying the architecture by directly writing
a HDL model using VHDL or Verilog. The second methodology
is based on specifying the architecture by using a high level
dataflow language followed then by direct synthesis to HDL. The
priciple of developing a dataflow description consists on defining
a network of autonomous entities called actors, which can
communicate only by sending and receiving data tokens. Each
entity in the process of consuming and generating data tokens
performs completely independent and concurrent processing. A
heterogeneous platform composed by a SW processor and the
designed HW co-processor is used to compare the results of
the designs obtained by the two different methodologies. The
comparison of the results shows that the implementations based
on the dataflow methodology, not only can be completed with
an important reduction of design and development time, but
also enable efficient re-design iterations capable of achieving
performances, which are comparable in efficiency to design
obtained by hand written HDL.

I. INTRODUCTION

Since the 70’s, the design of digital systems has known a
continuous evolution. The technology used to realize silicon
has been continually improving and thus the number of
transistors available for digital design on the same silicon
area has been increased. On the same line the complexity
of algorithms and of circuits has followed a similar trend.
Nowadays, the circuits complexity available on a chip has
also generated another phenomenon. Several processing units
such as processors, FPGAs and DSPs are available on the
same heterogeneous platform. Nowadays, one of the major
challenges is how to exploit all the processing resources avail-
able on such platforms for implementing complex applications,
but using only limited developments and design resources. In
other words, design productivity and efficient usage of the
platform processing resources are the fundamental challenges
of current and next generation designs. VHDL was introduced
20 years ago to simplify the design of the logic circuits by
raising the abstraction layer avoiding the designer to work at
the gate level. The dataflow methodology described in this
paper, is based on CAL language[1] and on the synthesis
of HDL directly from the dataflow model abstraction layer.
Its introduction has exactly the same objective: raise the

abstraction layer of a design. Thus, the designer should not
have to care about most of the low level implementation issues
present in VHDL or Verilog, but rather focus on higher level
architectural issues such as how efficiently dataflow trough
the different architecture components and how to partition
and map the algorithm/processing elements on the different
components of actual heterogeneous platforms. The aim of this
work is to show how CAL design methodology can lead to
efficient hardware designs within a shorter development time
and lower design resource usage than classical HDL methods.
In doing so, the paper introduces the essential concepts and
elements of the new dataflow methodology based on writing
networks of CAL actors [1], [2], [3] and compares the results
of a design case using the new approach and the classical
development at VHDL level.
A heterogeneous platform composed by a SW processor and
a HW co-processor is used for the comparison. An image
processing application partitioned into the SW and HW com-
ponents is designed using CAL and finally compared to the
implementation obtained by a classical HDL approach [4] [5]
[6]. The main novelty of the approach is the possibility of spec-
ifying both SW and HW components, using the same language
CAL, and then to generate automatically VHDL or Verilog
at RTL level. Different versions of CAL models have been
developed in order to explore the achievable performances of
the automatic HDL generation tool.
The paper is organized as follows. Section II presents the
dataflow concept and the ”modus operandi” of the CAL
language. Then, the heterogeneous platform (i.e. the smart
camera) and the co-processor unit are presented in details in
section III. The CAL dataflow model of the co-processor is
presented in section IV. The implementation results of the
different versions of the CAL dataflow models and the com-
parison with the hand written version in HDL are presented in
section V. Finally, conclusions and future works are reported
in section VI.

II. MODELING DATAFLOW SYSTEMS USING CAL

There are many applications that fit well the semantics of
dataflow systems. An example is multimedia systems with
flowing streams of data within processing blocks. Developing
true dataflow models of such systems using general purpose
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programming languages or hardware description languages is
possible. However, the genericity of concepts and operators
of these languages make the description of the models more
complicated. This implies that the models are harder and
more time-consuming to create and manipulate. It may be
better if they were modelled directly using a specific dataflow
language.

A. CAL language

CAL Actor Language is a language based on the Actor
model of computation for dataflow systems. It provides many
natural concepts to facilitate modeling of those systems [1].
A dataflow model expressed in CAL is composed by a set of
independent ”actors” and their connection structure. It makes a
network of actors. An actor is a stand alone entity which has its
own internal state represented by a set of state variables and it
performs computations by firing actions. It has a set of input
and output ports through which it communicates with other
actors by passing data tokens. An actor must have, at least, one
action to do computations. Actions execute (or fire) based on
the internal state of the actor and depending on the availability
and values of tokens at the input ports. An action may consume
tokens from inputs, may change the internal state of the actor,
and may produce tokens at the outputs. Action execution is
modeled as an atomic component which means that no other
action, of the same actor, can execute while an action is
executing or interrupting any executing action. CAL provides
scheduling concepts to control the executions order of actions
inside an actor. CAL actors can be combined into a network
of actors to build larger systems called network of actors. This
is achieved by connecting the input and output ports of actors
together to define the communication structure of the model
(Figure 1). These communication channels are constituted by
FIFOs, which in the CAL computation model have infinite
size. Using CAL, designers can only focus on the model-

Actor n Actor m
FIFO

FIFO FIFO

Actor p
FIFO FIFO

Fig. 1. A dataflow network with actors connected by FIFO channels.

ing of the dataflow system (actors and their communication
topology) and do not need to care much about the low level
of details to implemente the communication between actors
(i.e. message passing protocols, queues, ...). The underlying
computation model, simulation and synthesis system take care
of all communication driven issues. However, it also provides
to the designer the control over communication parameters
such as length of queues and types of exchanged data. In this
paper, we focus only on the issues related to the development

of a CAL model of HW accelerators and on the results of the
implementations.

B. Workflow for CAL-based designs

One of the current challenges of designing embedded sys-
tems composed by mixed SW and HW components is the
difficulty and the design efforts needed for specifying, model-
ing and implementing complex signal processing systems on a
heterogeneous platform. CAL addresses this issue by unifying
the hardware and software design and implementation process
in a single flow. In a CAL-based design flow, the whole system
is modeled and implemented in CAL. After that, designers can
decide on HW/SW partitioning for the final implementation. A
subset of the model can be used to generate synthetizable HDL
code. The generated code can also be combined with existing
HDL designs. Software can be generated in a similar manner
based on the partitioning decision[3]. In such workflow, the
partitioning between hardware and software can be easily
modified since the same source is used for generating both
parts. Figure 2 shows the complete CAL design flow for the
implementation of a smart camera platform. It is composed of
a general-purpose processor for running SW modules and a
FPGA platform including specialized hardware.

Processing
FPGA

Main
Processor
ARM9/11

Acquisition
FPGA

CMOS
sensor

Software HardwarePCI bus

Rocket IO

LVDS

Actor 1
Actor 2

Actor 4 Actor 5

Actor 6

Actor3

Actor 8Actor 7

HDL Generator
SW synthesis tool

CAL MODEL

Platform

Fig. 2. Graphic representation on how partitions of the CAL dataflow models
can be mapped on a heterogeneous SW and HW platform using synthesis
tools.

III. SMART CAMERA PLATFORM

In this work, the test platform is a ”smart camera” based on
an embedded HW/SW co-processor designed and developed
in a previous work [4]. Cameras with embedded co-processors
enable the implementation of more powerful processing due
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to the high degree of flexibility and to the clear task separation
between the different units. The efficiency and the processing
tasks have been tested and validated implementing a real
application. This application is the detection and decoding of
bar codes in a postal sorting application [5], described in more
details hereafter. The whole co-processor has been specified
and designed manually in VHDL. The high level of perfor-
mance of the co-processor have been obtained exploiting the
potential parallelism at the different stages of the processing.
The communication and task controllers are rather complex
due to the large variety of implemented functionalities. There-
fore, obtaining an efficient model for direct HW synthesis
by means of a high level dataflow description represents a
real challenge. The system infrastructure of the SW and HW
platform is presented below. The platform is composed of an
embedded frame-grabber and is equipped, at different levels,
of a processing unit for the image captured by the sensor.
Figure 3 illustrates the main architectural components of the
smart camera with embedded co-processor (Xilinx FPGAs)
and processor (Nexperia). Two FPGAs are used to acquire and
pre-process the image coming from the camera sensor. The
main processor is in charge of the high-level processing tasks.
The co-processor deals with the acquisition, pre-processing
tasks specific to the application, and the lower-level tasks.
These latter are characterized by processing regularity and a
high level of parallelism. Figure 3 illustrates the main archi-
tectural components of the smart camera with the embedded
co-processing stage.
In this section, the platform communication infrastructure is

Communication
Board

Communication
Board

Multimedia
Processor
Multimedia
Processor

Image Acquisition
FPGA

Image Acquisition
FPGA

Image Co-processor
FPGA

Image Co-processor
FPGA

SensorSensor

SDRAM
Memory
SDRAM
Memory

ZBT
Memory

ZBT
Memory

PCI
BUS

PCI BUS

Rocket IO

LVDS

Memory connection

Fig. 3. Simplified smart camera description.

described showing that when building a CAL dataflow model it
is not necessary to redefine the implementation of the existing
hard-wired communication interfaces and busses.

A. The communication between the different platform compo-
nents

The communication infrastructure in data dominated sys-
tems is an essential part in the development of an embedded
system. The design choices aim at obtaining the largest
achievable bandwidth between the four components of the
platform. In developing the CAL dataflow model, ”Core” or

”drivers” already written by the component vendors (Xilinx
and Nexperia in this case) have been used. In this way,
a reduction of the development time and resources were
achieved. The components of the communication infrastructure
are:

• Sensor => acquisition FPGA,
• Acquisition FPGA => pre-processing FPGA,
• Acquisition FPGA => processor,
• Pre-processor FPGA => processor.

The communication between the sensor and the acquisition
part is specific for each image sensor. Consequently, the
interface must be built accordingly. The connection between
the acquisition part and the processing part is standard and
independent from the sensor. In the described design case,
the connection between the co-processor and the processor
is implemented with a standard PCI bus. Hence, the co-
processor is independent from the processor and could be
used as embedded IP with any PCI system. The co-processor
architecture can achieve full data rate transfer on the PCI
bus. The communication between the two FPGAs is either
a PCI communication (same bus and the processor master
this communication channel) or a RocketI/O connection (serial
high-speed connection specific to Xilinx component).
In FPGAs, all communications are built with the Core Gen-
erator tool of Xilinx, which yields optimized designs. In the
processor, a driver is included in the dedicated component
library. Thus, it is not necessary to redefine and to implement
again these parts of each component in the CAL model.
For such reasons, only the core architecture of the co-processor
FPGA is addressed in this design case study. For performance
reasons, the pixels of the image from the sensor are transferred
in words of 32 bits.

B. Co-processor description

The Co-processor is composed of four components as
indicated in Figure 4. These components are:

• The interface with the configuration memory
• The co-processor manager
• The external memory controller
• The processing modules

FIFO FIFOMemory
Controller

Memory
SRAM

Co‐Processor
Manager

Processing

PCIPCI

Interface
Memory of
configurations

Fig. 4. High level architecture of the co-processor.

The interface connects the configuration memory and the co-
processor manager. The configuration defines: the image size,
the processing tasks and the start address in the external
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memory where the results of the image processing are stored.
The co-processor manager deals with the whole system by
controlling all the components. The memory manager accesses
the external memory to acquire an image according to the pro-
cessing. The processing module performs the actual processing
according to the desired configuration.
The processing modules that have been developed by writing
VHDL are:

• Median filter 3x3,
• Transpose,
• Adaptive local binarization,
• High pass filter 11x1,
• Dilation 31x1,
• Sub sample by 4 in width and by 4 in height.

C. Bar code reading application

The postal sorting is a real-world example chosen to
show the processing possibilities and the achieved level of
parallelism of the system. The goal of this application is to
detect and decode bar codes on letters, as shown in Figure 5,
to enable automatic sorting at different stages of the logistic
postal letter handling. This application is a good example of
usage of all the processing possibilities of this heterogeneous
platform. Some processing tasks are implemented by the
co-processor and the others by the processor.
This section describes how the bar code is decoded. Different

Fig. 5. Application of the reading of a bar code.

processing steps are necessary to complete the process. In
sequence, a bar code is detected by applying: a transposition,
a high pass filter, a dilation, a sub-sampling, a ”blobbing”
and finally a decoding on the area where the bar code has
been detected. The first processing stage is a transposition.
The transposition rotates the image acquired line by line
vertically of 90 degrees. As described in [6], a transposition
is necessary because the other processing stages are specific
to a horizontal reading. The first processing is a high pass
filter. The high pass filter deletes the background and raises
the white bar code. The resulting image is stored into the
memory, but two others processing tasks are built into
the FPGA co-processor. The two pre-detection tasks are the
dilation and the sub-sampling. The first step dilates the bars of
the bar code to build white areas. This step is necessary later
to correctly identify the bar code location within the image.
The second step reduces the image size without changing
its content relevance. Then, the small image obtained is
sent to the processor using less bandwidth on the PCI bus.
These four tasks are all executed by the co-processor. The
”blobbing” executed by the processor consists in locating the
two or three largest ”white” areas in the small image which
provide the location of the bar codes. A command is sent

to the co-processor to send only the regions determined by
the blobbing. These regions are taken into the image without
background stored previously into the memory. In order to
decode the bar code, the processor executes several 1-D FFT
on lines oriented in different directions. In reality, only the
part delimited by the rectangular region is read as illustrated
in Figure 5.

IV. CO-PROCESSOR DATAFLOW MODEL

In this work, we want to compare the implementation of a
subset of the smart camera platform in VHDL with its equiva-
lent implementation in CAL. Two versions of the coprocessor
implemented in CAL are used for the comparison. The first
design is a exact transposition of the VHDL architecture into
a CAL dataflow architecture. The comparison of this design
with the VHDL version provides the information on how the
CAL toolset is efficient in generating HDL code from a given
dataflow architecture. In the second design, the coprocessor is
a complete redesign of new architecture at CAL abstraction
layer providing the same functionality of the VHDL model and
the original design. Such new design exploits the properties of
the CAL to HDL compiler toolset to reduce the on-chip area
of the original design. Developing a CAL design by successive
architectural refinements can be performed much more quickly
compared to modifying a HDL design.

A. CAL co-processor design of the handwritten HDL archi-
tecture

This section describes the architecture of the original co-
processor design (illustrated in Figure 6) and how it has
been transposed into the CAL dataflow model. As shown in
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data 1: picture size for the acquisition.
data 2 : external memory configuration for acquisition.
data 3 : picture size for processing.
data 4 : external memory configuration for processing.
data 5 : processing tasks.

Fig. 6. CAL Dataflow HDL architecture of the co-processor.

the picture, ”Acquisition Processing”, ”Configuration Memory
Manager”, ”Processing Task Controller”, ”Processing” and
”External Memory Manager” are architectural components
that have been fully specified in CAL.
Processing tasks have been created to support the described
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application. Such processing tasks written in CAL are : High
Pass Filter, Dilation, and Transpose. Their implementations in
CAL respect the same architecture of the original design with
just minor modifications to I/O ports. These actors are not
explained hereafter.
The dataflow description of the co-processor is reported in
Figure 6. The Acquisition Processing actor receives its config-
uration by the processor via the PCI bus. Then, it produces two
addresses which are used to retrieve data in the configuration
memory. When it receives data 1 and data 2 coming from
the configuration memory, it produces addresses to store the
image into the external memory. data 1 is the image size
and data 2 contains the information about the localization of
the read/write operation in the external memory (addresses).
When the acquired image is completely saved in the SRAM,
the Processing Tasks Controller actor receives its configuration
data sets. Like the Acquisition Processing actor, it fetches data
3, data 4 and data 5 into the configuration memory. Then,
it sends the list of the selected tasks to the actor processing
and their associated configurations. Afterwards, the Processing
Tasks Controller actor waits for the updated configurations
produced by ”Processing” actors. If number of processing
tasks are realized, the resulting image is sent via the PCI bus.
The Configuration Memory Manager and External Memory
Manager actors are only used to switch the data or the
addresses towards the right actors.
The subsections below explains in details behavior of the
different actors illustrated in Figure 6.

1) ”Acquisition processing” actor: The actor ”Acquisition
Processing” is illustrated in Figure 7. Its function is to interpret
the configuration sent by the processor via the PCI bus. These
configuration data sets are stored temporarily into the Config.
Memory. Configuration data are the size of the image and its
place into the physical memory. In details, the ”Acquisition
Task Convertor” actor selects the right configuration data in
the Config. memory thanks to the ”Data Requester” actors.
The ”memory start convertor” and ”Picture Size Convertor”
actors send the following tokens to the ”Address Generator”
actor : Height, Width, Start Address and Memory Bank. This
latter actor generates also addresses used to store the image
into the external memory.

Aquisition
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Convertor
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Data

28th bit

Address

Fig. 7. Dataflow model of the ”Acquisition Processing”.

2) ”Processing tasks controller” actor: The configuration
of the processing which is sent by the processor is obtained
with the same principle than the previous actor. These config-
urations are: size of the resulting image, place in the physical
memory of the result, list and number of processing tasks.
The four ”Processing Tasks Manager” actors manage correctly
the Height, Width, Address Start and Memory Bank parameters
in function of the number of processing tasks. These actors
communicate with the actor ”Processing”, described hereafter,
via wires ”underway” and ”new”. ”underway” is the current
value of each parameter and ”new” the new parameters sent
by ”Processing” actors. Once processing tasks are finished,
the final step is to send a resulting image to the processor.
This last step is processed by the ”Processing Manager” and
”Address Generator” with the last configuration values.
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Fig. 8. Dataflow model of the ”Processing Tasks Controller”.

3) ”Processing” network: ”Processing” is a network of
actors that performs various processing tasks on the images
(Figure 9). As explained above, this network receives the
current parameters into ”Processing Manager” actors. Only
one ”Processing manager” actor reacts in function of the
selected processing tasks. After, the right ”Processing” actor
(or network) receives the parameters and execute its task.
When the processing is finished, parameters are updated and
sent to the ”Processing Task Controller”. Each processing
operation in this network (denoted by ”Processing N”) can be
a single actor or a network of actors. In this design there are
three processing operations: Transpose, High pass filter, and
Dilation. These operation are partitioned into multiple actors
which allow to perform actions in parallel.

4) ”External Memory Manager” and ”Configuration Mem-
ory Manager” actors: The ”External Memory Manager” actor
implements two functionality: read and write. The write func-
tion generates the addresses and the data. The read function
generates the addresses and the data according to addresses
shunting. The actor ”Address Convertor” provides the infor-
mation if the address is in read mode or in write mode. The
”Configuration Memory Manager” actor implements a similar
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Fig. 10. Dataflow model of the ”memory manager”.

functionality which is the read part of the ”memory manager”
actor.

B. Redesign of the coprocessor

Beside the transposition of the architecture written from
VHDL in CAL, described in the previous sections a new
architecture has been completely redesigned directly in CAL
with no more correspondences with the original VHDL refer-
ence architecture (Figure 11). Groups of actors that operate
sequentially and do not benefit much from parallelism are
merged into a larger actor. Such actors have almost the same
functionality of all actors of the transposed architecture. In the
new design, actors ”Acquisition Processing”, ”Configuration
Memory Manager”, and ”Processing Task Controller” are
merged into a single actor, ”Controller”. This actor deals with
commands sent via the PCI bus, reads and interprets configu-
ration data stored in the configuration memory and controls the
processing actors. It initiates appropriate processing operations
and collects and stores results of processing. The actor ”Mem-
ory Controller” provides the interface to the SRAM memory
and arbitrates access requests made by various sources. A
processing network includes three processing operations: High
Pass Filter, Dilation, and Transpose. As above, each of these
networks are redesigned by merging some of their actors into
larger actors and thus the number of actors in each network is
reduced compared to the original transposed design described

above. However, each processing operation implements the
same functionality and it is equivalent to the original design.
One objective of the new data flow redesign, where actors
are merged into larger actors is to achieve better tradeoffs
between area and throughput. Such possibility is achievable at
the level of the CAL design. Since each actor when converted
to HDL has an area overhead for reset circuitry, internal finite-
state-machine, input and output token queues and circuitry
for the communication channels, a non negligible resource
overhead is required when too many actors are instantiated.
If such actors do not usually work in parallel there is no
throughput penalty in merging them and saving silicon area.
This usually holds when dealing with many small actors with
a small number of actions. On the other hand, due to the
fact that actions of an actor cannot be executed in parallel,
it must be considered that throughput could decrease as the
number of actions in an actor increases. This suggests that for
those parts of the system that mostly work in sequence and
do present little or no parallelism, it is better to use a fewer
number of actors to save resources. For parts with a relevant
amount of parallelism is it better to use a higher number of
actors to achieve higher throughput. The fact that such trade-
offs can be developed at CAL level using a compact high level
representation, constitutes a very attractive feature of CAL
based design.
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Fig. 11. New CAL Dataflow architecture.

V. RESULTS AND PERFORMANCES COMPARISON

In this section, the results of the synthesis in HDL and RTL
of the models of the architecture developed in CAL dataflow
language are reported and compared with the hand written
model.

A. Results of dataflow language

When the dataflow model has been developed, it is simu-
lated using the Opendataflow simulator [7] to check for the
correct functionality. Its equivalent HDL code is generated
using the tool described in [2] and then it is synthesized. The
results of the synthesis is reported in Tables I and II for the
original and revised design. Several variant configurations for
the coprocessor have been tested to explore the performance
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of the conversion tool and the appropriateness of the modeling
methodology. Initially, a version of the co-processor without
image processing functions is reported. This includes only
functionality required for scheduling and dataflow controls
which are highly adapted to CAL framework. As a result, both
design have better area performance than the VHDL design
while both preserve the same processing throughput.
In the redesigned coprocessor, the hardware overhead is re-
duced compared to the original design. This is due to the lower
number of actors in the CAL model, since each actor instanti-
ation implies overheads in the synthesized hardware (i.e. fifos
and handshake protocols for each data token connection).
In terms of frequency and processing time, the maximum
achievable frequencies for the original and the revised design
are 90 MHz and 100 MHz respectively. The processing time
at these frequencies for a test image of 1712 × 180 is about
0.85 ms and 0.77 ms. Both designs present a processing time
of 1.54 ms at 50 MHz which is the working frequency for the
example application.
Other scenarios experimented in this work include the usage of
the processing network. In one case it includes only the high
pass filter and in the other it includes the complete processing
tasks (high pass filter, transpose, and dilation). Processing
tasks introduce additional delay and as result the throughput
is reduced compared to the scenario with no processing. The
same considerations can be seen with the whole processing
used in the design case application. For the original design
the clock frequency is the same for the three scenarios. The
revised design has higher clock frequency in the two first
scenarios and has a frequency equal to the original design
for the scenario with full processing. Nevertheless, all clock
frequencies are completely in accord with the specification
of the application. Processing delays for the original design
are 3.57 ms at 50 MHz and 1.92 ms at 90 MHz and for the
revised design are 7.30 ms at 50 MHz and 4.06 ms at 90 MHz.
Throughput comparison between the two designs shows that
both achieve the same performance in the first comparison
scenario, but the original design performs better in scenarios
with processing tasks included. The reason is that in the first
scenario all tasks are performed sequentially and we do not
benefit from having actors working in parallel. For processing
operations, the potential parallelism is high so the original
design which presents a large number of actors working in
parallel yields a higher throughput at the cost of larger area.

B. Performances comparison

Table I, Table II and Table III reports the results of the two
methodologies in terms of number of occupied slices, slice
number of Flip Flops, number of four input LUTs, frequency
and throughput. In these tables, the size of files that describe
the same elements in VHDL and CAL is also reported.
Table I reports the results of the co-processors implemented
in CAL. Table II reports the results of hand written VHDL
as described in [6]. It has to be be noticed that the PCI core
interface is not taken into account by the results reported in
the tables. The results show that all along the development of

the dataflow CAL model the hardware resources used in the
FPGAs are also lower or nearly the same in the revised design
than the one necessary by the handwritten VHDL design.
A second interesting point is that the code size of CAL is
by far smaller than the code size of VHDL with a factor
ranging from 3 up to 10. However, even if such factors are
already an excellent result, it can be noticed that supplying
CAL with a library of basic functions similar to what in
VHDL are Concatenation(),Bitselect() and similar low level
library functions, such compactness factor can largely further
improve. Moreover, CAL code is better structured and results
are much easier to understand and analyze than an equivalent
VHDL or Verilog design.
In terms of maximum achievable frequency, the hand written
architecture remains better and consequently the achievable
data throughput at the maximum frequency is higher. However,
considering that the application requires processing at 50 MHz,
when the two architecture work at the same frequency the
throughput for the given application example is the same for
both the original design and the revised design. However, in
terms of HW resources, the revised design achieves better
results compared to the original design and the handwritten
design. Another important point is the reduction of the devel-
opment time in CAL by a factor of about four compared to
the hand written coding. Thus, with these results it is easy to
say that the development time in dataflow is much faster than
the one of a standard HDL development language.
Figure 12 summarizes the main components of a design:
platform resource usage, design productivity and performance.
For this application example size area is reduced in one of the
case (redesigned CAL), the development time is considerably
reduced by at least a factor four and the processing/data
throughput is approximately the same for both methodologies.
Moreover, the code size written for the same application is
reduced by a factor of 3.

CAL Dataflow New CAL Dataflow architecture
Area 1.20 0.87
Throughput 1.00 0.49
Development 0.25 0.25
Code size 0.36 0.37

VHDL Hand written

1.00

0.25
0.36

0.49

0.25
0.37
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0.87

Area Throughput Development time Code size

CAL Dataflow HDL architecture

New CAL Dataflow architecture

VHDL Handwritten

Fig. 12. Comparison to VHDL reference design.

VI. CONCLUSION & FUTURE WORKS

In this paper two design methodologies, a classical approach
with handwritten HDL and a CAL dataflow development, are
compared. The performance of dataflow approach and the per-
formance of the conversion from CAL to HDL are evaluated.
The results reported in section V are very promising. Beside a
slight reduction of the maximum achievable frequency, other
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Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

949  1120  887  25.7  ≈90  0.85/1176  1.54/649 

High pass 
filter only 

2193  1999  1846  39.0  ≈90  0.85/1176  1.54/649 

All 
processing 
modules 

3127  2930  3956  65,7  ≈90  1.92/520  3.57/280 

Table I: CAL Dataflow HDL architecture results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

469  469  549  13.7  ≈100  0.77/1299  1.54/649 

High pass 
filter only 

1220  1170  1621  34.2  ≈100  2.31/433  4.61/217 

All 
processing 
modules 

2276  1991  3079  68.3  ≈90  4.06/246  7.3/137 

Table II: New CAL Dataflow architecture results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

1171  902  1790  145.0  ≈125  0.61/1639  1.54/649 

High pass 
filter only 

1639  2779  2376  162.0  ≈125  0.61/1639  1.54/649 

All 
processing 
modules 

2623  3855  3740  182.9  ≈125  1.37/730  3.57/280 

Table III: Hand written VHDL results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

949  1,120  887  25.7  ≈90  0.85/1,176  1.54/649 

High pass 
filter only 

2,193  1,999  1,846  39.0  ≈90  0.85/1,176  1.54/649 

All 
processing 
modules 

3,127  2,930  3,956  65,7  ≈90  1.92/520  3.57/280 

Table I: Dataflow original design results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

469  469  549  13.7  ≈100  0.77/1299  1.54/649 

High pass 
filter only 

1,220  1,170  1,621  34.2  ≈100  2.31/433  4.61/217 

All 
processing 
modules 

2,276  1,991  3,079  68.3  ≈90  4.06/246  7.3/137 

Table II: Dataflow revised design results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

1,171  902  1,790  145.0  ≈125  0.61/1,639  1.54/649 

High pass 
filter only 

1,639  2,779  2,376  162.0  ≈125  0.61/1,639  1.54/649 

All 
processing 
modules 

2,623  3,855  3,740  182.9  ≈125  1.37/730  3.57/280 

Table III: Hand written VHDL results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

949  1,120  887  25.7  ≈90  0.85/1,176  1.54/649 

High pass 
filter only 

2,193  1,999  1,846  39.0  ≈90  0.85/1,176  1.54/649 

All 
processing 
modules 

3,127  2,930  3,956  65,7  ≈90  1.92/520  3.57/280 

Table I: Dataflow original design results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

469  469  549  13.7  ≈100  0.77/1299  1.54/649 

High pass 
filter only 

1,220  1,170  1,621  34.2  ≈100  2.31/433  4.61/217 

All 
processing 
modules 

2,276  1,991  3,079  68.3  ≈90  4.06/246  7.3/137 

Table II: Dataflow revised design results 

 

Processing 
Time(ms)/Throughput  
(image 1712x180/s) 

 
Number of 
occupied 
slices 

Number of 
slice Flip 
Flops 

Number of 
4 input 
LUTs 

Code size 
(kbyte) 

Frequency 
MAX 
(MHz)  At max 

Frequency  At 50 MHz 

Without 
processing 
module 

1,171  902  1,790  145.0  ≈125  0.61/1,639  1.54/649 

High pass 
filter only 

1,639  2,779  2,376  162.0  ≈125  0.61/1,639  1.54/649 

All 
processing 
modules 

2,623  3,855  3,740  182.9  ≈125  1.37/730  3.57/280 

Table III: Hand written VHDL results 

 

design results are improved, particularly in terms of HW
resources for the revised design and throughput for the original
design. Moreover, development time and code size in both
CAL model examples are reduced of a relevant factor, enabling
interesting redesign iteration options.
Several improvements could be further applied to the method-
ology tested so far. The first is certainly to include a library
of basic low level function to ease CAL code writing and
considerably reduce the size of the code. The second is to
continue the improvement and the optimization of the HDL
generation tool as well as implementing extensions of the
OpenDF framework functionality.
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Abstract— Numerous different implementations for H.264/AVC
variable block size motion estimation have been proposed in
the recent years to make this computationally challenging task
more feasible for mobile devices with video encoding support.
The variable block size motion estimation problem defined by
the standard is complex and multidimensional, offering a wide
variety of possibilities for efficient implementation. One of the
most popular implementation architectures are systolic arrays.

In this paper we look at the full-search variable block size
motion estimation problem on 1D systolic arrays from a high level
by modeling the system with a software tool that enables design
space exploration and cycle-accurate simulation. Our design
space exploration tool has provided many interesting insights
to the VBSME problem that give directions for making efficient
designs.

I. INTRODUCTION

Motion estimation is a fundamental part of modern block-
based hybrid video coders, such as in MPEG-4 video [1].
In block-based motion estimation a small part (template) of
the present video frame is matched against a search area in
a neighboring video frame in the hope that corresponding
content can be found.

In the new h.264/AVC video coding standard the motion
estimation is done by so-called variable block size motion es-
timation (VBSME), which is one of the most computationally
demanding tasks of the encoding effort. In the last few years,
numerous implementations have been proposed to make the
computational burden lighter [2], [3]. These approaches can
be divided into two main categories: approximative and full-
search solutions.

An approximative algorithm for VBSME uses only a frac-
tion of the available search space to find the best match
for the template image data. This means that the globally
best match cannot always be found, but there will be a sub-
optimal solution with a considerably smaller computational
effort. As an example, the algorithm described in [2] offers
a 75% reduction in computational complexity with an image
quality loss of only about 0.5dB (PSNR), which is visually
hard to detect.

However, there are some occasions when the sub-optimal
solution is not acceptable. In this case the motion estimation
has to be done by a full-search method that searches all of the
area within the limits or the search radius. Although the num-

ber of computations increases dramatically when compared to
approximative solutions, there are fortunately a few features
in the full-search approach that can make it computationally
feasible. First of all, there is a considerable amount of redun-
dancy in the computations. When utilized correctly, this means
that the amount of data moved around can be reduced greatly.
Second, the full search space makes the problem very regular,
which promotes the use of simple and fast processing elements
(PEs). Finally, the full-search solutions can be parallelized
in many different ways, which opens further possibilities to
reduce the latency of the algorithm.

Because of the aforementioned properties, the H.264/AVC
VBSME problem has often been implemented in systolic
array hardware. A systolic array architecture consists of a
set of processing elements organized by a highly regular
interconnection network (e.g., a mesh). During every clock
cycle, each PE performs some computation and exchanges data
with its immediate neighbors. The PE is typically controlled by
a finite state machine (FSM) and the data flow is synchronous
and regular. Both 1-dimensional (1D) systolic arrays and 2-
dimensional (2D) solutions are used for VBSME. 1D systolic
array architectures are typically used for portable electronics,
where a premium is placed on power consumption and battery
lifetime, rather than performance; 2D architectures are typi-
cally used for high-end systems, where a premium is placed on
performance and power consumption is not a primary concern.

In this paper we describe a software tool for modeling 1D
systolic array architectures that can be used for VSBME. The
software tool has been written in C++ with the help of a
general-purpose systolic array library. The software model can
be used for design space exploration of VBSME solutions and
it has given some insight on building efficient 1D systolic array
architectures for VBSME.

In Section II we describe the general-purpose systolic array
library that was used as a basis for our design space explo-
ration tool. Section III describes the design space exploration
tool in detail and Section IV describes the insights provided
by our work.

II. SYSTOLIC ARRAY DEVELOPMENT LIBRARY

Our design space exploration tool was built on a systolic
array library that is written in C++ in an object-oriented
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Fig. 1. The systolic array primitive classes.

manner. As a basis in the library are several primitive classes
that are either instantiated directly by the designer, or used as
base classes for custom design. The class hierarchy is depicted
in Figure 1.

The library provides the primitive building blocks for a
systolic array architecture, as well as the means to connect
them. In addition to that, also convenient functions have been
designed that help setting up meshes of PEs by a single
function call. A feature worth mentioning is also the possibility
of address auto-increment in memory blocks, which enables
removing this mundane task from the actual processing loop.

Our library does not automatically map applications to
a systolic array, but assumes that the designer has enough
knowledge to do that. This also means that the synchronization
of data streams from different inputs must be figured out by
the designer.

The parent of all systolic array classes is SynchronousObject
that provides a common clock to all objects that have a
concrete counterpart in the system. ContainerObject is a
virtual class that is derived from SynchronousObject. It is
the parent class of all classes that can be used to store data.
The final virtual class is PE, which contains the mandatory
functionalities common to all kinds of processing elements.
Our library does not offer any directly usable processing
element classes, instead it is assumed that the user of the
library derives a new class from PE and uses that for the
application. After deriving a custom PE class, the user must
program its actual behaviour in C++, which essentially means
defining functionality between the input and output channels
of the PE. The functionality between the input and outputs can
be arbitrary, as long as it provides valid data to the outputs at
each clock cycle and respects the width of the channel. Below
is the class declaration of PE:

class PE : public ContainerObject
{
public:
PE();
˜PE();
virtual void Process(int cycle) = 0;
void ReadChannels(int cycle);
void WriteChannels(int cycle);
int AddInput(CommBuffer* source);
int AddOutput(CommBuffer* sink);

};

Fig. 2. The variable block size motion estimation problem.

Fig. 3. The different block shapes. Shape 7 is not shown: it involves all
sub-blocks.

MemoryBlock is a class that is derived from ContainerOb-
ject and it is used to represent memories that can be written
or read by processing elements.

Commbuffer is a stand-alone class without parents that is
used to represent a communication channel between classes
that are derived from ContainerObject. Commbuffer is capable
of storing the incoming and outgoing data, as well as checking
that the data does not exceed the channel width or that one
channel is not written twice within one clock cycle. Instances
of the Commbuffer class are not aware of the inputs and
outputs that are connected to it. That information is found
in the ContainerObjects attached to it.

Array is a class that can contain processing elements and
communication channels, and serves as a wrapper that repre-
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TABLE I
USAGE EXAMPLE OF OUR LIBRARY.

Action Explanation
- Derive a custom processing element class myPE from PE
mysg = new SynchronousGroup(); Instantiate new SynchronousGroup
myarr = mysg.CreateArray(); Create a new systolic array object
myarr.CreatePEs〈myPE〉(1,8); Instantiate 1 times 8 processing elements of type myPE to myarr
myarr.CreateChannels(0,8); Connect PEs by 8-bit channels in direction 0 (left-to-right)
inmem = mysg.CreateMemoryBlock(size); Instantiate new MemoryBlock
inmem.AddOutput(arr.GetPE(0,0).GetInput(0)); Connect dangling leftmost channel of the array to inmem
inmem.SetOuputStepping(0, 1); Set memory address auto-increment to 1
outmem = mysg.CreateMemoryBlock(size); Instantiate new MemoryBlock
outmem.AddInput(arr.GetPE(0,7).GetOutput(0)); Connect dangling rightmost channel of the array to outmem
outmem.SetInputStepping(0, 1); Set memory address auto-increment to 1
for(i = 0; i 〈 size; i++) mysg.Process(); Do cycle-by-cycle processing through the input data

sents the actual systolic array. It exists mainly to provide a
convenient way to create and modify arrays of PEs. Finally,
SynchronousGroup is the highest-level wrapper class that is
intended to contain all the objects attached to the systolic
array. SynchronousGroup essentially offers the shared clock
functionality that is needed by all classes derived from Syn-
chronousObject.

Table I shows a toy example of using the library. It does
not contain all the details, but outlines the sequence of class
instantiations and method invocations to set up and do some
processing with a simple 1-D systolic array that has 8 PEs,
and input and output memories.

A. Run-Time Behaviour of the Library

The cycle accurate simulation of the array is based on
a three-phase functionality that is common to all objects
inherited from SynchronousObject. Each phase is initiated by
calling the respective function for the one and only Syn-
chronousGroup, which recursively calls the same function in
each object that it contains.

In the first phase of each clock cycle, ReadChannels()
is called. For every object O the data values from the
CommBuffers connected to the inputs are copied to the input
data registers of O. During the Process() phase, object O
is expected to fill its output registers – usually by modified
contents of the input registers. For MemoryBlock objects, the
Process() method is defined to be empty, since memories are
not supposed to modify their contents. Finally, the simulated
clock cycle ends by the WriteChannels() method, during which
every object O copies the contents of output registers to the
respective CommBuffers. This three-phase procedure makes
the functionality cycle accurate, which means that the content
of each memory, channel and PE can be exactly determined
at each clock cycle.

The library offers convenient ways to debug systolic arrays.
For example, the behaviour of custom PEs can be inspected
easily by writing cout or printf -style calls to the Process()-
method. Even hard-to-detect timing problems can be found
quickly by outputting the PE contents each clock cycle

III. THE DESIGN-SPACE EXPLORATION TOOL

Our design-space exploration tool was initially built as a
high-level model that expresses two different, previously built
1D systolic array architectures as different design points of
one general model. The two architectures that span the design
space were: a part of the work done by Yap and McCanny
[3] and another 1D design that is still unpublished work [4].
Before explaining our Design Space Exploration (DSE) tool
in detail, we define the VBSME problem and present the two
designs [3], [4] that motivated our work.

A. VBSME Concepts

In the h.264/AVC VBSME algorithm the 16x16 pixel tem-
plate image is compared to the 31x31 pixel reference image
at all 256 positions that the 16 pixel search range allows (See
Figure 2). The comparison is done by computing a sum of
absolute differences (SAD) between the overlapping pixels of
the template and reference image at each specific position.

The 16x16 pixel template image is divided into 4x4 sub-
blocks, which are combined into variable size blocks in seven
different ways (depicted in Figure 3). As the SAD results are
computed for each of the 7 block combinations that contain
various numbers of blocks, the result of this scheme is 41 SAD
(16+8+8+4+2+2+1) results for each search position, giving a
total of 10496 SAD results. The VBSME search algorithm
must finally return the position that gave the best SAD result,
for each of the 41 partial SADs.

In addition to these standard concepts, we define an addi-
tional concept called cluster. A cluster is a rectangular shape
of 16 pixels and it is used to describe the order in which the
template image pixels are processed. Clusters come in 5 dif-
ferent shapes, as depicted in Figure 7. Possible cluster shapes
include 1x16, 2x8, 4x4, 8x2 and 16x1. As each template image
consists of 16 clusters, also the processing order of clusters
must be agreed upon. For example, the traditional raster scan
[3] can be implemented with the cluster shape 16x1.

For every array architecture presented in this paper, the input
data feed was organized in the same way. The organization is
named broadcasting reference frame data [5] and is depicted
in Figure 4.
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Fig. 4. The data input to the processing elements for configurations 8x2 and 4x4.

B. Implementation of the Architecture of Yap and McCanny

The architecture designed by Yap and McCanny [3] is
depicted in Figure 5. It has a complex interconnection named
the SAD Bus Network that connects two sets of processing
elements. Most of the computations are done in the first set
of PEs (labeled PE in Figure 5), whereas the second set
of processing elements practically only serves as a set of
comparators (labeled Min in Figure 5). As stated before, we
used a part of the solution of Yap and McCanny as one initial
design point while creating our DSE tool. The part that we
used, was the array of processing elements labeled PE in
Figure 5.

The PE data input and output schedules are not defined
explicitly for the DSE tool. Instead, the DSE tool automatically
computes a SAD production schedule after the array parame-
ters have been set. For the array configuration that matches the
work of Yap and McCanny, the resulting DSE PE schedules
match exaclty the ones defined in the paper [3].

The systolic array design of [3] was not followed outside the
array named ”PE” (see Figure 5), e.g., the SAD bus network
is not reproduced by the DSE tool. Instead, the comparator
functionality was implemented in the same fashion as in
the other baseline work [4]. This is explained in the next
subsection.

C. Improved 1D Systolic Array

The second design point that gave directions in creating
our DSE tool was an internally developed architecture that
dramatically simplifies the 1D systolic array design when
compared to the work described in [3]. This design takes
the comparator functionality that resides in a separate set of
processing elements in [3], and moves them inside the primary
set of PEs (shown in Figure 5). This eliminates the need of
the complex SAD bus network.

This solution differs from the design of [3] also by an alter-
native organization of processing elements, which is depicted
in Figure 6 under the name ”4 PE pipeline”. Moreover, the
input order of the template image data (See Fig. 4) has been
changed. We shall see in Section IV, how these changes affect
the design. This architecture was designed on register transfer
level before the work described in this paper was done.

D. Design Space Exploration Tool

As the two previous subsections already suggest, this design
space exploration tool is actually a parameterized implemen-

Fig. 5. The Yap and McCanny SAD Bus Network.

tation of our internally developed VBSME systolic array
[4] that can also be transformed into the design described
in Subsection III-B, and numerous other designs by simple
parameter changes.

The DSE tool allows changing the array configuration
(Fig. 6) and template image cluster shape (Fig. 7), but the
throughtput remains fixed1. These two parameters affect the
number of registers in the system, as will be shown later. In
addition to these two parameters, the cluster processing order
can also be varied freely in the exploration tool, but we used
only one fixed cluster order for each cluster shape.

Changing the design parameters does not change the number
of computations that are done inside a PE: each PE computes
a single pixel difference on each clock cycle. However, there
is a difference in the rate that SAD results for sub-blocks and
larger blocks are produced.

Based on the variables mentioned above, the DSE tool com-
putes a cycle-accurate schedule for all the SAD computations
of the block matching and allocates register space for results
that have to be stored temporarily. At this point it is worthwhile
to mention that our tool correctly reproduces the schedules of

1To be specific: the results are available in 4096 + L clock cycles, where
L is the pipeline length: 1...16
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Fig. 6. The array configurations supported by the design space exploration
tool.

Fig. 7. Template image pixel scanning order for cluster shapes 2x8, 4x4, 8x2
and 16x1. The scan order of 1x16 is not shown; it is that of 16x1, transposed.

[4] and [3], and thus validates the correctness of our model.

IV. INSIGHTS PROVIDED BY THE DSE TOOL

Figure 8 shows the design space covered by our DSE
tool. The vertical axis depicts the array configurations that
are shown in Figure 6 and the horizontal axis depicts the
cluster shapes (See Fig. 7). The letter A in the design space
figure shows the design space position of the solution that was
described in Subsection III-B. Respectively, the letter B shows
where the solution of Subsection III-C lies in the search space.
The other 23 design space points represent new solutions that
have been brought up by this DSE tool. As we will later see,
the DSE results point out that some of these designs might
even be better than [4], [3], whereas others are most certainly
worse.

Fig. 8. The design space.

The key result that the DSE tool produces is the schedule for
SAD computations that tells at which clock cycles new results
emerge and have to be processed by the comparator hardware.
Evaluation of the SAD schedules brings up the first insight
provided by this work: it is desirable that the SAD results are
produced as a smooth stream instead of periodic bursts. If the
SAD results occur as sudden bursts, the PEs need to contain
more register space to save the results before sending them for
further processing. According to the DSE output, the cluster
shape is the variable that affects this issue most, as can be seen
in Table II. The cluster shape 4x4, which has also been used in
[4], provides the smallest SAD production variance and thus,
register space requirement. This makes sense intuitively, since
4x4 is also the shape of sub-blocks in H.264/AVC. Again, this
speaks against the use of the traditional raster scan that has
been used, e.g., in [3] and [5].

The length of the systolic pipeline (See Fig. 6) is related to
the reuse of template image data. With the pipeline of length 1
(array shape 1x16), the template image pixels are never reused
inside the array, but instead are read 16 times more often
from the template image memory than with pipeline length 16
(array shape 16x1). This means that the memory bandwidth
increases as the pipeline grows shorter: with pipeline length
1 the system requires 16 new template image pixels (= 128
bits) each clock cycle, whereas the configuration with pipeline
length 16 requires only one template image pixel value (8 bits)
per clock cycle.

When we assume that we would create a design that uses
the cluster shape 4x4, we see from Table II that the number of
registers per PE remains generally around 6 with all pipeline
lengths. The reason behind this is that during the VBSME
computations, it happens for every PE at some point that 6
SAD results are ready at the same clock cycle. Therefore,
each of the PEs must have this minimum number of temporary
register space. This leads to our second insight: since the
register space requirement per PE remains roughly the same
for all pipeline lengths, this speakes strongly against long
pipelines. This issue is shown in Table III that shows the total
number of registers used by each configuration. In addition to
the temporary register space, we have also added the necessary
inter-PE communication registers to the register count here.
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It is assumed that there is an 8-bit pipeline register for each
parallel channel between PEs, and that temporary SAD results
that are stored internally are 16 bits.

Related to the SAD register space, one might wonder if it
would be possible to share the SAD registers between different
PEs. With clever design and a small number of PEs, this could
truly work, but it is evident that for longer pipelines this will
raise complex interconnection issues such as the SAD Bus
network in [3].

Another fact worth mentioning is that the cluster shape
and processing order variables also affect the template image
memory access patterns. The most simple memory access
pattern is achieved with the cluster shape 16x1, which implies
only a simple memory address incrementation each clock
cycle. Other cluster shapes require more complex addressing,
as Figure 7 shows. However, this particular issue can be
compensated by the way how the template image is written to
the memory – it is possible to write the pixels to the memory
so that simple address incrementation can be applied to every
cluster shape.

In a nutshell, the results indicate that longer pipeline lenghts
result in large numbers of registers (as well as other PE
components) that are under-utilized. This speaks in favor of
short 1...4 PE pipelines. Naturally, since our design space
exploration tool does not provide a HW synthesis backend,
it is not certain that a system like ”Full Parallel” in Figure 6
would be feasible. Also, it is clear that the cluster shape (i.e.
template image pixel processing order), should be set to 4x4,
since it requires the least register space.

The DSE tool shows that there are potentially better array
configurations than the ones that were known prior to building
the DSE tool. It was known beforehand from our internally
developed 1D array that the cluster shape 4x4 was better
than the commonly used 16x1 raster scan. The design space
exploration automated the non-trivial problem of determining
schedules for the SAD calculations, which is strongly related
to the register count required by the architecture.

As the systolic array library does not yet provide a possi-
bility for hardware synthesis, it is not certain what kind of
undiscovered drawbacks these newly found array configura-
tions might have. This is a clear direction for future work.

V. RELATED WORK

Systolic arrays were popularized in the research community
by Kung and Leiserson [6] in 1978. Historically, systolic
arrays have been used for many different applications. Classic
examples of algorithms that could easily parallelize on systolic
arrays include matrix multiplication and evaluation of polyno-
mial algorithms using Horner’s Rule.

In the domain of video coding, systolic arrays have also
been used elsewhere than in motion estimation: Chiper [7]
has published a systolic array implementation of the inverse
discrete cosine transform and Li et al. [8] have published a
systolic array implementation of 2-dimensional interpolation.

A considerable amount of work has been done in the
development of the ALPHA language [9], which enables the

TABLE II
NUMBER OF REGISTERS REQUIRED BY DIFFERENT CONFIGURATIONS, PER

PE.

PL, Cluster shape 1x16 2x8 4x4 8x2 16x1
1 13 7 6 6 13
2 12 5 5 7 12
4 12 6 6 7 12
8 9 6 6 6 9

16 6 6 6 6 6

TABLE III
REQUIRED REGISTER SPACE IN BYTES FOR EACH SOLUTION IN THE

DESIGN SPACE.

PL, Cluster shape 1x16 2x8 4x4 8x2 16x1
1 26 14 12 12 26
2 56 28 28 36 56
4 108 60 60 68 108
8 158 110 110 110 158

16 207 207 207 207 207

automatic synthesis of systolic algorithms. ALPHA follows
an equational approach, where a program is expressed as a
collection of single assignment equations. This is a major
difference when compared to our approach, as well as the fact
that ALPHA does not convey implicitly the notion of time.

A work close to ours [10] has been done as a part of
the Aries project. This technical memo describes a C++
framework name Sim that is intended for cycle-based simu-
lations. Compared to our work, Sim employs a lower level of
abstraction.

Saraswat et al. have performed design space exploration
[11] on the same VBSME problem as presented in this paper.
They used a tool called DesertFD and their work considered
a much wider problem that involved choosing one of two
different sub-optimal search patterns and also synthesizing two
solutions to actual hardware. Their paper also contains a good
survey of recent DSE papers related to VBSME.

VI. DISCUSSION AND FUTURE WORK

We have presented a variable block size motion estimation
design space exploration tool for 1D systolic arrays. It is
based on a general-purpose systolic array library that has been
written in C++. The DSE tool correctly reproduces two already
existing designs and uncovers a variety of new designs, some
of which indicate the possibility of improved performance
when compared to the existing ones.

For future work it would be interesting to build a back-
end to the systolic array design library that would enable
automatic hardware synthesis of the systems that have been
designed with the library. Also, the design space exploration
tool could be extended to encompass various throughputs and
search radiuses.
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Abstract—Two approaches to motion estimation speed-up in

H.264/AVC include designing fast motion estimation algorithms

and accelerating motion estimation in hardware. Hybrid fast

motion estimation algorithms emerged from an effort to

maintain motion estimation speed-up without compromising

rate-distortion performance. The best hybrid algorithms

combine the use of various search patterns with motion vector

prediction, in order to solve the “local minimum” problem. One

such algorithm is the Simplified Unified Multi-Hexagon (SUMH)

search also known as the Simplified Fast Motion Estimation

(SFME) algorithm, a non-normative part of the H.264/AVC

standard. The drawback however, of hybrid algorithms, is that

they are intrinsically control-heavy and sequential and thus do

not readily lend themselves to parallel processing on hardware.

In this paper, we present hardware-oriented modifications to

SUMH. In [10], we have proposed a flexible hardware

architecture for the modified SUMH. Our experiments compare

the PSNR performance and computation time of Full Search,

SUMH and the modified SUMH algorithms. Our results show

that the modified SUMH, while it achieves the desired goal of

greater suitability for hardware implementation, its losses in

terms of PSNR performance and computation time, are

insignificant.

I. INTRODUCTION

Motion estimation (ME), is by far the most powerful

compression tool in the H.264/AVC standard [1], [2], and it is

generally carried out in two stages: integer pel and fractional

pel. It features variable block sizes, quarter-pixel accuracy for

the luma component (one-eighth pixel accuracy for the

chroma component), and multiple reference pictures. However

the power of ME in H.264/AVC comes at the price of

increased encoding time. Experimental results [3], [4], have

shown that ME can consume up to 80% of the total encoding

time of H.264/AVC, with integer ME consuming a greater

proportion. In order to meet real-time and low power

constraints, it is desirable to speed up the ME process. Two

approaches to ME speed-up include designing fast ME

algorithms and accelerating ME in hardware.

Considering the algorithm approach, Yi et al. [5], proposed

a fast ME algorithm known variously as the Simplified

Unified Multi-Hexagon (SUMH) search or Simplified Fast

Motion Estimation (SFME) algorithm. SUMH is based on

UMHexagonS [4], a hybrid fast motion estimation algorithm.

Yi et al. show in [5] that with similar or even better rate-

distortion performance, SUMH reduces ME time by about

55% and 94% on average when compared with UMHexagonS

and Fast Full Search respectively. In addition, SUMH yields a

bit rate reduction of up to 18% when compared with Full

Search in low complexity mode. Both SUMH and

UMHexagonS are non-normative parts of the H.264/AVC

standard.

Considering ME speed-up via hardware acceleration,

although there has been some previous work on VLSI

architectures for variable block size motion estimation

(VBSME), in H.264/AVC, the overwhelming majority of

these works have been based on the Full Search Motion

Estimation (FSME) algorithm. This is because FSME,

presents a regular-patterned search window which in turn

demands a less complex architecture – the memory

organization, routing and control are all straightforward. The

price to pay, however, for the simplicity of the FSME

architecture is the greater amount of time (and hence power),

consumed in ME.

Previous works on architectures for fast motion estimation

(FME) [6] – [9], have been based on diverse FME algorithms.

Rahman et al. in [6] and Byeon et al. in [7] base their works

on UMHexagonS. In [8], Chen et. al propose a parallel,

content-adaptive, variable block size, four step search (4SS)

algorithm, upon which their architecture is based. In [9],

Zhang et al. base their architecture on the following search

sequence: Diamond Search (DS), Cross Search (CS) and

finally, fractional-pel ME.

In this paper, we present hardware-oriented modifications

to SUMH. We also show the advantages and costs of these

modifications, taken separately and as a whole. Our results

(see Section IV), show that for the modified SUMH, the

PSNR loss is 0.01 dB to 0.06 dB when compared with FSME,

and 0.003 dB to 0.03 dB when compared with SUMH. In

terms of percentage computational time savings, while SUMH

saves 88.8% to 98.8% when compared with FSME, the

modified SUMH saves 61.5% to 92.2% when compared with

FSME. Finally, the percentage bit rate increase of the

modified SUMH is 0.21% to 4.32% when compared with

FSME, and 0.18% to 2.95% when compared with SUMH.

Thus the contribution of this work is to show that while the

proposed modifications to SUMH make the algorithm for

suitable for hardware implementation, the losses incurred in

terms of PSNR performance, percentage computational time

savings and average bit rate increase, are insignificant.

In this paper, we also present a brief overview of a flexible

hardware architecture which we propose more fully in [10].
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This hardware architecture is based on the modified SUMH

algorithm that is described in this paper.

The rest of this paper is organized as follows: In Section II

we summarize integer-pel motion estimation in SUMH. In

Section III we present the hardware-oriented modifications we

make to SUMH. In Section IV we present results of these

modifications. Finally our conclusions are presented in

Section V.

II. INTEGER PEL SUMH ALGORITHM

H.264/AVC uses block matching for motion vector search.

Integer-pel motion estimation uses the sum of absolute

differences (SAD), as its matching criterion. The

mathematical expression for SAD is given in equation (1).

1

0

1

0

),(),(),(
X

x

Y

y

dyydxxbyxadydxSAD

(1)

),(min, ),()(
dydxSADyx dydxMVMV            (2)

In equation (1), a(x,y) and b(x,y) are the pixels of the

current, and candidate blocks, respectively. (dx, dy) is the

displacement of the candidate block within the search window.

X Y is the size of the current block. In equation (2) (MVx,

Mvy) is the motion vector of the best matching candidate block. 

H.264/AVC features seven inter-prediction block sizes

which are: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4. These

are referred to as block modes 1 to 7, as shown in Fig. 1. An

up layer block [4], is a block that contains sub-blocks. For

example, mode 5 or 6 is the up layer of mode 7, and mode 4 is 

the up layer of mode 5 or 6.

SUMH [5] utilizes five key steps for intensive search,

integer-pel motion estimation. They are: cross search,

hexagon search, multi big hexagon search, extended hexagon

search and extended diamond search. For motion vector (MV)

prediction, SUMH uses the spatial median and up layer

predictors, while for SAD prediction, the up layer predictor is

used. In median MV prediction, the median value of the

adjacent blocks on the left, top, and top-right (or top-left) of

the current block is used to predict the MV of the current

block. Specific rules [11] govern special cases such as when

the current block is on the edge of a picture or group of blocks. 

The complete flow chart of the integer-pel, motion vector

search in SUMH is shown in Fig. 2.

III. HARDWARE ORIENTED SUMH ALGORITHM

The goal of our hardware-oriented modifications is

twofold. First we seek to make SUMH less control-heavy and

sequential. This way the algorithm is readily adaptable for

parallel processing on hardware. Secondly, we seek to keep at

a minimum, any PSNR losses and increases in the

computation time. The following are the modifications we

make to SUMH:

1. We consider only the zero displacement motion vector 

Fig. 1.  The seven inter-prediction block sizes in H.264/AVC.

Cross search

Satisfy intensive

search condition?

Stop

Yes

No

Satisfy

converge

condition?

Yes

No

Sm all local search

Start: check predictors

Hexagon search

M ulti b ig hexagon search

Up layer predictor search

Sm all local search

Yes

No

Extended hexagon search

Extended diam ond search

Convergence search

Satisfy

converge

condition?

Fig. 2.  Flow chart of integer pel search in SUMH.

i.e. (MV = (0, 0)), as the predictor at the start of the

algorithm. By centering our initial search window around

MV = (0, 0), we break data dependency across neighboring

CMBs. This enables parallel processing of multiple CMBs.

Experiments in [12], [13] and [14], show that when the

search window is centered around MV = (0, 0), the average

PSNR loss is less than 0.2 dB compared with when the

median MV is also used. In Section IV we present results

from our own experiments, which show the effect of using

only MV = (0, 0) as the motion vector predictor.
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Fig. 3.  Flow chart of modified integer pel search.

2. We consider that intensive search condition is satified.

We do this in order to remove the decision control

structures that make SUMH control-heavy and

sequential. Another advantage of considering the worst

case search path is that we greatly compensate for the

PSNR losses that would otherwise have been incurred

through our other modifications.

3. We skip the hexagon search to maintain regularity of

the search patterns while avoiding greatly degrading

the speed-up value and PSNR performance of SUMH.

Section IV presents results from our experiments,

which show the effect of skipping the hexagon search.

The complete flow chart of the modified integer-pel,

motion vector search is shown in Fig. 3

In Fig. 4 we show our proposed scalable and configurable

hardware architecture based on the modified SUMH. The

details of the architecture can be found in [10]. However, we

see from Fig. 4 that the  architecture consists of N  processing

units (PUs), 2 Memory Banks that operate in ping-pong

fashion, a Control Unit, a SAD Combination Tree, a

Comparison Unit that compares all possible 41 SADs

computed in parallel and a register that stores the final result.

Fig. 5 shows a PU which consists of N processing elements

(PE). A PU computes 16 4x4 SADs for one candidate

macroblock (MB). Fig. 6 shows the SAD Combination Tree.

It combines the outputs of a PU, then outputs the 41 possible

SADs of one MB. Fig. 7 shows a PE which calculates and

accumulates the absolute difference between two pixelsFig. 8

shows a comparison element (CE), which consists of 41 N-

input comparators.

Fig. 4. The Proposed Architecture for Implementing the Modified SUMH.

Cross search

Stop

Start: MV = (0, 0)
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Fig. 5.  The architecture of a Processing Unit (PU).

Fig. 7. Processing Element (PE).         Fig. 8. Comparing Element (CE).

IV. EXPERIMENTAL RESULTS

Our experiments are done in JM 13.2 [15]. We use the

following standard test sequences: “stefan” (large motion),

“foreman” and “coastguard” (moderate to large motion),

“silent” (small motion). We chose these sequences because we 

consider them extreme cases in the spectrum of low bit-rate

video applications. The sequences are coded at 30 Hz. The

picture sequence is IPPP with I-frame refresh rate set at every

15 frames. We consider 1 reference frame. The rest of our

simulation conditions are summarized in Table I.

In Table II we present the average Y-PSNR losses incurred

separately in setting the MV predictor to MV = (0, 0), and in

skipping the hexagon search. Fig. 9 shows curves that

compare the rate-distortion efficiencies of Full Search ME,

SUMH and the modified SUMH. In Tables III and IV, we

Fig. 6. SAD Combination Tree.

show a comparison of the speed-up ratios of SUMH and the

modified SUMH. Table V shows the average percentage bit

rate increase of the modified SUMH when compared with Full 

Search ME and SUMH. Table VI shows the average Y-PSNR

loss of the modified SUMH when compared with Full Search

ME and SUMH. Finally Table VII shows a comparison of the

computational complexities for Full Search ME, SUMH and

the modified SUMH.

From Table II, we see that there is a slightly less PSNR loss 

from skipping the hexagon search, than from setting the MV

predictor to MV = (0, 0). Note that although the individual

modifications taken separately, each yield losses as large as

2 dB, the average PSNR loss for the modified SUMH is much

smaller. This can be seen from Fig. 9 and Table VI. The

reason for this is that the modified SUMH algorithm takes the

most intensive search path. As a result of the intensive search,

the individual losses introduced by the modifications in Table

II, are greatly compensated for.

From Fig. 9 and Table VI we also observe that the largest

PSNR losses occur in “foreman” sequence, while the least

PSNR losses occur in “silent”. This is because the “foreman”

sequence has both high local object motion and greater high-

frequency content. It therefore performs the worst under a

given bit rate constraint. On the other hand, “silent” is a low

motion sequence. It therefore performs much better under the

same bit rate constraint.

TABLE I

SIMULATION CONDITIONS

Sequences

QUANTIZATION

PARAMETER

SEARC

H

RANGE

Frame

Size
No. of 

Frames

Foreman 22, 25, 28, 31, 33, 35 32 CIF    100

Stefan 22, 25, 28, 31, 33, 35 16 CIF     90

Coastguard 18, 22, 25, 28, 31, 33 32 QCIF    220

Silent 18, 22, 25, 28, 31, 33 16 QCIF    220

TABLE II

AVERAGE Y-PSNR LOSS PER MODIFICATION

Modification

SET MV

PREDICTOR

  AS MV = (0,0)

SKIP HEXAGON

SEARCH

Foreman     0.0297 dB -0.0038 dB

Stefan     1.0088 dB     0.9918 dB

Coastguard     2.0898 dB     2.0798 dB

Silent     0.8170 dB     0.8170 dB
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Fig. 9. Comparison of rate-distortion efficiencies.
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TABLE V

AVERAGE PERCENTAGE BIT RATE INCREASE FOR MODIFIED SUMH

        Compared With 

Sequences

Full Search SUMH

Foreman       4.32             2.95

Stefan           1.99             1.24

Coastguard           0.21             0.20

Silent           1.08             0.18

TABLE III

COMPARISON OF SPEED-UP RATIOS

18 22 25 28 31 33 35Quantization

  Parameter SUMH
Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH

Foreman 48.55 8.51 41.55 7.11 32.68 5.87 25.87 4.95 21.68 4.39 19.11 3.94
Stefan 15.35 4.64 13.16 4.32 12.20 4.04 10.67 3.76 10.05 3.76 8.96 3.18
Coastguard 86.34 12.75 70.12 10.99 58.05 9.42 43.62 8.23 36.04 6.87 30.10 6.10
Silent 21.86 4.28 16.74 3.54 13.17 3.17 11.90 2.98 9.29 2.71 8.56 2.59

TABLE IV

COMPARISON OF PERCENTAGE TIME SAVINGS

18 22 25 28 31 33 35Quantization

  Parameter SUMH
Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH
SUMH

Modified

SUMH

Foreman 97.94 88.26 97.59 85.93 96.94 82.98 96.13 79.82 95.38 77.24 94.76 74.63
Stefan 93.48 78.47 92.40 76.88 91.80 75.27 90.63 73.42 90.05 70.23 88.83 68.58
Coastguard 98.84 92.16 98.57 90.90 98.27 89.39 97.70 87.85 97.22 85.45 96.67 83.62
Silent 95.42 76.65 94.02 71.75 92.40 68.54 91.60 66.46 89.23 63.21 88.32 61.46

TABLE VI

AVERAGE Y-PSNR LOSS FOR MODIFIED SUMH

        Compared With 

Sequences

Full Search SUMH

Foreman   0. 0645 dB    0. 0290 dB

Stefan   0. 0265 dB    0. 0082dB

Coastguard   0. 0132 dB    0. 0072 dB

Silent   0. 0117 dB    0. 0037 dB
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For Table III, we define the speed-up ratio as the ratio of

the ME coding time of Full Search to ME coding time of the

algorithm under consideration. From Table III we see that

speed-up ratio increases as quantization parameter (QP)

decreases. This is because there are less skip mode

macroblocks as QP decreases. From our results in Table III,

we further calculate the percentage time savings t for ME

calculation, according to equation (3).

100
1

1
r

t                              (3)

where r are the data points in Table III. The percentage

time savings obtained are displayed in Table IV. From Table

IV, we find that SUMH saves 88.8% to 98.8% in ME

computation time compared to Full Search, while the

modified SUMH saves 61.5% to 92.2%. Therefore, the

modified SUMH does not incur much loss in terms of

percentage time savings.

In our experiments we set rate distortion optimization

to high complexity mode (i.e. rate distortion optimization is

turned  on), in  order to ensure  that all   of  the  compared

algorithms have a fair chance to yield their highest rate-

distortion performance. From Table V we find that the

average percentage bit rate increase of the modified SUMH is

very low: 0.21% to 4.32% when compared with Full Search,

and 0.18% to 2.95% when compared to SUMH. Here also, we

find that the modified SUMH incurs very little degradation in

terms of bit rate increase. 

From Table VI we see that the average PSNR loss for the

modified SUMH is very low. When compared to Full Search,

the PSNR loss for modified SUMH ranges from 0.01 dB to

0.06 dB. When compared to SUMH, the PSNR loss for

modified SUMH ranges from 0.003 dB to 0.03 dB. Once

again, these are insignificant losses.

From Table VII we see that the complexity of the modified

SUMH in terms of the number of subtractions, absolute value

operations and additions, is in between the complexities of the

best case SUMH search path and the worst case SUMH search

path. However the complexity of the modified SUMH is much 

lower than that of Full Search ME.

As mentioned earlier, the reason why the modified SUMH

algorithm achieves overall insignificant PSNR losses whereas

the individual modifications in Table II yielded larger losses,

is because the removal of the decision control structures

causes us to do the intensive search every time. As a result of

the intensive search, more accurate motion vectors are

obtained.

V. CONCLUSION

In this paper we have presented hardware-oriented

modifications to SUMH. From our experimental results, we

found that the modified SUMH algorithm achieves very low

PSNR loss. When compared with Full Search, the average

PSNR loss ranges from 0.01 dB to 0.06 dB. When compared

with SUMH, the average PSNR loss is 0.003 dB to 0.03 dB.

In addition to achieving a low PSNR loss, the modified

SUMH algorithm also retains a very good ME speed-up of

61.5% to 92.2% when compared with Full Search. The bit rate 

increase for the modified SUMH algorithm is also very low.

When compared with Full Search, the modified SUMH

algorithm has a bit rate increase of 0.21% to 4.32%. When

compared with SUMH, the modified SUMH algorithm has a

bit rate increase of 0.18% to 2.95%.

Therefore the modified SUMH can be used instead of

SUMH (without much penalty), for ME in H.264/AVC.
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