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Abstract— A stochastic approach to resolution is explored by
using information distances computed from the geometry of
data models which is characterized by the Fisher information.
Taking information distances into account is crucial in
compressive data acquisition typical for compressive sensing
(CS). Based on this information-geometry approach, we assess
the stochastic resolution bounds from data models with typical
compressive measurements and with the Nyquist-sampled
measurements as the reference. Such resolution bounds are
also compared with actual resolution obtained from sparse
signal processing that is nowadays a major part of the back
end of a radar system with CS. The resolution analysis
demonstrates that only with a compressive data acquisition
scheme of random masking (starting directly at reception, with
no receiver noise yet), compressive measurements can perform
as good as Nyquist-sampled measurements.
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I. INTRODUCTION

Compressive sensing (CS) is a recent paradigm in sensing
that works with a reduced number of measurements for a
comparable sensing result. This is possible because CS is
optimized to available information in measurements rather
than to the sensing bandwidth only. The optimization is
based on two conditions: sparsity of sensing results and the
sensing incoherence (e.g. [1]). In a CS sensor, sparse signal
processing (SSP) is crucial in the back end, while its front
end facilitates compressive data acquisition. The ultimate
goal of CS is a CS sensor which is simpler and still performs
at least as good as, or even better than, existing sensors.

Compressive data acquisition and also a whole CS sensor
are regularly believed to be less complicated (and even less
costly) while performing satisfactorily. However, the
performance and overall processing gain in CS are becoming
additionally important and delicate due to fewer
measurements (e.g. [2]-[3]). As we focus on a CS sensor as a
whole, we check how fewer measurements from the
compressive data acquisition affect the performance of SSP
in the back end. Therefore, we assess the resolution potential
of different compressive data acquisition schemes (given the
same input signal). We show that with the scheme applied
directly at reception (e.g. [4]-[5]), a CS sensor can be simpler
and still perform as good as existing sensors.

Resolution is primarily described by the minimum
distance between two objects that a sensor can resolve (e.g.
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[6]). Stochastic resolution has been introduced in [7] by
including the Cramér-Rao bound (CRB). This stochastic
approach was extended with the probability of resolution at a
given separation and signal-to-noise ratio (SNR) obtained via
an asymptotic generalized likelihood ratio (GLR) test based
on Euclidean distances ([8]). Information distances and
resolution have also been explored with an arbitrary test
([9]). Information geometry (IG, [9]-[11]) and CS ([1] and
[12]-[13]) have the potential to contribute to the completeness
of the stochastic approach, due to their focus on information
content ([3], [5] and [14]-[17]). In [16]-[17], the Fisher-Rao
information distance is recognized in the asymptotic GLR. In
[3], different information distances are linked to the LR and
applied to Nyquist and sub-Nyquist random measurements.

In this paper, the stochastic resolution analysis from [3] is
focused on different compressive data acquisition schemes.

A. Related Work

During substantial CS research in the decade starting in 2005
(e.g. [1] and [12]-[13]), no complete guarantees of CS-sensor
resolution performance were developed yet. In particular, the
analysis of compressive data acquisition was lacking.

Stochastic resolution limits were studied (e.g. [7] and [8])
but without IG or CS. Information resolution was studied
(e.g. [9]) but not via (G)LRT nor linked to the CS-radar
resolution. The stochastic resolution was analyzed via (G)LR
and compared to the SSP resolution in [3] and [16]-[17].

In addition, in [3], fewer random measurements are also
used. In this paper, the resolution analysis is extended and
committed to typical compressive data acquisition schemes.

B. Outline and Main Contributions

In Section II, relevant data acquisition schemes are presented
starting with the Nyquist scheme as the reference, followed
by two typical sub-Nyquist schemes from [5]. In Section III,
stochastic resolution analysis [3] is applied to the data
acquisition schemes. In Section IV, numerical results
supporting the analysis are presented. In the end, conclusions
are drawn and future work indicated.

Our main contribution is the resolution analysis of typical
data acquisition schemes in CS. Furthermore, we compare
compressive data acquisition with a corresponding existing
scheme as the reference. Finally, when looking at a CS
sensor as a whole, we reveal that a CS sensor with certain
compressive data acquisition can be less involved and still
perform as good as existing sensors.



II. COMPRESSIVE DATA ACQUISITION

Compressive data acquisition may change processing gain
and sensing performance (e.g. [2]-[3]). We are interested in
acquisition schemes with Nyquist-sampled data as the
reference, and with typical sub-Nyquist data compressed
before and at reception (which remain Gaussian-distributed).

In an array of size N, raw complex-valued measurements
gathered in a vector y € CN of an input (true) signal s € CX
from K point targets can be modelled as (e.g. [18]):

y=YK  5.eB% +z=3K s.a(8,)+z (1)

where s, is the kth-target echo in s, B€RY is an
observation vector (centered, i.e. Y,B,= 0), 0, is an
unknown, Z is a (complex Gaussian) receiver-noise vector of
iid. elements with zero mean and equal variances v,
z~CN(0,yI,) and a(0) is a sensing vector with norm VN,
a(0) = e/P9_ In a spatial array, B,, and 8, would yield the
antenna-element position and unknown angle, respectively.

For the sake of an information distance between
CN(u(®),yIy) and CN(u(® + 86),yIy) and its link to
resolution ([3]), we investigate s which contains a single
nonrandom component. The reference Nyquist-sampled (NS)
datay € CV, y~CN(u(8),yIy), can be written as:

y=a@®)s+z=p0)+z=pn+z 2)

where a(B) € CV*! is a sensing vector belonging to the
nonzero response s at 0 and z is as before, z~CN(0,yIy).
The complex-valued target echo s is assumed to have
constant nonrandom amplitude |s| (so-called SWO, [19]).
The related signal-to-noise ratio (SNR) is equal to |s|?/y.

We investigate compressive data acquisition with two
sub-Nyquist data models containing the Gaussian noise. First
we look at compression before reception, namely at sparse
sensing (SS, e.g. [20]). Further, we look at random masking
(RM, e.g. [4]-[5]) which enables the compression directly at
reception where receiver noise can be ignored.

In the SS scheme, the corresponding model of the
compressed data y,, € CM, M < N, can be written as follows:

Yss = Bssy = Bssh+ Bssz = W5 + Zgg 3)

where the compression matrix Bgg has M ones (chosen in a
multi-coset manner, e.g. [19]) one on every row and zeros
elsewhere. Accordingly, ¥, Mgs and zgs contain the
corresponding M elements from y, p and z, respectively.
Thus, there are M outputs, each output having the noise as in
the reference case, z,~CN(0,yI,). From a single
realization of B, we can assume Yg~CN (Wgs, YIn).

In the RM scheme, the related model of the compressed
data yg, € CM, M < N, can be written as follows:

Yrm = Bault + Zgy = Weyw + Zgy “4)

where the compression matrix By, is a full random matrix.
We investigate a practical By, which contains uniformly-
distributed phase shifts. Its mn—th element bgy n,, equals

exp(j@mn)/NM where @,,,~U(0,21). In RM, B,,, affects
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only the signal as it works at reception without any receiver
noise yet. After reception there are M outputs whose receiver
noise is equivalent to the SS case, i.e. Zgy~CN(0,vI,,), and
Vam~CN (U, YI ) from a single realization of Byy,.

In CS, the solution for the unknown s from data models
(1)-(4) is sought by applying the model: y. = A.x + z,
where A, is the sensing matrix over a discrete grid of size N,
A. € CM*N and x is a sparse vector, x € CV. The usual SSP,
e.g. LASSO[21], applies as:

Xssp = argminy [lyc — Acx||* + nllxll, ®)

where the /;-norm [|x||, promotes sparsity, the l-norm
|y, — Acx| minimizes the errors, and a regularization
parameter 1 balances between the two tasks. The parameter
1 is closely related to the detection threshold (e.g. [24]). An
underdetermined system can be solved, M < N, because of
the sparsity, i.e. only K nonzeros in x (representing the
unknown s), K < M < N, and because of the incoherence of
A, (e.g. [1]). The mutual coherence k(A) of a matrix A4 is an
incoherence measure, k(4) = max;;;.; |ala;|/lla;ll]|a;|

where a,, is the nth column of 4, n=1, .., N.

In radar processing, a sensing matrix A is intrinsically
deterministic and its incoherence is also intrinsically strong
because of the physics of radar sensing. In array processing
as in (1), the sensing matrix A, from (5) is often an ()FFT
matrix, i.e. K(4.) = 0 when M = N. With a uniform array of
size M, the grid cell AB is 2n/M large. Such a cell size is
called the Nyquist size. Fewer measurements, i.e. when M
< N, or a smaller cell AB would make k(A.) increase.

I11. STOCHASTIC RESOLUTION ANALYSIS

Our resolution analysis is based on distances between two
populations that have been studied in information geometry
(IG). 1G studies manifolds in the parameter space of
probability distributions, using the tools of differential
geometry (e.g. [10] and [11]). The inner product of two
vectors v and w in a Euclidean space: (v,w) = v'w is
redefined locally as: (v,w) = v Gw, where G is a crucial
metric defined by the Fisher information matrix (FIM) in IG.

In the accuracy analysis, the metric G(0) is typically
applied to the Cramér-Rao bound (CRB) of the mean squared
error (MSE) of an unbiased estimator 8 of 8, i.e. MSE(8) >
CRB(0) = [6(08)]™* (e.g. [18]).

In addition, G(0) is also used for resolution bounds based
on information distances between p(y|0) and p(y|0 + d6)
when 0 change a bit by d0 (e.g. [3], [9] and [16]-[17]).

A. Information Distances

An information distance d,,gy between CN(u(6), Z) and
CN(u(0 + 60),X) with the same covariance X, £ =yl , and
different means, 6p = pu(0 + 860) — u(0), is derived analog
to the distance from [10] between N(y,y) and N(u + 6y, y)
on the manifold in (, 1/y). The distance d,,g) can be given
by the Mahalanobis distance (e.g. [22]) as follows:



Vo Gsp = Ispll /Yy (6)
where G is the inverse of X. We realize that the FIM for the
mean M also equals G defined as follows (e.g. [23]):

[621np(y|u(9))] 10 au p_19
opoptt yout op  youH

due) =

1
* _I
PV yIN

where p* is the complex conjugate of p, and p# = p*7

Next we apply (6) to the three acquisition schemes: NS,
SS and RM from (2), (3) and (4), respectively.

The distance d,g)ns With NS from (2) can be derived as:

Dpls|?
duos = I18mll/47 = P20

where Dp is the array (aperture) size, Dgp = max, f, —
min,, ,. The closed form is obtained when the observation
variable B is treated as continuous in the norm |[8p|l —
I8u(B, 01|, —=Dg/2 < f < Dg/2. The continuous domain
enables the ultimate reference before any sampling (as a
subject of further work). Note that there appears a complete
set of parameters affecting the resolution: Dg, SNR and &6.

sinDﬁSG/Z
- DﬁSG/Z) Q)

The distance d,(g)ss expected with SS in (3) is given by:

|I5 l ’8 Hpllp
dp(e),NS=E Hss] [ U Dbgg ssll] [duNs(e) (8)

as BY\B, is an NxN diagonal matrix with only M ones on
the diagonal and zeros elsewhere, M < N.

The distance dygyrm €xpected with RM from (4) where
E[BY,By.] = I is given by:

I8 pgmll suHBl B
dy@)rm = E [HTRYM] =E [\/ — RM”] = dyys@ )

as E[bf{M,mszM,mk] equals 1 when [ = k, and 0 otherwise.
Hence, RM preserves the information distance from NS
while SS makes it decrease proportionally with /M /N.
Next we derive the stochastic resolution bounds from the
distance du(e) in (6) as the probability that two point targets
can be resolved at a separation 86 and a particular SNR.

B. Stochastic Resolution

In some early work on IG [10], Rao proposed testing the
resolution in 0 from data y with a hypothesis Hy: 66 = 0 and
its alternative H;: 80 # 0, by using a distance between the
data populations p(y|0) and p(y|6 + &0).

In [3], the equivalent binary hypothesis at the true
separation 80 is expressed as follows:

Ho:y = 2p(0) +z = y,

Hi:y=n®)+ p®+80)+z=y,+ ép °
where the data y as in (2)-(4) contain responses from two
point targets separated by 68. Consequently, the likelihood
ratio (LR), LR = p(¥16,08 + 66)/p(y10), is explored. From
(10), a test statistic In LR is derived as follows:

InLR = 2Re {[y — 2n(®)]"6p} — [I6pll®)/y  (11)

(10)
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whose Gaussian distribution is defined with the distance
dyy from (6), In LR~N(¢dﬁ(9), Zdﬁ(e)). Thus, a link is
established between a resolution test and an information
distance between CN(n(0), X) and CN (n(6 + 66), X).

In order to assess the probability of resolution P, the
InLR from (11) is tested with a test statistic &g u(g) under Hy,
fLR,p(G) =In LR/Zdu(e) + du(g)/z ~N(dp_(9), 1), against a
threshold p obtained under H, from the inverse normal
distribution at the false-alarm probability Pp, p=
N™v (0,1, P;,), as follows ([3]):

Pres,u ZP{fLR,p(G) >p| Hl} ’ 'SLR,p(S) ~N(dp.(9): 1) . (12)

In cases with Gaussian data as in (1)-(4), other information
(pseudo-)distances can also be used to compute the test
statistic & (g Of the resolution bound P . For example,
the Kullback-Leibler divergence dg;, and Bhattacharyya
distance dgr, are related to the information distance dy, )
(and also to LR, [3]) as: dg;, = Ey, [InLR]
—InEy, [VIR] = dﬁ(e)/‘}» respectively.

With the measurements from NS, SS and RM, the
stochastic resolution bounds Preg s> Presuss and Presrm
are computed from (12) by using the distances d,g)ns.
dyu(e),ss and dygyrm from (7), (8) and (9), respectively.

2
= du(e) and
dgr =

Finally, the resolution bounds given by the I1G-based
probability Pesy in (12) are compared with the SSP
resolution whose probability P.qssp is assessed numerically
from xggp in (5) for the two target cells i and j, i # j, by:

Presssp = P{(xssp,i * 0) A (xSSP,j * 0)| H1} (13)

= —vyInPy, (e.g. [24]).
the SSP resolution probabilities

where SSP in (5) uses 1) given by: 1?
In NS, SS and RM,
Pressspnss Pressspss and Pressspru are assessed with the
SSP estimates from (5) obtained with the measurements
modelled in (2), (3) and (4), respectively.

Iv. NUMERICAL RESULTS

The resolution analysis from Section III is demonstrated with
numerical tests from array processing of two close equal
targets at different SNRs. The measurements y from (1) are
acquired from a linear array of size N, and contain responses
from two point-targets separated by 860, y = p(0) +
(6 + 60) + z. The total number N of array elements is
chosen to be 100 while a number M of compressive
measurements is chosen to be 50 and 25, i.e. the compression
factor N/M equals 2 and 4, respectively. The observation
grid is Nyquist in NS as N = M, or sub-Nyquist in SS and
RM as N > M. The mn—th element: exp(j@,)/VM, of the
random matrix By, represents a phase shift by a uniformly-
distributed angle @, ©1mn~U(0,21). A multi-coset pattern
is chosen for By whose array edge elements are always kept
equal to one (so that the array size Dg remains the same).

The true input signal s is kept the same in all the
acquisition schemes. The estimation grid of size N is also



kept the same. The targets are separated in 8 by 86 up to
three Nyquist cells large, i.e. up to 6m/N. The signal
amplitude |s| equals ,/YSNR and the noise variance y is
constant, y =1. The false-alarm probability Pg, is set to
0.000001 (as realistic in radar) in p and 1 from (12) and (13).

In Fig. 1, the information distances d, gy s> dyu(e)ss and
dy(e),rm computed from (7), (8) and (9), respectively, are also
assessed numerically from the simulated data as the mean
values from 100 Monte-Carlo realizations of the noise z, and
of the compression matrices B and Byy,. The analytical and
numerical results of the information distances (normalized by
VN for the sake of clearer comparison) coincide.

In Fig. 2, the resolution bounds Presynss Presyss and
Bresyrm together with the SSP probabilities Pressspus:
Pressspss and Pregssprw are shown for the same 100
realizations of the test cases at 80 equal to 21/N or 4m/N.
The bounds Py, are far from Pregssp., especially of SS.
The resolution probabilities from RM and NS are
comparable. In addition, at larger 88 (Fig. 2, bottom), Feg .,
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Fig. 1. Information distances from data acquisition schemes NS, SS and

RM: dy@)ns> Auo),ss and dygyrm Versus separation 80 at unit SNR
and compression factor M /N equal to 2 (top) and 4 (bottom) in SS
and RM, computed from (7), (8) and (9), respectively, and assessed
numerically as the average values from 100 Monte-Carlo runs.
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Fig. 2. Resolution of data acquisition schemes NS, SS and RM given

by the resolution bounds computed from (12): Presynss Prespss and
Presyurm> together with the related SSP resolution probabilities
obtained from (13): Pregsspnss Pressspss aNd Pregssprms respectively,
at separation 66 equal to one (top) and two (bottom) Nyquist cells and
compression N /M equal to 2 in SS and RM. Test cases as in Fig. 1.

and Ppesssp« remain nearly the same. This behavior agrees
with the related information distance dyg) in Fig. 1 which
also remains nearly the same at the larger separation.

V. CONCLUSIONS

The resolution performance of typical sub-Nyquist data
acquisition schemes from CS was assessed, and moreover,
compared with the performance of the corresponding
Nyquist-sampled scheme as the reference.

The resolution analysis demonstrated that a CS sensor
can be simpler with fewer measurements and can still
perform as good as existing sensors. This is true only in the
case of compressive data acquisition starting directly at
reception with no receiver noise yet, and thus, affecting the
signal only. An example of the scheme is random masking.

In future work, the performance of CS radar is being
further assessed by evaluating the SSP detection and
accuracy when compressive data acquisition is applied.
Furthermore, the continuous domain is being analyzed to
determine the reference (before any sampling) for the
performance analysis of compressive measurements.
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