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Abstract—We demonstrate real-time single-pixel video imag-
ing from highly undersampled data with the recently proposed
Fourier domain regularized inversion method (FDRI). FDRI
is a non-iterative image reconstruction method based on the
calculation of the generalized inverse of the measurement matrix.
The regularization of the solution is obtained by minimizing
the sum of norms of the convolutions between the reconstructed
image and a set of spatial filters. The FDRI method allows us
to reconstruct 256 x 256 images at the frame rate of 11 Hz
on the fly during the optical compressive measurement with the
compression ratio of 3%. With a precalculated generalized inverse
matrix, the numerical cost of image reconstruction is proportional
to the number of measured samples and the number of pixels
in the measured image. FDRI does not require orthogonality of
the sensing matrix and it and is especially efficient for highly
incomplete measurements. Moreover, FDRI may be used both
when the sampling functions are correlated or uncorrelated with
the signal. The latter case, such as randomly generated Bernoulli
patterns, is applicable to any unknown sparse signals, as long as
the sparsity basis of that signal is known. On the other hand, the
correlated sampling protocols use some a-priori predictions of the
most significant coefficients of the signal sparse representation to
increase the accuracy of incomplete measurements.

I. INTRODUCTION

Single-pixel imaging is an indirect compressive imaging
technique, which requires only a single photodetector to cap-
ture an image [1]. This idea is especially attractive for imaging
at mid and far infrared, as well as at terahertz or millimeter
wavelengths, for which high-resolution cameras are either
expensive or unavailable [2]-[4]. Methods based on ¢'-norm
optimization allow to recover the sparse representation of the
image from a compressive measurement [5], [6]. This is a way
to reduce the overall acquisition time needed for single pixel
imaging. Presently, one of the greatest challenges for single-
pixel cameras is real-time imaging of a moving scene [7]-[11].
On one hand, the indirect method of measurement by itself
limits the video frame rate, as to capture each frame requires
switching the state of a spatial light modulator (SLM) as many
times as the number of taken image samples. For a compressive
measurement this number is a fraction of the pixel resolution
of the image. On the other hand, efficient reconstruction
algorithms are necessary to reconstruct the video on the fly.
The iterative optimization methods, which provide excellent
results in compressive sensing and imaging, are usually not
fast enough to match the sampling rate of the state-of-the-art
SLMs. For this reason, we focus on the closed-form solutions
to the inverse problems, which may be cast to the calculation
of the Moore-Penrose pseudoinverse. For an underdetermined
system of equations the psudoinverse gives the solution with
minimal ¢2-norm, so it does not tend to find a sparse rep-
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resentation of the image. However, when combined with a
sampling protocol, which by itself is an image compression
method, the pseudoinverse offers a reasonably good estimate of
the measured image [12]-[15]. Several proposals of sampling
schemes utilizing some predictions about the sampled scene
have been recently studied and applied to single-pixel imaging.
They include ordered Walsh-Hadamard patterns [16], sampling
with Fourier domain components [10] and patterns designed
using deep learning techniques [11]. The major advantage
of using psedoinverse for reconstructing images sampled by
a single-pixel camera is the low computational cost of this
method. With precalculated psedoinverse of the measurement
matrix, the reconstruction requires only a single multiplication
of a n X k matrix and a k-length vector, where n is the
number of pixels of the measured image and k is the number
of sampling functions used in the measurement.

We have recently proposed a novel single-step method
of reconstructing a compressively measured image [17]. The
method, called Fourier Domain Regularized Inversion (FDRI)
method, includes minimization of a quadratic criterion, which
tailors the properties of the solution in the Fourier domain.
Similarly to the pseudoinverse reconstructions, the FDRI
method is expressed in a closed-form and shares the same
linear computational cost as a function of the dimension of the
measurement. The proposed criterion combines minimization
of the image gradient with a penalty-function for high spatial
frequencies in the spectral representation of the image.

II. IMAGE RECONSTRUCTION WITH FOURIER DOMAIN
REGULARIZED INVERSION METHOD

Let us now recall the principles of the FDRI method. We
assume that the measurement of an image performed by a
single-pixel camera is described by a system of equations:

Mz =y, ey

where x is a vector representing the measured image, consist-
ing of n real-valued pixels, M is a rectangular k£ X n mea-
surement matrix, each row of M represents a single sampling
function used to probe the image during the measurement, and
y is a vector with k& < n elements containing the measure-
ments. The image is reconstructed from the measurement y
through minimization of a quadratic criterion constrained by
Eq. (1),

xg = arg min F(x) subject to Mx = y. 2)

x
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The criterion is defined as a sum on ¢2-norms of the convolu-
tion of the image with a set of real-valued filters (")

E(x) =Y a®|zxh®|?, 3)
p

where o) > 0 are weighting coefficients. The solution to the
optimization problem from Eq. (2) takes the following closed
form:

zo = Py, 4)

with
P=BM*(MBM*)~!. 3)

Let us further denote with carets the matrices and vectors
transformed into the Fourier domain and let F' stand for the
Fourier transform. Then, the Fourier transform of matrix B in
Eq. (5),i.e. B = FBF*,is a n xn diagonal matrix, related to
the transfer functions of the filters 2() in the following form:
Bij= 577 and B = F*BF, (6)

3, a2

where h(®?) = FR(®)F* is the transfer function of the p-th
filter. The matrix P in Eq. (4) is a generalised inverse of the
measurement matrix M, and it converges to the Moore-Penrose
pseudoinverse of matrix M when B = I = B, i.e. when all

Fourier components are transmitted with equal weights by each
of filters h(P).

We are using a single-dimensional notation whenever pos-
sible, thus images are represented as vectors. However, it
should be kept in mind that they are actually two-dimensional
(2D) objects. Therefore, F' denotes the 2D Fourier transform
and all filters h(®) are defined in 2D Fourier domain. This
domain is spanned by spatial frequencies w, = w,(i) €
(—m,+m), and wy, = wy (i) € (—m,+). A single vector index
i may be assigned to the values of the 2D spatial frequencies
in the same way, as it is assigned to the values of pixels in
a 2D image. Using this notation, we propose a combination
of four filters in the optimization criterion, namely: a penalty

filter for high spatial frequencies h(") = , /w2 4 w2, gradient

Y
filters with transfer functions (2 = sin(w,), h®) = sin(wy),
responsible for minimizing image nonuniformity, and a con-
stant filter A(Y) = const required to remove singularity from
Eq. (6). For this set of filters, matrix B takes the form:

2 Wa(i)? + wy (i)

Bij =61, (5 Th 272

-1
+(1- u)2<sin2 (wa () + sin? (wy(z))>> , (D

where p € [0,1] is a coefficient weighting the contribution of
specific filters to the solution, and ¢ is a small constant. In our
further results, we use € = 104,

Finally, the FDRI method may be used for real-time single-
pixel video acquisition and reconstruction, provided that the
reconstruction matrix P is calculated beforehand. Than the
reconstruction of each video frame with Eq. (4) takes only nk
multiplications. The practical use of this method consists of
the following steps:
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Fig. 1. Averaged 2D DCT spectrum calculated for a database of 85 images
with various content at the resolution 256 X 256 (logarithmic scale).

e  Preparation before the measurement:

1. Select the sampling functions and create the mea-
surement matrix M. In the case of highly com-
pressive measurement (i.e. when k& < n), the best
performance is obtained when the Fourier spectrum
of the sampling functions is similar to the Fourier
spectrum of the measured image.

2. Select filters h(®) for the optimization criterion
from Eq. (3).

3. Calculate matrix B using Eq. (6). With the filters
proposed in this study, matrix B takes the form
given by Eq. (7).

4. Calculate the reconstruction matrix P using
Eq. (5). To reduce the computational cost, matrix B
should not be calculated directly. Instead, in Eq. (5)
B should be replaced with F*BF, and then the
direct or inverse fast Fourier transform may be used
to calculate the products with F' or F'*, respectively.

e Real-time video imaging:
For each video frame:

1. Sample the image with the functions stored in
the measurement matrix M and measure the
elements of vector y.

2. Reconstruct the image using Eq. (4) and the
precalculated matrix P. Both tasks may be
conducted in parallel.

III. NUMERICAL AND EXPERIMENTAL RESULTS

Let us now demonstrate the performance of the proposed
reconstruction method. For this purpose, we consider two
qualitatively different types of image sampling, namely the
Bernoulli sampling and the discrete cosine transform (DCT)
sampling. The Bernoulli sampling consists of randomly gener-
ated binary sampling patterns with independent and identically
distributed pixel values. This kind of sampling is highly
incoherent with most of the standard image sparsity bases,
which makes it a preferable choice for classic compressive
sensing techniques [6]. The DCT sampling, on the other
hand, takes advantage of the prediction of the expected DCT
spectrum of the scene. Indeed, for most real-world images,
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TABLE 1.

COMPARISON OF PSNR (AVERAGED OVER 50 TEST IMAGES WITH RESOLUTION 256 X 256) OBTAINED FOR THREE RECONSTRUCTION

METHODS: THE FOURIER DOMAIN REGULARIZED INVERSION METHOD (FDRI), PSEUDOINVERSE-BASED METHOD AND TV MINIMIZATION WITH NESTA.
TwWO METHODS OF SAMPLING ARE CONSIDERED: RANDOMLY GENERATED BERNOULLI PATTERNS AND BINARIZED ELEMENTS OF THE 2D DCT BASIS
SELECTED ACCORDING TO FIG. 2D. IN BOTH CASES, THE COMPRESSION RATIO k/n ~ 3%.

average PSNR [dB]

Pseudoinverse FDRI NESTA
Bernoulli sampling 12.30 16.75 16.21
DCT sampling 20.82 21.81 21.96
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Fig. 2. Comparison of reconstructions obtained for three reconstruction methods: the Fourier domain regularized inversion method (FDRI), pseudoinverse-based
method and TV minimization with NESTA. The original image (a) is sampled with 2000 binary patterns with resolution 256 x 256 (compression ratio ~ 3%).
Two types of sampling are considered: (b) incoherent sampling with random patterns generated with Bernoulli distribution and (c) binarized rows from the 2D
discrete cosine transform matrix (DCT) corresponding to the low spectral components of the DCT. (d) The range of selected sampling functions from the 2D

DCT spectrum (marked in blue).

the 2D DCT spectrum is concentrated around the lowest
frequency components. To illustrate this, in Fig. 1 we present
the averaged DCT spectrum calculated for a database of 85
images with resolution 256 x 256, including photographs of
faces, landscapes, machines, animals, etc. The DCT sampling
is designed to be correlated with the scene. Therefore the
sampling matrix is composed of a small set of binarized
low-frequency functions selected from the 2D DCT basis.
The spectral range of selected DCT functions is depicted in
Fig. 2d, however binarization broadens this spectrum to include
also some higher frequency components. For both types of
sampling the measurement matrix consists of £ = 2000 binary
patterns with resolution 256 x 256 (the compression ratio
k/n ~ 3%).

In Table I we compare the peak signal-to-noise ratio
(PSNR) of reconstructions obtained using the FDRI method
with reconstructions obtained either with the use of Moore-
Penrose pseuodoinverse of the measurement matrix or by
optimizing the total variation (TV) of the image using NESTA
solver. The PSNR values are averaged over a database of
50 images sampled using either Bernoulli or DCT sampling.
Exemplary reconstructions obtained with each of the recon-
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struction methods and sampling types are illustrated in Fig. 2.
In most cases, the reconstructions obtained with FRDI and
TV minimization methods are of comparable qualities. Both of
these methods offer significant improvement over the solutions
obtained with the pseudoinverse. While for the DCT sampling,
marginally higher PSNR is usually obtained with NESTA, the
FDRI method leads to slightly better results when Bernoulli
sampling is applied. However, the most practical advantage of
the FDRI method over NESTA and other solvers performing
the optimization of the image TV or ¢;-norm, is the recon-
struction time. In the discussed example, the reconstruction
of a single image with the FDRI method takes approximately
0.08s on a medium-class PC with single precision arithmetic.
This value scales proportionally to the number of sampling
functions %k and the number of pixels in measured image n.
In the same conditions, the TV minimization with NESTA
requires several seconds of computations. This makes the
FDRI method excellent for applications in single-pixel video
imaging with reconstructions performed in real time.

It is also worth mentioning, that the time-resolution of any
video signal sampled with a single-pixel camera is proportional
to the number of sampling patterns k included in the measure-
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Compression ration k/n =~ 3%
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Fig. 3. Experimental reconstructions of selected video frames with resolution 256 X 256 sampled with a single-pixel camera at compression ratios: (a) k/n = 3%
and (b) k/n = 6%. The images are reconstructed using FDRI method using three different values of coefficient u correspond to different proportions of specific
spectral filters included in the optimization criterion (see Eq. 7). Pseudoinverse reconstructions of the same frames are included for comparison.

ment matrix. Therefore, achieving reasonable frame rate of a
single-pixel video requires using efficient sampling methods,
which offer high quality of the reconstructions at possibly low
compression ratio. The incoherent sampling methods, such as
Bernoulli matrices, scrambled Walsh-Hadamard patterns [18]
or discrete noiselets [19], allow to uniformly sample a large
class of images over their sparsity domain. However, in order
to provide high-quality reconstructions, they require the num-
ber of sensing patterns k to exceed a certain threshold, which
is usually larger than the number of significant coefficients in
the image sparse representation [6]. On the other hand, the
correlated sampling methods, in which the sampling matrix
consists of selected elements from DCT, Fourier or Walsh-
Hadamard basis, offer significantly better performance for
highly incomplete measurement with £ < n (see Fig. 2). It
should be, however, kept in mind, that correlated sampling is
equivalent to lossy image compression, and may be outper-
formed by incoherent sampling at sufficiently large values of
k.
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Let us now demonstrate the results obtained with the
FDRI method applied to real-time imaging with our exper-
imental single-pixel camera. The camera makes use of a
digital micromirror device (DMD) to sample a scene at the
rate of 22 kHz. Then the brightness of the modulated scene
is measured with a pair of photodiodes using the balanced
photodetection technique [17], [20], [21]. Finally, a digital
oscilloscope is used to sample and digitize the signals. The
results are streamed to a PC for further processing and
reconstructing the video images on the fly using the FDRI
method. The time required to capture a single video frame
with resolution 256 x 256 at compression ratio k/n = 3% is
approximately 0.09s. Together with the fast single-step method
of image reconstruction, the camera allows for real-time video
imaging at the frame rate of over 11 Hz. The reconstructions
of selected video frames obtained with DCT sampling for
two different values of the compression ratio k/n = 3% and
k/n = 6% are presented in Fig. 3. We also demonstrate
the influence of changing the weights between filters h(P)
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included in the calculations of the reconstruction matrix P. For
1 = 0.9 the optimization criterion for the FDRI is dominated
by the penalty function for high spatial frequencies, while for
p = 0.1 the gradient filters become dominant (see Eq. (7)).
The gradient filters tend to smooth the nonuniformities of
the image, while boosting some of the high-frequency Fourier
components responsible for preserving the sharpness of edges.
However, they are not efficient for clearing any grid-oriented
artifacts. The penalty filter for high spatial frequencies is not
affected by the orientation of the artifacts, since its spectrum is
axially symmetric. However, it usually introduces some level
of blurring into the image.

IV. CONCLUSION

To conclude, we have demonstrated that the FDRI method
significantly improves the quality of reconstructions for com-
pressively sampled images, as compared to reconstructions
based on the Moore-Penrose pseudoinverse. It allows to ob-
tain values of PSNR comparable with the ones achieved by
methods based on TV minimization for both incoherent and
correlated sampling methods. On the other hand, FDRI is
a closed-form non-iterative method with computational cost
linearly dependent on the size of the measurement matrix,
i.e. O(nk). Thanks to this property, the FDRI can be directly
applied to real-time reconstructions of video images captured
alive with a single-pixel camera. We have demonstrated, that
the FDRI method is capable of keeping pace with a DMD,
which samples the video image at the rate of 22 kHz using
patterns with resolution 256 x 256.
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